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                       Abstract 
 
Let (X, A, µµµµ) be a measure space, ∅∅∅∅ ≠≠≠≠ A ∈∈∈∈ A, A ≠≠≠≠ X, and  f : X →→→→ ℝe

 and g : A →→→→ 
ℝ

e extended real-valued measurable functions. The literature defines the integral of  f 
[| the ground set of the measure space (X, A, µµµµ), X, is the domain of f |] directly, but 
defines the integral of g [| the domain of g is not the whole of X |](See “(rather than the 
entire space)” line 10, p.65 of [1]) as the integral of g* : X →→→→ ℝe (if it exists)(See “(if it 
exists)” line 11, p.65 of [1])  

where g*(x) = 




∉
∈

Ax

Axxg

if,0

if),(
 

In this paper we define the integral of measurable h : A →→→→ ℝe, A ∈∈∈∈ A, A ≠≠≠≠ X, or A 
= X, directly. Our definition, which is essentially the literature’s definition, captures 
the definition of the integrals of f and g in the literature. Some useful deductions and 
consequences are then given.  
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1.0    Introduction 

Our language and notation shall be standard, as found for example in [1] and [2]. We denote by f |D the restriction of the 
function f : C → B to ∅ ≠ D ⊆ C. Without mention we work throughout with the measure space (X, A , µ), and, of course(See 
Proposition 2.1.1, p.48 of [1] and  Proposition 3.5.18, p.65 of [3]), the domain A of a measurable function  f : A → ℝe = 
ℝ∪{ ∞, – ∞}, ℝ = the reals, belongs to the σ-algebra A. We signify the end or absence of a proof by ///. 
 
 THROUGHOUT, (X, A, µ) is a fixed measure space, and ∅ ≠ A ∈ A. With f, g,  
g* as in the abstract  

(i) The literature’s definition of the integral of g now becomes a theorem : lit’s ∫A g dµ ≡ ∫xg *  dµ =  new∫A g dµ. [| Section 

4’s THEOREM 4.9|].  
(ii) Thus, [| Section 4’s Corollary 4.11 and Example 4.12|], we show that the claim of Exercise 1, p.188 of [4] is true in 
general and not just for the Lebesgue integral of   f : [a, b]→ ℝ. 
(iii) Similarly, for the integral of  f over A, 

old ∫A f dµ ≡ ∫X Afχ dµ  = new ∫A Af |  dµ. 

(iv) Very importantly, some new and clearer proofs of elementary properties of the integral are also obtained. 
(v) Finally, we are able to explain satisfactorily (COMMENT 4.13) the reasoning in the last sentence of the first paragraph of 
page 134 of [2] in its proof of the Radon-Nikodym Theorem. 
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2.0 Measurable Simple Function 
Definition of a Simple Function 1.1 Let  ∅ ≠ A ⊆  X. The real-valued function s : A → ℝ shall be called a simple function 

if it has a finite range {α1, α2,…, αn}  ⊆ ℝ, say(See line 15 of p.45 of [5]:We do not allow simple functions to assume the 

values ± ∞), and line 3 of Section VII.1 p.105 of [2] : φ(x) = )(
1

xa
n

k
Ak k∑

=

χ , ak real).And so if Ak =  s – 1(αk), k = 1, 2, …, n, 

we can write s as a linear combination 

s = 
11α Aχ + 

22α Aχ  + …. + 
nAnχα         …(∆) 

of characteristic functions, and, following p.47 of [5] and p.78 of [6], call (∆) the standard representation or canonical 
representation(See p.90 of [7]) of s. If s is a measurable function, and so A ∈ A, we call it a measurable simple function. 
Note 1.2  (i)  Our definition of a measurable simple function capture’s the literature’s definition with A = X. However, see the 
statement of Proposition 2.1.7, page 54 of [1]. 

(ii) It is clearly true, as one verifies trivially, that our new simple function s = 
11α Aχ + 

22α Aχ  + …. + 
nAnχα  is also 

measurable if and only if each Ak ∈ A , k = 1, 2, …, n.  
(iii)  { A1, A2, …, An} is a partition of A.[Note:  The sets constituting a partition  are non-empty sets. So, ∅ ≠ Ak for each k = 1, 
2, …, n.] 
 We here introduce the notion of an Acceptable Representation 1.3(See last two lines of p. 78 of [6]) Let ∅ ≠ A ⊆ 
A . We shall call the subfamily  

{ B1, B2, …, Br}                (ARF) 

of A a measurable partition of A if it is a partition of A. If for some β1, β2, …, βr ∈ ℝ, the measurable simple function  s : A  

→ ℝ can be represented as 

     s = 
11β Bχ  +

22β Bχ  + … + 
rBr χβ                 (AR) 

we shall call (AR) an acceptable representation of s and call (ARF) an acceptable representing family for s. [| Compare first 

Paragraph of Section VII.1 of [2] : …where thesAk′  form a measurable pairwise disjoint partition of X. |] 

Note 1.4 (i) The family {A1, A2, …, An}, Ak = s–1(αk), k = 1, 2, …, n,  in the standard representation of measurable simple 

function s : A → ℝ is clearly an acceptable representing family for s. 

