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Abstract

An analytical expression derived for the embedding energy function F(p) in an
earlier work has been used to study more fcc monatomic metals. The parameters for
the model were obtained from the available experimental physical quantities. Our
physically well-motivated and transferrable F(p) was able to reproduce the surface
energies and other structural properties of nine fcc metals as established by the
calculated results.
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1.0 Introduction

The embedded atom method (EAM) which originatedlinis still the most widely applied potential fpure metals and
alloys. Our research group has already reportezhaedding energy functional of form[2]
q
F(p) = AEy (£) " - 4E, (ﬁ)qz In(£) (1.1)
Po Po Po
whered, g, andgq, are the adjustable parameters. The derivatiomggflEL) was based on an overly simplified elastiergy
expansion in Taylor’s series with respect to srdéplacements and concurrently through the locakitgp leading to a
second-order ordinary differential equatiorifp). Eq.(1.1), though simple, contains the basic gasiharacteristics of the
embedded atom method and provides another meassidying the functional dependence of EAM on thekigeound
density using certain empirical data. In the preseork we report the results of the calculationstled surface energies
performed with Eqg.(1.1) for nine monatonficc metals.
The present work is organized as follows: Sectisu®eys briefly the physical theoretical requir@tsefor the task. The
calculation procedure is outlined in section 3 while results, centred on nine face-centred-oifzic) metals, are presented
in section 4Section 5 concludes the work.
1.0 Theory
EAM potential contains a many-body and a pairwigteptial interaction terms designed to model ttiectiize environment
of an embedded atom. A heuristic derivation [1]gdd¥T led to

Eior = Z Fi(z pf (1) + %Z ¢i;(rij) (2.1

i j#i i,j
JET

p= z pi(ry) (2.2)
Jj#i

Parametep® is the spherically averaged atomic density whgre= p®(r,) represents the equilibrium value of the local
density. The pair potentigl is an electrostatic two-body interaction. The helsttron density is assumed to be a linear
superposition of contributions from individual atemvhile F (p) denotes the embedding energy functional. Eq.({8.&hown
for computational simplicity and it adequately catéor defects and other physical phenomena irdsmliliquid state of
metal. So far, EAM features the following three orant functionsf (p), p(r) and¢(r).
The main tool for the present calculation is thdedding energy functional of Eq.(1.1) where

where
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F(py) = AE; and F(0) =0 (2.3)
The vacancy formation energy is calculated from
E,fac = E;oc(vacanncy, N) — E.,.(perfect,N) (2.4)
having defined;,; in Eq.(2.1). For nearest-neighbour contributiothi@f cc lattice, we have
> 0 = 12p5() (25)
Z $(ri;) = 6¢(1p) (2.6)
Let ¢ (1) = ¢, so that Eq.(2.1) gives the following:
1
Ecoe(perfect,N) = N F(12p,) + 12Ny = N F(12py) + 6N b, (2.7)
1
Eio:(vacancy,N) = (N —12) F(12p,) + 12 F(11p,) + > (N —12)¢, (2.8)
Therefore from Eq.(2.4)
El..=—12F(12p,) + 12 F(11p,) — 6¢, (2.9)

But the cohesive energy, by definition, is
Eior(perfect,N)

Econ = N = F(12p,) + 6¢, (2.10)
leading to
6¢o = Econ — F(12p,) (2.11)
Thus,
Eloe = 12 F(11py) — 11 F(12pg) — Econ (2.12)
Eq.(2.12) suggests that,. # E.,, and forE,faC < E.,n We must have
12 F(11py) — 11 F(12py) <0 (2.13)
or
F(11po) F(12P0) (

< EQ2e0)yhich connoteb =2 > 0, a positive curvature.

11

2.0  Calculation Procedure: Application to thefcc lattice

The energies of monovacancy, divacancy, planaasarfformations etc. for th¢cc metals are dominated by the
contributions before relaxation. These energiesraaglily calculated from their analytic expressiohg;, g,and A in
Eq.(2.1) are known. The monovacancy formation endsgsed on Eq.(2.4), is

El.=12E,, — 12E,, (3.1)
where
E,=F(:5p) + Lin, (3.2)
=" \12” 2 12 '
Etot
Ei; = Ey = F(po) + = ¢0 Econ = (3.3)
Therefore,
11
El,.=12F (Epo) — Ey(1 +114) (3.4)
The surface energies along the special directions a
2 2 8 1
Figo = ;(Es —E;) = ;{F (Epo) - §Eo(1 + ZA)} (3.5)
V2 N2( 17 11 1
[0 = ?(E7 +Ej — 2E;p) = _{F (_,00) <_,00) - —Eo(l + 3A)} (3.6)
9
[ = aZ—\/§(E9 —Ey, { (Epo) - _Eo(l + 314)} 3.7)
where
7 7 q1 7 qz 5
F(3370)= 45 (E) - 45 (33) ‘“( 2)=F|(1-53) 0] (3:8)
F 8 AE 8 — AE, 81" 1 F 4 3.9
(F590) = 480(35) =483 (55 5) () = #[(1- )0 (9
F i = AE AN AE 1 Fll1 3 3.10
(ﬁp") = A% (12) — 4B (12) n(lz) ( _ﬁ) p"] (310)
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F ()= 45 (13) a5 (35) (i) =#[(1-)
12P0) = #Ro\12 °\12 12 (11
The following series expansions were employed is.8 — 3.11):
3
In(1 + x) =x—%+%—------- (3.12)
and (binomial expansion)
n(n — 1)x?

