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                       Abstract 
 

An analytical expression derived for the embedding energy function �(�) in an 
earlier work has been used to study more ��� monatomic metals. The parameters for 
the model were obtained from the available experimental physical quantities. Our 
physically well-motivated and transferrable �(�) was able to reproduce the surface 
energies and other structural properties of nine ��� metals as established by the 
calculated results. 
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1.0    Introduction 

The embedded atom method (EAM) which originated in [1] is still the most widely applied potential for pure metals and 
alloys. Our research group has already reported an embedding energy functional of form[2] 

�(	) = �� � 		�
�� − �� � 		�

�� ln � 		�																																																																																	(1.1) 
where�, 	�� and �� are the adjustable parameters. The derivation of Eq.(1.1) was based on an overly simplified elastic energy 
expansion in Taylor’s series with respect to small displacements and concurrently through the local density 	 leading to a 
second-order ordinary differential equation in �(	). Eq.(1.1), though simple, contains the basic physical characteristics of the 
embedded atom method and provides another means of studying the functional dependence of EAM on the background 
density using certain empirical data. In the present work we report the results of the calculations of the surface energies 
performed with Eq.(1.1) for nine monatomic ��� metals.   
The present work is organized as follows: Section 2 surveys briefly the physical theoretical requirements for the task. The 
calculation procedure is outlined in section 3 while the results, centred on nine face-centred-cubic (���) metals, are presented 
in section 4. Section 5 concludes the work.  

1.0 Theory 
EAM potential contains a many-body and a pairwise potential interaction terms designed to model the effective environment 
of an embedded atom. A heuristic derivation [1]using DFT led to 

���� = �!( 	"#
"$!
%&!"')

!
+ 12 *!"%&!"'!,""$!

																																																																													(2.1) 
where 

	 = 	"#%&!"'
"$!

																																																																																																																															(2.2) 
Parameter 	# is the spherically averaged atomic density where 	 = 	#(&) represents the equilibrium value of the local 
density. The pair potential * is an electrostatic two-body interaction. The host electron density 	 is assumed to be a linear 
superposition of contributions from individual atoms while �(	) denotes the embedding energy functional. Eq.(2.1) is known 
for computational simplicity and it adequately caters for defects and other physical phenomena in solid or liquid state of 
metal. So far, EAM features the following three important functions: �(	), 	(&) and *(&). 
The main tool for the present calculation is the embedding energy functional of Eq.(1.1) where 
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 �(	) = ��		and					�(0) = 0																																																																																																				(2.3) 
The vacancy formation energy is calculated from  �/#01 = ����(23�344�5, 6) − ����(78&�8�9, 6)																																																																								(2.4) 
having defined ���� in Eq.(2.1). For nearest-neighbour contribution in the ��� lattice, we have 

 	(&!) = 12	(&)																																																																																																																						(2.5) 
 ϕ%&!"' = 6*(&)																																																																																																																								(2.6) 

Let *(&) = * so that Eq.(2.1) gives the following: 

����(78&�8�9, 6) = 6	�(12	) + 12 126* = 	6	�(12	) + 66*																																		(2.7) 
����(23�34�5, 6) = (6 − 12)	�(12	) + 12	�(11	) + 12 (6 − 12)*																										(2.8) 

Therefore from Eq.(2.4)   �/#01 = −12	�(12	) + 12	�(11	) − 6*																																																																														(2.9) 
But the cohesive energy, by definition, is 

�0�A = ����(78&�8�9, 6)6 = �(12	) + 6*																																																																												(2.10) 
leading to 6* = �0�A − �(12	)																																																																																																																		(2.11) 
Thus, �/#01 = 12	�(11	) − 11	�(12	) − �0�A 																																																																															(2.12) 
Eq.(2.12) suggests that �/#01 ≠ �0�A and for �/#01 < �0�A we must have 12	�(11	) − 11	�(12	) < 0																																																																																																					(2.13) 
or 

�(DD�E)DD < �(DF�E)DF which connotes
GF�(�)
G�F > 0, a positive curvature. 