(ii)  The standard representation of measurable simple function  s = 
11α Aχ + 

22α Aχ + …. + 
nAnχα  is clearly an acceptable 

representation of  s. 
 A simple easily digestible proof of the following fundamental theorem is not easy to locate in the literature.  

FUNDAMENTAL THEOREM 1.5   If  

    s = 
11α Aχ + 

22α Aχ  + …. + 
nAnχα       (∆′) 

and  

  s = 
11β Bχ  + 

22β Bχ  + … + 
rBr χβ                 (∆∆′)  

are, respectively, the standard representation and an acceptable representation of the measurable simple function  s 

: A → ℝ, then, 

   ∑
=

n

k
kk A

1

)(µα  = ∑
=

r

j
jj B

1

)(µβ . 

Proof First observe that each βj is equal to one and only one αk since (∆′) is the standard representation. We note 
next that, clearly, then  
(i)  for each  j ∈{1, 2, …, r}, Bj  ⊆  Ak for some k with βj = αk , 
(ii) for fixed k, there is at least one j such that Bj ⊆ Ak , and  
(iii) those Bj’s contained in Ak, say, constitute a partition of Ak.                      
So, if  
  B11, B12, …, B1p1 are the Bj’s contained in A1,   

  B21, B22, …, B2p2 are the Bj’s contained in A2, 
 . 
 . 

 1nB , 2nB , …, 
nnpB are the Bj’s contained in An, 
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and so 

 {B11, B12, …, 
11pB } is a partition of A1, 

 {B21, B22, …, 
22 pB } is a partition of A2, 

                . 
                . 
                . 

  {Bn1, Bn2, …, 
nnpB } is a partition of An, 

then, we have the disjoint unions  

  A1 = U
1

1
1

p

t
tB

=

,  A2 = U
2

1
2

p

t
tB

=

, …, An = U
np

t
ntB

1=

, 

β1t = α1, for t = 1, 2, …, p1, β2t = α2, for t = 1, 2, …, p2, …, βnt  = αn for t = 1, 2, …, pn. 
By additivity of µ, 

 α1µ(A1) = α1µ 








=
U

1

1
1

p

t
tB = α1∑

=

1

1
1 )µ(

p

t
tB  = ∑

=

1

1
11 )µ(α

p

t
tB  = ∑

=

1

1
11 )µ(β

p

t
tt B , 

 α2µ(A2) = α2µ 








=
U

2

1
2

p

t
tB =  α2∑

=

2

1
2 )µ(

p

t
tB  = ∑

=

2

1
22 )µ(α

p

t
tB  = ∑

=

2

1
22 )µ(β

p

t
tt B ,                         

αnµ(An) = αnµ 








=
U

np

t
ntB

1

= αn∑
=

np

t
ntB

1

)µ(  = ∑
=

np

t
ntn B

1

)µ(α  = ∑
=

np

t
ntnt B

1

)µ(β . 

Hence  

 ∑
=

n

t
kk A

1

)µ(α  = α1µ(A1) + α2µ(A2) + … + αnµ(An) =  ∑
=

1

1
11 )µ(β

p

t
tt B  + ∑

=

2

1
22 )µ(β

p

t
tt B + 

 … + ∑
=

np

t
ntnt B

1

)µ(β  

which clearly, since  

 {B11, B12, …, 
11pB ,  B21, B22, …, 

22 pB , … Bn1, Bn2, …, 
nnpB } = { B1, B2, …, Br}, 

is equal to ∑
=

r

j
jj B

1

)µ(β . 

That is,  

  ∑
=

n

k
kk A

1

)µ(α  = ∑
=

r

j
jj B

1

)µ(β . /// 

 
The Fundamental Definition of the Integral of Non-negative Measurable Simple Function 1.6  Let the non-negative 

measurable simple function  s : A  → ℝ  have the standard representation  

s  =  
11α Aχ + 

22α Aχ  + …. + 
nAnχα  =  ∑

=

n

k
Ak k

1

α χ . 

We here (i.e., in this paper) define the integral of s, denoted ∫A s dµ as  

α1µ(A1) + α2µ(A2) + … + αnµ(An) = ∑
=

n

k
kk A

1

)µ(α . 