Thus, we have

Fl(1-2)p0| =450 ] ~3(5) [1+3(5)+3(3) +3(5

(3.14)

Table 1: Embedded Atom Method (EAM) (present waih)l experimental parameters of selectedfaimaetals [3,4].

Metal | a, (A) Etl:ac( ev) | Fitting parameters
G o) A

Ni 3.52 1.60 0.500 3.170 0.500
Cu 3.61 1.30 0.501 3.5631 0.501
Ag 4.09 1.10 0.500 3.559 0.501
Pd 3.89 1.40 0.500 3.150 0.500
Rh 3.80 1.71 0.501 1.501 0.501
Ca 5.58 0.60 0.501 2.241 0.501
Sr 6.08 6.00 0.560 2.522 0.515
Ir 3.84 2.35 0.501 2.576 0.501
Th 5.08 2.00 0.501 2.146 0.501

3.0

Results and Discussion

We used Eq.(1.1) to calculate numerically the sufanergies of each metal along the three diffepeiehtations (111),
(110) and (100). The imputed experimental pararaeterek,, E,,ac and lattice constant. Parameterd, q;and g, were

adjusted to match the experimental vaIuE,fglt (Eq.(3.4)). Our algorithm was based on a very &mpocedure that
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utilized about 1000 numerical grid pointswith spacisuch thatd = Aq, = Aq, = 107>, Thus, values ofy;, g, and A
which fitted Eq.(3.4) perfectly were obtained fach metal. The results and other essential expetahparameters taken
from Refs.[3, 4]were listed on Tablel.Subsequerttg, values of, g;andg,were used in Egs.(3.8 — 3.11) to calculate the
low index surface energies. The results, compayetid first principle calculations [5,6,7], otheAHE, MEAM [8,9,10,11]
and experimental data [12] where available, weesgmted on Table 2.The embedding functional(EQ){dtted using
Nickel, Rhodium and Thorium data was displayedi;mE

The fact that the equilibrium valueR{fp) was not noticeable at/p, = 1 in Fig.1 as it should was attributed to the
uncertainties in the experimental values of theesdle energy.

Table 2: Unrelaxed surface energies (ergsicof nine fcc metals compared with first principle, EAM, MEAM Icalations
and theexperimental values of the average surfaemies.

Surface energies in ergs/ecm

Metal | Crystal EAM First principle calculations EAM MEAM Exp.
Face (hkl) | Present [ A B C D E F G (Ave.)

Work

(100) 2622 2426 1580 1654 2435 1304

Ni (110) 3999 2368 1730 1786 2384 1417
(111) 1876 2630 2011 1450 154D 2036 1170 2450
(100) 2088 2090 2166 1280 126D 1681 1006

Cu (110) 3182 2310 2237 1400 136l 1642 11p6
(111) 1477 1960 1952 1170 118D 1409 939 183D
(100) 1380 1200 1210 1200 705 821 1271 7502

Ag (110) 2104 1290 1266 1238 770 883 1222 833
(111) 976 1120 1210 1172 625 765 1089 718 1250
(100) 1873 1900 1860 2326 1370 1157 1659 1018

Pd (110) 2856 1970 2225 1490 124p 1470 1119
(111) 1350 1880 1640 1920 1220 1074 1381 926 2050
(100) 1972 2900 2810 2799 200p 2137

Rh (110) 3264 2880 2899 2921 227Q
(111) 1479 2780 2530 2472 2598 1834 2700
(100) 359 542

Ca (110) 564 582
(111) 263 352 567 450
(100) 310 408

Sr (110) 496 432
(111) 225 287 428 410
(100) 3073 3722 2907 2569

Ir (110) 4760 3606 3058 2664
(111) 2231 2971 2835 2038 3000

Th (100) 1426 1468
(110) 2252 1450
(111) 1046 1476 1500

A: First principle calculations [5]
B: First principle calculations [6]
C: First principle calculations [7]
D: EAM calculations [8]

E: EAM calculations [9]

F: MEAM calculations [10]

G: MEAM calculations [11]
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Figure 4.2: Embedding energy functional of present work: tgian(Nickel), bullet (Thorium), full-line(Rhodium).

4.0 Conclusion

The purpose of the present work was to capthe essence of EAM and by extension MEAM by tgkinto
consideration the physical interpretation of eaamtmtinvolved in the elastic energy of a metal. Henge developed an
analytic model for theembedding energy functionhlol reproduced very well some important featurfethe metals. The
experimental inputs of our modelwere very few amastgave it an edge over other EAM or MEAM modtisse were the
lattice constant, cohesive energy and the vacasreydtion energy.

Our results for the ninfcc metals compared favourably with the available expental and other theoretical data besides
revealing that the first derivative rather than seeond derivative of the embedding energy functiominated the values
recorded for the embedding energy function. Onatmer hand, the curvature of the embedding enarggtion accounted
for the many-body aspect of EAM or MEAM.

It should be stated that our calculation did make use of the explicit form of the inter-atorpbtential, insteagh,was
subsumed intal. This is to say that our model is not constraiimedny way by the specific form of the two-body @utial.
Whatever the form 0¢>(rij), one can always find a means of incorporatingggther with other correlation effects, into the
calculation for better results.

To appreciate the genuineness of our mode(1Eq), we have already extended our calculationseveralbcc metals
and the agreement with experiments was generalbg.gbor further work, we are considering an extemgb hcp metals
and the inclusion of a background atomic densitictvirs angular and reference-state dependent (MEAM)
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