 

2.0 Calculation Procedure: Application to the ��� lattice 
The energies of monovacancy, divacancy, planar-surface formations etc. for the ��� metals are dominated by the 
contributions before relaxation. These energies are readily calculated from their analytic expressions if ��, ��and	�	 in 
Eq.(2.1) are known. The monovacancy formation energy, based on Eq.(2.4), is �/#01 = 12��� − 12���																																																																																																																			(3.1) 
where 

�I = � J 412	K + 12 412*																																																																																																																(3.2) 
��� = � = �(	) + 12* = −�0�A = ����6 	(3.3) 

Therefore,  

�/#01 = 12� �1112 	� − �(1 + 11�)																																																																																											(3.4) 
The surface energies along the special directions are   

Γ� = 23� (�M − ���) 	= 23� N� � 812 	� − 13�(1 + 2�)O																																																(3.5) 
Γ�� = √23� (�Q + ��� − 2���) 	= √23� N� � 712 	� + � �1112 	� − 12�(1 + 3�)O								(3.6) 
Γ��� = 43�√3 (�R − ���) 	=

4
3�√3 N� �

912 	� − 14�(1 + 3�)O																																					(3.7) 
where 

� � 712 	�= 	�� � 712�
�� − �� � 712�

�� ln � 712�=� S�1 − 512� 	T																												(3.8) 
� � 812 	�= 	�� � 812�

�� − �� � 812�
�� ln � 812� = � S�1 − 412� 	T 																												(3.9) 

� � 912 	�= 	�� � 912�
�� − �� � 912�

�� ln � 912� = � S�1 − 312� 	T 																												(3.10) 
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� �1112 	�= 	�� �1112�
�� − �� �1112�

�� ln �1112� = � S�1 − 112� 	T 																												(3.11) 
The following series expansions were employed in Eqs.(3.8 – 3.11): 

ln(1 + U) = U − U�2 + U
V
3 − ⋯ ∙∙∙∙ 																																																																																										 (3.12) 

and (binomial expansion) 

(1 + U)I = 1 + 4U1! + 4(4 − 1)U
�

2! + ⋯ ∙∙∙ 																																																																											 (3.13) 
Thus, we have  

� ZJ1 − I��K 	[ = ��

\]
]]
]]
]̂
]]
]]
]]
_ 1 + I�� S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T
− I�� S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T ��
+ �� J I��K� S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T ���
	− �V! J I��KV S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T ��V
−J I��K� S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T

� ��
+ �� J I��KV S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T

� ���
− �V! J I��K` S1 + �� J I��K + �V J I��K� + �` J I��KV + �a J I��K` +∙∙∙∙∙T

� ��Vb]
]]
]]
]c
]]
]]
]]
d

                       (3.14) 

 
 

Table 1: Embedded Atom Method (EAM) (present work) and experimental parameters of selected ninefcc metals [3,4]. 

Metal a0 ( Å) �/#01 (	eV) Fitting parameters 

q1 q2   A 

Ni 3.52 1.60 0.500 3.170 0.500 

Cu 3.61 1.30 0.501 3.531 0.501 

Ag 4.09 1.10 0.500 3.559 0.501 

Pd 3.89 1.40 0.500 3.150 0.500 

Rh 3.80 1.71 0.501 1.501 0.501 

Ca 5.58 0.60 0.501 2.241 0.501 

Sr 6.08 6.00 0.560 2.522 0.515 

Ir 3.84 2.35 0.501 2.576 0.501 

Th 5.08 2.00 0.501 2.146 0.501 

 
 
3.0 Results and Discussion 
We used Eq.(1.1) to calculate numerically the surface energies of each metal along the three different orientations (111), 
(110) and (100). The imputed experimental parameters were �, �/#01  and lattice constant 3. Parameters �, ��and	�� were 
adjusted to match the experimental value of �/#01  (Eq.(3.4)). Our algorithm was based on a very simple procedure that  
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utilized about 1000 numerical grid pointswith spacing such that∆� = ∆�� = ∆�� = 10ha. Thus, values of ��, 	�� and � 
which fitted Eq.(3.4) perfectly were obtained for each metal.The results and other essential experimental parameters taken 
from Refs.[3, 4]were listed on Table1.Subsequently, the values of�, ��and��were used in Eqs.(3.8 – 3.11) to calculate the 
low index surface energies. The results, compared to the first principle calculations [5,6,7], other EAM, MEAM [8,9,10,11] 
and experimental data [12] where available, were presented on Table 2.The embedding functional(Eq.(1.1))plotted using 
Nickel, Rhodium and Thorium data was displayed in Fig.1. 
 