NOTE 1.7  (i) The usual conventions  
  0 ⋅ ∞ = 0 

and   α ⋅ ∞ = ∞ for  α ∈ ℝ, α > 0 
are in vogue in the above definition of the integral. E.g., if α2 = 4 and µ(A2) = ∞, then α2µ(A2) = 4 ⋅ ∞ =  ∞. Similarly, if α5 = 
0 and µ(A5) = ∞, then α5µ(A5) = 0 ⋅ ∞ = 0. 
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(ii) ∫A ds µ  ∈ [0, ∞] = [0, ∞)∪{ ∞} = ℝe+. 

(iii) Clearly, for non-negative measurable simple s : A → ℝ with µ(A) = 0, ∫A ds µ  = 0, by the monotonicity of measure.  

(iv)  Clearly, our definition of the integral of non-negative measurable simple function s : A → ℝ captures the literature’s 

definition of the integral of non-negative measurable simple s : A → ℝ, when A = X. (See p.105 of [2] and p.47/48 of [5]). 

(v)  We have called the preceding Definition 1.6 Fundamental as it sets the stage and dic- tates all ensuing definitions and 
theorems. E. g. see preceding (iii).          

(vi)  Before defining next, directly, the definition of the integral ∫A df µ  of extended real-valued non-negative measurable f 

: A → ℝe+, we wade through some elementary results on the integral of non-negative measurable simple  s : A → ℝ. 
                   

 THEOREM 1.8  Let ∅ ≠ A ∈ A and  s : A → ℝ a non-negative measurable simple function. 
 (i) If  

   s = ∑
=

n

k
Ak k

1

α χ  

and  

   s = ∑
=

r

j
jBj

1

β χ  

are, respectively, the standard representation and an acceptable representation of s, then, 

  ∫A ds µ  = ∑
=

n

k
kk A

1

)µ(α  = ∑
=

r

j
jj B

1

)µ(β , 

(ii)  If  s, t : A → ℝ are non-negative measurable simple functions such that s = t almost everywhere, then ∫A ds µ  = 

∫A dt µ . 

(iii)  (Monotonicity) If  s, t : A → ℝ are non-negative measurable simple functions such that s ≤ t almost 

everywhere, then  ∫A ds µ  ≤ ∫A dt µ . 

(iv) If s, t : A → ℝ are non-negative measurable simple functions, α ∈ ℝ, α ≥ 0,  then ∫A ds µα  =  α ∫A ds µ  and 

∫ +
A

dts µ)(  = ∫A ds µ  + ∫A dt µ . 

Proof (i) is immediate from THEOREM 1.5. Compare the definitions of the integral in first paragraph of Section 
2.2, p.47 of [5] and in first paragraph of Section VII.1,p.105of [2]…. Specifically,  

φ(x) = ∑
=

n

k
Ak x

k
1

)(α χ , αk real,  αk ≥ 0, 

where the Ak′s form a measurable pairwise disjoint partition of X. The integral of φ over X w.r.t. µ is denoted by ∫X x)(φ  

dµ(x), or plainly by ∫X φ  dµ, and it is defined as  

∫X φ  dµ = ∑
=

n

k
kk A

1

)(µα .  

The usual convention 0⋅∞ = 0 is in …] .Observe that while [5] uses the standard representation of s to define the integral, 

∫A ds µ , of s, [2] uses an acceptable representa- tion of s. So, we have here shown that it is correct to use either 

representations.  Before proving (ii) – (iv) we note the following. 
Suppose        

  s = 
11α Aχ + 

22α Aχ  + …. + 
pApχα    
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  t = 
11β Bχ  +

22β Bχ  +…+ 
qBq χβ   

are the standard  representations of s and t. Clearly the non-empty members of the family  
   {Ak  ∩ Bj : k = 1, 2, …, p,  j = 1, 2, …, q}                 
constitute a partition of A, and so suppose this partition is  

             {
1pA ∩

1qB , 
2pA ∩

2qB , …, 
rpA ∩

rqB }                 (∇)        

Then, clearly,  

s =∑
=

∩

r

k
BAp qkpkk

1

α χ  

and  

t = ∑
=

∩

r

k
BAq qkpkk

1

β χ  

are acceptable representations of s and t, respectively, and (∇) a common acceptable representing family for s and t. By (i) of 
the present THEOREM 1.8, therefore, 

∫A ds µ  = ∑
=

∩
r

k
qpp kkk

BA
1

)µ(α                   (∑s) 

and  

∫A dt µ  = ∑
=

∩
r

k
qpq kkk

BA
1

)µ(β                               (∑t) 

 A careful use of (∑s) and (∑t) gives the proofs of (ii) – (iv). For (ii), for an instance, the union of those members of 
the common acceptable representing family (∇), on which s ≠ t, is a measurable set of µ-measure zero, and so their 
contributions to (∑s) and (∑t) is zero, while each of the remaining members of (∇) contribute same amount  to (∑s) and (∑t) 
since s = t on each of them; and so (∑t) = (∑s)./// 
 
OBSERVATIONS 1.9  Let ∅ ≠ A ∈ A . 

