Calculation of momentum distributions of ¹⁰Be fragment from ¹¹Be + ⁹Be reaction using the Glauber Theory

I. D. Adamu Department of Physics, Bayero University, Kano, Nigeria

Abstract

The momentum distributions of ¹⁰Be core fragment from the ¹¹Be + ⁹Be reaction system are computed in the framework of the Glauber Theory using the CSC_GM code. The CSC_GM code used in the computations was obtained from the CPC Program Library, Queen's University of Belfast, N. Ireland. The CSC_GM code is a Fortran 90 program that was originally run on UNIX operating system. The code was modified and run on Windows xp. The projectile nucleus is assumed to have the structure of a core plus valence nucleon. The input data needed for the calculations are the core and target densities and the nucleon-nucleon profile function. Results are found to agree with the experimental data, especially at high incident energies.

Keywords: Glauber model, Momentum distribution, Nucleon-removal cross section.

1.0 Introduction

The momentum distribution of a fragment is one of the quantities measured in the experimental study of unstable radioactive nuclei which has advanced considerably through the technique of using secondary radioactive beams [1,2]. Other relevant quantities also measured in this type of study are the various reaction cross sections that include the total reaction cross section, nucleon-removal cross sections, etc. These quantities play important role in revealing the nuclear structure of unstable nuclei, particularly the halo structure, proton and neutron skins [1,3,4]. Halo and skin are nuclear properties or structures that are peculiar to only unstable radioactive nuclei. Sizes and density distributions (of both nuclear matter and charge) of unstable nuclei are therefore quite different from those of stable nuclei.

In this paper momentum distribution of ¹⁰Be core fragment from ¹¹Be + ⁹Be reaction system are calculated in the framework of the Glauber Theory using the CSC_GM code. The reaction system is described as: ${}^{11}Be + {}^{9}Be \rightarrow {}^{10}Be + {}^{9}Be + n$. The projectile nucleus (¹¹Be) is assumed to have structure of a core nucleus (¹⁰Be) plus a valence nucleon. Measurement of the momentum distribution of the core fragment is now a standard work for the study of unstable nuclei.

The Glauber model is a microscopic reaction theory of high-energy collision based on the eikonal approximation and on the bare nucleon-nucleon interaction. It is now a standard tool to calculate the momentum distribution because it can account for a significant part of breakup effects which play an important role in the reaction of a weakly bound nucleus [5,6].

2.0 Theoretical Background

The reaction of a projectile nucleus P with a target nucleus T is considered. At the initial stage of the reaction, the projectile in the ground state, described with an intrinsic wave function Ψ_0 , impinges with momentum hK = (0, 0, hK) on the target in its ground state, described with an intrinsic wave function Θ_0 . The center-of-mass wave function is removed from Ψ_0 (Θ_0). At the final stage of the reaction, the projectile goes to the state *a* specified by a wave function Ψ_a and the target goes to the state *c* specified by a wave function Θc . The state *a* is not necessarily a bound state but may be a continuum state that includes some fragments. The momentum transferred from the target to the projectile is hq. The scattering amplitude for this reaction is written in the Glauber theory as an integral over the impact parameter **b** between the projectile and the target [7] as

$$F_{ac}(q) = \frac{iK}{2\pi} \int db e^{-iq \cdot b} \left\langle \psi_a \Theta_c \middle| 1 - \prod_{i \in P} \prod_{j \in T} \left(1 - \Gamma_{ij} \right) \psi_0 \Theta_0 \right\rangle$$
(1)

The integrated cross section for this reaction is given by

Corresponding author: E-mail: -, Tel.: +2348033513195

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 33 – 36

Calculation of momentum distributions of ¹⁰Be fragment... Adamu J of NAMP

$$\sigma_{ac} = \int \frac{dq}{K^2} \left| F_{ac}(q) \right|^2 \tag{2}$$

The profile function Γ in Eq. (1) is given by:

$$\Gamma(b) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{NN} e^{-b^2/2\beta}$$
(3)

The parameters σ_{NN} , α , and β usually depend on either the proton-proton (neutron-neutron) or proton-neutron case. The argument of $\Gamma i j$ in Eq. (2) is b + sP - sT, which stands for the impact parameter between *i*th and *j*th nucleons. Here sP (sT) is the two-dimensional coordinates comprising the x- and y-components of the *i*th nucleon coordinate in the projectile (target) relative to its center-of-mass coordinate.