            The fact that the equilibrium value of �(	) was not noticeable at 	 	⁄ = 1 in Fig.1 as it should was attributed to the 
uncertainties in the experimental values of the cohesive energy. 
 
Table 2: Unrelaxed surface energies (ergs/cm2) of nine ��� metals compared with first principle, EAM, MEAM calculations 
and theexperimental values of the average surface energies. 
 
Surface energies in ergs/cm2 

Metal Crystal 
Face (hkl) 

EAM 
Present 
Work 

First principle calculations EAM MEAM Exp. 
(Ave.) A B C D E F G 

 
Ni 

(100) 2622   2426 1580 1654 2435 1304  
(110) 3999   2368 1730 1786 2384 1417  
(111) 1876 2630  2011 1450 1540 2036 1170 2450 

 
Cu 

(100) 2088 2090  2166 1280 1260 1651 1006  
(110) 3182 2310  2237 1400 1361 1642 1106  
(111) 1477 1960  1952 1170 1180 1409 939 1830 

 
Ag 

(100) 1380 1200 1210 1200 705 821 1271 752  
(110) 2104 1290 1266 1238 770 883 1222 833  
(111) 976 1120 1210 1172 625 765 1089 713 1250 

 
Pd 

(100) 1873 1900 1860 2326 1370 1157 1659 1018  
(110) 2856  1970 2225 1490 1240 1470 1119  
(111) 1350 1880 1640 1920 1220 1074 1381 926 2050 

 
Rh 

(100) 1972 2900 2810 2799   2902 2137  
(110) 3264  2880 2899   2921 2272  
(111) 1479 2780 2530 2472   2598 1834 2700 

 
Ca 

(100) 359   542      
(110) 564   582      
(111) 263 352  567     450 

 
Sr 

(100) 310   408      
(110) 496   432      
(111) 225 287  428     410 

 
Ir 

(100) 3073   3722   2907 2569  
(110) 4760   3606   3058 2664  
(111) 2231   2971   2835 2038 3000 

Th (100) 1426   1468      
(110) 2252   1450      
(111) 1046   1476     1500 

 
A: First principle calculations [5] 
B: First principle calculations [6] 
C: First principle calculations [7] 
D: EAM calculations [8] 
E: EAM calculations [9] 
F: MEAM calculations [10] 
G: MEAM calculations [11] 
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Figure 4.2: Embedding energy functional of present work: triangle (Nickel), bullet (Thorium), full-line(Rhodium). 

 
4.0 Conclusion 
 
      The purpose of the present work was to capture the essence of EAM and by extension MEAM by taking into 
consideration the physical interpretation of each term involved in the elastic energy of a metal. Hence, we developed an 
analytic model for theembedding energy functional which reproduced very well some important features of the metals. The 
experimental inputs of our modelwere very few and thus gave it an edge over other EAM or MEAM models; these were the 
lattice constant, cohesive energy and the vacancy formation energy.  
     Our results for the nine ��� metals compared favourably with the available experimental and other theoretical data besides 
revealing that the first derivative rather than the second derivative of the embedding energy function dominated the values 
recorded for the embedding energy function. On the other hand, the curvature of the embedding energy function accounted 
for the many-body aspect of EAM or MEAM. 
     It should be stated that our calculation did not make use of the explicit form of the inter-atomic potential, instead *was 
subsumed into �. This is to say that our model is not constrained in any way by the specific form of the two-body potential. 
Whatever the form of *%&!"', one can always find a means of incorporating it,together with other correlation effects, into the 
calculation for better results.  
     To appreciate the genuineness of our model (Eq.(1.1)), we have already extended our calculations to several j�� metals 
and the agreement with experiments was generally good. For further work, we are considering an extension to ℎ�7 metals 
and the inclusion of a background atomic density which is angular and reference-state dependent (MEAM). 
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