 (i) s = κ0 : A → ℝ, x ֏0, for all x ∈ A, the constant zero function on A, is a simple measurable function. Clearly,  

s = κ0 = 0χA  and  ∫A ds µ  – ∫A Aχ0  = 0µ(A) = 0.  

(ii) If  α ∈ ℝ, α ≥ 0, then αχA is a measurable simple function with integral  

∫A A dµαχ  = αµ(A). 

(iii) If ∅ ≠ B ⊊ A and β ∈ ℝ, β ≥ 0, the measurable simple function s = 0χA = βχA is usually written simply as βχB. And by 
the definition of the integral  

∫A ds µ  = µ)β0( d
A BBA∫ +− χχ  = 0µ(A – B) + βµ(B) = βµ(B). 

Hence,  s = βχB has the integral βµ(B). That is,  

                                                  ∫A Bχβ  = βµ(B).                 

Similarly, if {B1, B2, ..., Bn} is a disjoint family of non-empty subsets of A, with  U
n

k
kB

1=

⊊ A, define  A – U
n

k
kB

1=

= B. Suppose  

β1, β2, ..., βn ≥ 0. Then, the simple measurable   
function  

s = 0χA – B +  
11β Bχ  +  

22β Bχ  + ……+ 
nBn χβ  

is same as  

11β Bχ  +  
22β Bχ + …….+ 

nBn χβ . 

By the definition of the integral,  

∫A ds µ  = 0µ(A – B) + β1µ(B1) + β2µ(B2) + ……+  βnµ(Bn) 
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  = β1µ(B1) + β2µ(B2) + ……+ βnµ(Bn). 

That is, 

 µ)β........ββ(
21 21 d

nBnBA B χχχ +++∫  

   = β1µ(B1) + β2µ(B2) + ……+ βnµ(Bn). 
(iv) The integral was defined using the standard representation of the non-negative measurable simple function s, and 
characterized by THEOREM 1.8(i) using acceptable representations. The situation in the second part of (iii) where a member 
of the acceptable representing family (a member on which s assumes the value 0) is not shown, is of common occurrence. 
When defining the integral, however, cognizance is taken of this absent member of the representing family, its contribution 
being 0. This shall be done in what follows, in several places as is in the literature, without citation.   

 Let the non-negative measurable simple function s : A → ℝ have the standard or acceptable representation 

    s = ∑
=

n

k
Ak k

1

α χ           (ρ) 

and suppose ∅ ≠ B ⊆ A, B ∈ A. Then, the restriction s|B : B → ℝ, (s|B)(b) = s(b) for all b ∈ B, of s to B, is also a measurable 
non-negative simple function with the standard or acceptable representation 

s|B = ∑
=

∩

r

j
BAj j

1

α χ  

where A1, A2, …, Ar are the Ak’s in (ρ) having non-empty intersection with B. Hence, by our definition and (i) of THEOREM 
1.8, the integral of s|B is 

 ∫B Bs dµ = ∑
=

∩
r

j
jj BA

1

)µ(α        (*) 

We shall simply write ∫Bs  dµ for ∫B Bs dµ and call it the integral of s over B. Clearly,  

since Ak ∩ B = ∅ ⇒ µ( Ak ∩ B) = µ(∅) = 0, (*) is also equal to ∑
=

∩
n

k
kk BA

1

)µ(α . So, we           

have shown that  FACT 1.10   For non-negative measurable simple function  s : A → ℝ with standard or acceptable 

representation s = ∑
=

n

k
Ak k

1

α χ and ∅ ≠ B ⊆ A, B ∈ A, we have  

      ∫B ds µ  ≡ ∫B dBs µ  =  ∑
=

∩
r

j
jj BA

1

)µ(α  

                 = ∫ ∑ 










=
∩A

r

j
BAj d

j
µα

1

χ  = ∫ ∑ 










=
A

r

j
BAj d

j
µα

1

χχ   = ∫ ∑ 








=
A B

n

k
Ak d

k
µ)α(

1

χχ   

= ∫A Bsχ . /// 

 
REMARK 1.11  Compare FACT 1.10 with Definition 1.23, p. 20 of [8]. 
 We assemble in the next theorem some well-known properties of the integral of non-negative measurable simple 
functions whose profs are mutatis mutandi as in the literature. And so we omit their proofs. 

THEOREM 1.12  (i) Let A, B, C ∈ A with ∅ ≠ B ⊆ C ⊆ A.  For non-negative  measurable simple  s : A → ℝ, ∫Bs  dµ  ≤ 

∫Cs  dµ. [FACT 1.10, THEOREM 1.8  (iii) and the fact that sχB ≤ sχC].  