2.1 Longitudinal momentum distribution

The one-nucleon removal reaction is contributed by both the elastic and inelastic processes with the inelastic process becoming dominant at high energies beyond a few hundred MeV/nucleon [4]. The longitudinal momentum distribution of the core fragment is therefore here calculated after the inelastic breakup of the projectile. Let the momentum of the core be $P = (P_{\perp}, P_{\parallel})$ and that of the nucleon going to the continuum state be $\hbar k$. Assuming that the core remains in its ground state the momentum distribution is calculated by the equation [8].

$$\frac{d\sigma_{-N}^{inel}}{dP} = \int \frac{dq}{K^2} \sum_{c \neq 0} \int dk \delta \left(P - \frac{A_c}{A_P} \hbar q + \hbar k \right) \left| F_{(k,0)c}(q) \right|^2 \tag{4}$$

Since the momentum transfer received by the ejected valence nucleon is considered to be large, the final state interaction can be ignored. The continuum scattering wave function of the last nucleon is then approximated by a plane wave,

$$\varphi(r) = \frac{1}{(2\pi)^{2/3}} e^{-p \cdot r},\tag{5}$$

and equation (4) then reduces to:

$$\frac{\sigma_{-N}^{inel}}{dP} = \int db_N \left(1 - e^{-2Im\chi_{NT}(b_N)}\right)$$
$$X \frac{1}{(2\pi\hbar)^3} \frac{1}{2j+1} \sum_{mm_s} \left| \int dr e^{\frac{i}{\hbar}P \cdot r} \chi_{\frac{1}{2}m_s}^* e^{i\chi_{CT}(b_N - s)} \varphi_{nljm}(r) \right|^2, \tag{6}$$

where b_N stands for the impact parameter of the valence nucleon with respect to the target. Integrating over the transverse momentum leads to the longitudinal momentum distribution:

$$\frac{\sigma_{-N}^{inel}}{dP_{\parallel}} = \int dP_{\perp} \frac{\sigma_{-N}^{inel}}{dP}$$

$$= \frac{1}{2\pi\hbar} \int db_N \left(1 - e^{-2Im\chi_{NT}(b_N)}\right) \int ds \left(1 - e^{-2Im\chi_{NT}(b_N-s)}\right)$$

$$X \int dz \int dz' e^{\frac{i}{\hbar}P_{\parallel}(z-z')} u_{nlj}^*(r) \frac{1}{4\pi} P_l(\widehat{r'} \cdot \widehat{r}),$$
(7)

where r = (s, z) and r' = (s, z') and P_1 is the Legendre polynomial. The integration of equation (7) over P_{\parallel} gives σ_{-N}^{inel} .

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 33 – 36

Calculation of momentum distributions of ¹⁰Be fragment... Adamu J of NAMP

3.0 Methodology

The Cross Section Calculations in the Glauber Model (CSC_GM) code is a Fortran 90 program that was originally run on UNIX operating system. The code can be used to calculate the cross sections of various reactions for a core plus one valence-nucleon system in the framework of the Glauber model. The program has earlier been used to calculate the total and one-nucleon removal cross sections [9]. The code is slightly modified to enable the computation of the longitudinal momentum distribution of the core fragment in the ¹¹Be + ⁹Be reaction system. The ¹¹Be nucleus is assumed to have structure of ¹⁰Be + neutron. The reaction system, the type of cross section to be calculated, and the target and core densities are specified by the input data. Table 1 represents the input data for the ¹¹Be + ⁹Be reaction system in the format of the *csc.inp* file. The first line, according to this format, gives the mass numbers of the target, projectile and core (A_T , A_P , and A_C), the second line gives the charge numbers of those nuclei (Z_T , Z_P , and $_{ZC}$). The code assumes $A_P - A_T = 1$. For a proton target, $A_T = 1$ and $Z_T = 1$. The third line defines the incident energy of the projectile per nucleon (in MeV). The fourth line defines the parameters of the nucleon–nucleon profile function, Eq. (3): σ_{NN} (in fm2), α , and β (in fm2). Values of these parameters are taken from Ref. [10]The fifth line gives the orbital angular momentum of the valence nucleon. The sixth line gives the number of Gaussians used to fit the core and target densities, and the following lines give the coefficients *ci* and the ranges *ai* (in fm–2) as defined by Eq. (5). Results of the computations are written on a file *mondist.out*

4.0 **Results**

The ¹¹Be nucleus is described with a ¹⁰Be + neutron system. The momentum distributions expressed in Eq. (7) are written on the output file, *momdist.out*, as in Table 2.