 (ii) (See Proposition 2.3.2, p.62 of [1]) Let s : A → ℝ be a non-negative measurable simple function, and suppose 
∞

=1)( nns , sn : A → ℝ n = 1, 2, …, is an increasing sequence of non-negative measurable simple functions converging 

pointwise to s. Then,   

∫A ds µ  = ∫∞→ A n
n

ds µlim . 
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(iii) (See Proposition 2.1.7, p.54 of [1]) Consider the measurable space (X, A), and suppose  f : A→ ℝe+ is a non-

negative extended real-valued measurable function. Then, there exists an increasing sequence ∞=1)( nns  of non-

negative measurable simple functions  sn : A→ ℝ converging  pointwise to  f. /// 
We furnish the proof of the next FACT 1.13. I have found the FACT useful but have not been able to locate its proof in the 
literature; it is only stated without proof in  first two lines of the proof of Theorem VII.1.2, p.109 of [2]. 

FACT 1.13 (See first two lines of proof of Theorem VII.1.2, p.109 of [2]) Supp- ose  f, g : A → ℝe+ are non-negative 

extended real-valued measurable functions such that  f = g almost everywhere. If  s : A → ℝ is a non-negative measurable 

simple func- tion satisfying 0 ≤ s ≤  f, then there exists a non-negative measurable simple function  t : A→ ℝ satisfying  

(i)  0 ≤ t ≤ g, and 

 (ii) s = t almost everywhere.  

Proof   Let E = {x ∈ A :  f(x) ≠ g(x)}. Clearly, {x ∈ A :  f(x) ≠ g(x)} = { x ∈ A :  f(x) > g(x)} ∪ {x ∈ A : g(x) > f(x)} 
and so E ∈ A by Proposition 2.1.2, p.49 of [1] being a union of two measurable sets. By hypothesis, therefore, µ(E) = 0. If E 
= ∅, then  f = g everywhere, and clearly then, we have nothing to show as we simply take t as s. So, suppose E ≠ ∅. Suppose 
also that s has the standard representation 

s = 
11α Aχ + 

22α Aχ  + …. + 
nAnχα . 

Suppose, possibly after suitable rearrangement,  
A1∩E  ≠ ∅, A2∩E ≠ ∅,…, Aq∩E ≠ ∅  

but  
Aq+1∩E  = ∅, Aq+2∩E = ∅,…, An∩E = ∅. 

Since {A1, A2, …, An} is a partition of A and ∅ ≠ E ⊆ A, it follows that {A1∩E, A2∩E, …, Aq∩E} is a partition of E. Then, we 
can write s as  

s = 
EA −11α χ   + 

EA −22α χ + … +
EAq q −χα   +  

11α
++ qAq χ  + … + 

nAnχα  + 
EA ∩11α χ  + 

EA ∩22α χ  + … + 
EAq q ∩χα  

is a, non-necessarily acceptable representation of s [E.g., if A1 ⊆ E, say, (or more gene- rally, A1, A2, …, Ar  ⊆ E ) then A1 – E 
= ∅; but an acceptable representing family is a partition of A and so members non-empty]. 

Now define t : A→ ℝ by 

t = 
EA −11α χ   + 

EA −22α χ  + …+ 
EAq q −χα   + 

11α
++ qAq χ  + … + 

nAnχα + 
EA ∩1

0χ  + 
EA ∩2

0χ  + … + 
EA q ∩χ0 .                                 

i.e. t = 
EA −11α χ + 

EA −22α χ + … + 
EAq q −χα   +  

11α
++ qAq χ  + … + 

nAnχα . 

Clearly, t is a non-negative measurable simple function [| Simple function  h : A → ℝ, h = ∑
=

m

k
Bk k

1

β χ  is measurable ⇔ B1, 

B2, …, Bm are  measurable subsets of A. Note 1.2 (ii).|] satisfying 0 ≤ t ≤ g and s = t almost everywhere. /// 
NOTE 1.14  We shall soon run into an application of FACT 1.13 in the next section of this paper. 

We move on to define directly the integral of 2 NON-NEGATIVE EXTENDED REAL-VALUED MEASURABLE    

f : A → ℝe+, A ∈ A . Suppose f : A → ℝe+ is an extended real-valued non-negative  
measurable function. Denote by MSF+(≤ f ) the set of all non-negative measurable simple  

functions s : A → ℝ satisfying 0 ≤ s ≤  f. Clearly, MSF+(≤ f ) ≠ ∅ as the zero simple function κ0 : A → ℝ, κ0(x) = 0 for all x ∈ 
A, belongs to MSF+(≤ f ). Besides, THEOREM   
 
1.12(iii) guarantees the non-emptiness of MSF+(≤ f ). Taking cognizance of NOTE 1.7(i)  

and (ii), therefore define the integral of  f, denoted µdf
A∫ , by  

µdf
A∫  = sup{∫A ds µ  : s ∈ MSF+(≤ f )}. 

Clearly, if  f : A → ℝ is a non-negative measurable simple function there are now two definitions of the integral  

µdf
A∫                         (*) 
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of  f. Denote the meaning of (*) by the first definition by µdf
A∫
∆

 and by the new definition by µdf
A∫
∆∆

. Hence, 

  µdf
A∫
∆∆

 = sup{∫A ds µ  : s ∈ MSF+(≤ f )}                  (*) 

But  f ∈ MSF+(≤ f ) and so µdf
A∫
∆

 is inside the brackets of the R.H.S of (**), and there- fore, it follows from (**) that  

µdf
A∫
∆

 ≤ µdf
A∫
∆∆

           (1) 

But by THEOREM 1.8(iii) (Monotonicity), since s ∈ MSF+(≤ f )  ⇒ 0 ≤ s ≤  f, then, ∫A ds µ  ≤ µdf
A∫
∆

 for all s ∈ MSF+(≤ 

f ), and so 
)(

sup
fMSFs ≤∈ + ∫A ds µ  ≤ µdf

A∫
∆

. 

That is,   

µdf
A∫
∆∆

 ≤ µdf
A∫
∆

           (2) 

 (1) and (2) give  

µdf
A∫
∆

 = µdf
A∫
∆∆

. /// 

 Consider extended real-valued non-negative measurable  f : A→ ℝ+e. Suppose ∅ ≠ B ⊆ A is measurable, and 
consider the restriction  

f |B : B → ℝ, ( f |B)(b) =  f(b) for all b ∈ B, of   f  to B. 

The integral, ∫B dBf µ , of   f |B  is called the integral of f over B, and denoted ∫B df µ .  

 Now consider non-negative measurable  f : A → ℝ+e, with measurable ∅ ≠ B ⊊ A. Consider the functions  

fχB  :  A → ℝ+e and   f |B  :  A → ℝ+e. 
We show that        

THEOREM 2.1 To every s ∈ MSF+(≤ fχB) corresponds a t ∈ MSF+(≤ f |B), with same integral, and vice-versa  

Proof  Consider s ∈ MSF+(≤ fχB) and so s :  A → ℝ and 0 ≤ s ≤  fχB , from which follows that s(x) = 0 for x ∈ A – B  
And that if s takes α ≠ 0, then s – 1(α) ⊆ B. Let α1, α2 ,…, αn – 3 be the distinct non-zero values of s. Hence,  s has the 
representation 

        s = 
11α Aχ  + 

22α Aχ  + … + 
33α

−− nAn χ  + 
2

0
−nAχ + 

1
0

−nAχ + 
nAχ0                  (∇) 

say, where  
A1∪A2∪…∪An – 3 ⊆ B, α1, α2, …, αn – 3 ≠ 0, Ak = s – 1(αk), k = 1, 2, …, n –3, An –2 = A – B, 

An – 1 = {x ∈ B :  f(x) = 0}⊆ B. Clearly, because s ∈ MSF+(≤ fχB ), s(x) = 0 on An – 1,  An = B – U
2

1

−

=

n

k
kA = {x ∈ B :  f(x) ≠ 0, s(x) 

= 0}. 
 
                                                                                                               = B 

        

            An – 2 = A – B 

        = An – 1 = {x ∈ B :  f(x) = 0} 

        

      = An = B – U
2

1

−

=

n

k
kA ={x ∈ B :  f(x) ≠ 0,     

 Fig.1. A Decomposition of A                                            but s(x) = 0}.  
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The above Fig.1 shows A’s decomposition. 
If An – 1 = ∅ = An then (∇) becomes the acceptable representation  

   s = 
11α Aχ  + 

22α Aχ  + …..+ 
33α

−− nAn χ  + 
2

0
−nAχ             (Σ1) 

of s ; otherwise 

with An – 1 = ∅ ≠ An = B – U
2

1

−

=

n

k
kA , (∇) now becomes the acceptable representation 

       s =  
11α Aχ  + 

22α Aχ  + ….. + 
33α

−− nAn χ +  
2

0
−nAχ + 

nAχ0            (Σ2) 

of s, while with An = ∅ ≠ An – 1, (∇) now becomes the acceptable representation  

       s = 
11α Aχ  + 

22α Aχ  + …..+ 
33α

−− nAn χ  + 
2

0
−nAχ + 

1
0

−nAχ             (Σ3) 

of s. 