The longitudinal momentum distribution of the ¹⁰Be for the reaction ${}^{11}Be + {}^{9}Be$ at the energy of 63 MeV/nucleon is compared with experiment in Fig.1.

Fig. 1. The longitudinal momentum distribution of 10 Be from the 11 Be+ 9 Be reaction at the energy of 63 MeV/nucleon. The solid curve denotes the results calculated from Eqs. (7). The experimental data are taken from Ref. [11].

S/N	INPUT PARAMETERS	VALUES
1	Mass numbers of target, projectile and core: $(A_T; A_P; A_C)$	9; 11; 10
2	Atomic numbers of target, projectile and core: $(Z_T; Z_P; Z_C)$	6; 4; 4

Table 1: *csc.inp* input file for the ${}^{11}Be + {}^{9}Be$ system

3	Incident Energy per nucleon (in MeV)	63
4	Profile function parameters	4.26; -0.07; .021008
	$(\sigma_{_{NN}}, \alpha, \beta, \text{ in fm}^2)$	
5	<i>l</i> (angular momentum quantum number)	1
6	Monte Carlo parameters (Ns, δ, irand)	500000; 2.5; -11213
7	<i>icond1</i> (initial condition 1)	0
8	icond2, icond3	2; 1
9	Number of Gaussians used to fit the core and target densities	2
10	Coefficient c_i , range a_i (in fm ⁻²)	c_1 =-1.23342874; a_1 =0.462770142 c_2 =1.38536085; a_2 =0.373622826
11	Maximum angle (in degrees)	20

Table 2. momdist.out output file format.

$P_1[MeV/c]$	$d\sigma/dp \ [mb/(MeV/c)]$
0.0	2.321504
10.0	2.014542

The experimental data is obtained from Ref. [9]. Only the inelastic breakup process is taking into account in calculating the momentum distribution of the core fragment as the factor dominates the elastic process at high energies. The solid curve is the result of equation (7). The results clearly compare well the experimental data. No similar results are however found within available literature.

The input parameters which have to be filled in the csc.inp input file are shown in Table 1.

6.0 Conclusion

A Fortran program was used to calculate the longitudinal momentum distribution of the core fragment in the ${}^{11}\text{Be} + {}^{9}\text{Be}$ reaction system in the framework of the Glauber theory. The narrow momentum distributions of ${}^{10}\text{Be}$ indicate that ${}^{11}\text{Be}$ is a neutron halo candidate. The results clearly compare well the experimental data. No similar results are however found within available literature.

The Glauber model is obviously suitable for high energy reactions. For reactions at lower energy, (less than a hundred MeV/nucleon), predictions of the Glauber model are rather poor. Contributing factors might be inappropriate choice of the effective interactions between the nucleon and the target for the low energy reactions. With appropriate choice of the interaction potential the code can be modified to replace χ_{CT} and χ_{NT} with the corresponding phase-shift functions constructed from the new potential.

References

- [1] B. Abu-Ibrahim and Y. Ogawa, Computer Physics Communication 151 (2003) p.369
- [2] L. Ray, Phys. Rev. C 20 (1979) p.1857.
- [3] K. Yabana, Y. Ogawa, Y. Suzuki, Phys. Rev. C 45 (1992) p.2909
- [4] A Ozawa et al Nucl. Phys. A 693 (2001) pp32 -62 P.J. Karol, Phys. Rev. C 11 (1975) p.1203.
- [5] B. Abu-Ibrahim and Y. Suzuki, Nucl. Phys. A **706** (2002) p.111.
- [6] G. F. Bertsch, H. Esbensen, A. Sustich, Phys. Rev. C 42 (1990) 758
- [7] A. Bohr, B.R. Mottelson, in: Nuclear Structure, Vol. I, Benjamin, New York, 1969, p. 238.
- [8] F. M. Marques, et al., Phys. Lett. B **381** (1996) p.407.
- [9] I. D. Adamu, Journal of Nigerian Association of Mathematical Physics. 23 (March, 2013) pp.265.
- [10] Y. Ogawa, I. Tanihata, Nucl. Phys. A **616** (1997) p.239c.
- [11] Y. Ogawa, K. Arai, Y. Suzuki, K. Varga, Nucl. Phys. A 673 (2000) p.122.

Journal of the Nigerian Association of Mathematical Physics Volume 25 (November, 2013), 33 – 36