Now, if (Σ1) is true, define t : B → ℝ by 

   t = 
11α Aχ  + 

22α Aχ  + ….. + 
33α

−− nAn χ        (Π1) 

and if (Σ2) is true, define t : B → ℝ by 

t = 
11α Aχ  + 

22α Aχ  + ….. + 
33α

−− nAn χ +  
nAχ0     (Π2) 

and if (Σ3) is true, define t : B → ℝ by 

         t = 
11α Aχ  + 

22α Aχ  + …..+ 
33α

−− nAn χ +  
1

0
−nAχ     (Π3) 

Clearly, in all cases t ∈ MSF+(≤ f |B) with (Π1), (Π2) and (Π3), respectively, acceptable representations. Clearly, also, in all 
cases, by THEOREM 1.8(i), 

∫A ds µ  = ∑
−

=

3

1

)µ(α
n

k
kk A  = ∫B dt µ . 

This concludes the proof in one direction. For the other direction suppose  

t : B → ℝ and t ∈ MSF+(≤ f |B) 
and suppose  

t =  
11β Bχ  + 

22β Bχ  + ..…+ 
rBr χβ      (σ1) 

 

is the standard representation of  t. Then, define  s : B → ℝ by 

          s =  
11β Bχ  + 

22β Bχ  + ..…+ 
rBr χβ + 

BA−χ0        (σ2) 

Clearly, (σ2) is an acceptable representation of  s ∈ MSF+(≤ fχB), and also  

∫B dµt  = ∑
=

r

j
jj B

1

)µ(β  = ∫A ds µ . /// 

Employing the preceding theorem one deduces immediately from our direct definition of the integral of non-

negative measurable  f : A → ℝ+e that  
 

THEOREM 2.2 If   A, B ∈ A  and ∅ ≠ B ⊊ A, then for extended real-valued non-negative measurable  f : A → ℝ+e, 

∫A B df µχ  = ∫B dBf µ  ≡≡≡≡ ∫B df µ . /// 

NOTE 2.3 If A = X, THEOREM 2.2 is a definition of ∫B df µ  in the literature. And so if A = X, then we have shown that  

THEOREM 2.4 (Our direct definition of ∫B Bf ) = ∫X B df µχ . /// 

 The promised application in NOTE 1.14 of FACT 1.13 is the proof of  

THEOREM 2.5 (See Theorem VII.1.2(i), p.109of [2]) If  f, g : A → ℝ+e are extended real-valued non-negative measurable 
functions such that  f = g almost  everywhere, then, 

∫A df µ  = ∫A dg µ . 
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Proof  FACT 1.13 and THEOREM 1.8(ii).[Compare proof of (i) of Theorem 1.2., p.109 of [2]]. /// 

 The proofs of various theorems on the integral of non-negative extended real-valued measurable  f  : A → ℝ+e ( E.g., 
Monotonicity, Additivity, Positive Homogeneity, the Monotone Convergence Theorem, Fatou’s Lemma, etc) are as in the 
literature mutatis mutandi. For an instance, 
 

 THEOREM 2.6  f : X → [0, ∞] measurable and U
n

nB  a countable disjoint union  of non-empty measurable 

sets. Then, ∫∪ nB
df µ  = ∑∫

n
Bn

df µ .  

Proof A careful adaptation of relevant parts of the proof of Proposition 1.7, p. 112 of [2], taking due cognizance of 
THEOREM 2.2. Or of the relevant parts of the proof of Corollary 2.4.2, p.71 of [1].///   

 

3.0 Integral of Extended Real-Valued Measurable        
 f : A → ℝ+e  Again THROUGHOUT, (X, A, µ) is a fixed measure space. This is done as in the literature : Write  f = f + –  f –  

and we say f has an integral if at least one of ∫
+

A
df µ  and  ∫

−

A
df µ  is finite and call ∫

+

A
df µ  – ∫

−

A
df µ  its 

integral denoted ∫A df µ . Call  f  integrable  if both ∫
+

A
df µ  and ∫

−

A
df µ  are finite and its integral  denoted  

∫A df µ  = ∫
+

A
df µ  – ∫

−

A
df µ  

 With A = X we capture the definition in the literature. No theorem looses its claims and with proofs mutatis mutandi 
as in the literature.  
 
4.0  Conclusion 
 Again, THROUGHOUT, (X, A, µ) is a fixed measure space. We can also extend THEOREM 2.2 to 

 THEOREM 4.1  Let A, B ∈ A with ∅ ≠ B ⊊ A. For extended real-valued integrable   f : A → ℝe. 

∫A B df µχ  = ∫B dBf µ  /// 

With A = X it becomes the definition of the literature’s “the integral of  f  over B” (See p.65 of [1]). Finally, we show that  

THEOREM 4.2  For integrable  f : A → ℝe, let 

  f * :  X → ℝe, f *(x)  = 




∉
∈

Ax

Axxf

if,0

if),(
. 

Then,  f * is integrable, and our ∫A df µ  = lit’s ∫A df µ (Second paragraph, p.65of [1]) ≡ ∫
∗

X
df µ . 

 Proof  A number of comments are in order as we wade through the proof. 
 
COMMENT 4.3 First, the measurability of  f *  needs be established. We record this as a 

LEMMA (Problem 3.21(b), p.69of [3]) 4.4 Suppose E, D ∈ A , ∅ ≠ E ⊊ D and  f : E → ℝe measurable. Define the function 

  g : D → ℝe 

      x   ֏




∉
∈

Ex

Exxf

,0

),(
 

Then,  f  is measurable ⇔ g is measurable. /// 
COMMENT 4.5  Second paragraph of p.65 of [1] is not sure if the integral of  f * exists as signified by its phrase… ( if it 
exists) …We show here that it actually exists.  

Proof of Existence of ∫
∗

X
df µ Case 1  f  is a non-negative measurable simple function with standard representation 

11α Aχ  + 
22α Aχ  + …..+ 

nAnχα  . If  A = X we have nothing to show. So suppose A ≠ X. Then, 

   our∫A df µ = α1µ(A1)  + α2µ(A2)  + … + αnµ(An)    (Σ1)    

and, 
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11α Aχ  + 

22α Aχ  + ... + 
nAnχα + 

AX −χ0  

is an acceptable representation of  f * and so  

   ∫
∗

X
df µ = α1µ(A1)  + α2µ(A2)  + … + αnµ(An) +  0⋅µ(X – A) 

      = α1µ(A1)  + α2µ(A2)  + … +  αnµ(An) = (Σ1).   

Case 2   f  is a non-negative extended real-valued measurable function  f  : A → ℝe. Again if A = X we have nothing to show. 
So suppose A ≠ X . Clearly,  

    our∫A df µ = sup{∫A ds µ  : s ∈ MSF+(≤ f )}      (∆) 

But any s ∈ MSF+(≤ f ) clearly has a unique extension  s* : X → ℝ  to  X,  s*  ∈ MSF+ 

(≤ f *  ), and clearly also  

    our∫A ds µ  = ∫X ds µ*                                          (∆∆) 

Similarly, clearly, any  s* ∈ MSF+(≤ f *  ) has a unique restriction to A, s. And clearly, s ∈ MSF+(≤ f ) and  

    our ∫A ds µ  = ∫X ds µ*                            (∆∆∆) 

From (∆), (∆∆) and (∆∆∆) now follows that our ∫A df µ  = ∫X df µ* . 

Case 3  f  : A → ℝe integrable  or integral exists  is now immediate from Case 2, employ- ing the decompositions  f  = f + –  f 
–  and  f * =  f *+ –  f * – , and the easily checked fact that  f *+ = ( f +)* and  f * –  =  ( f –)*. And this completes the proof of 
THEOREM 4.2. ///  

 

COMMENT 4.6  Let ∅ ≠ A ⊆ X, A ∈ A, and  f : A → ℝe an extended real-valued func- tion. Consider the trace AA = {A∩E : 
E ∈ A} of A on A. Then, AA is a σ-algebra on A and µ|AA is a measure on AA. Denote µ|AA byµA. Then, (A, AA, µA,) is a 
measure space. We have. 
 
THEOREM 4.7  With notation as in the preceding,  f  is A-measurable ⇔  f  is  AA-measurable. 
  

Proof Clear!///     
We also have  
 

THEOREM 4.8  With notation as above, we can consider  

(i) our ∫A df µ , and  

(ii)  (usual definition) ∫A df µ  w.r.t. the measure space (A, AA, µA,). 

Then, our∫A df µ = (usual definition)∫A df µ  w.r.t. the measure space (A, AA, µA,).  (∆) 

Proof  Check the equality in (∆) first for  f  a non-negative simple measurable function. Then, with this confirmed, 
check the equality for f a non-negative extended real-valued measurable function. Finally check the equality for f an arbitrary 
extended real-valued measurable function. /// [| Compare 4.7.6, p.187/188 of [4] |]. So, we now have with THEOREM 4.2.  

 
THEOREM 4.9 With notation as above  

lit’s ∫A df µ   = our∫A df µ  = (usual definition)∫A df µ  w.r.t. the measure space  (A, AA, µA,). /// 

REMARK 4.10 Compare the second equality in the preceding THEOREM 4.9 with [1, lines 6 – 10 of the proof of theorem 
5.1.13, p. 207]. From THEOREM 4.9 follows that  COROLLARY 4.11   With notation as above  

 lit's ∫A df µ  = (usual definition)∫A df µ  w.r.t. the measure space (A, AA, µA). ///  

Example 4.12  Exercise 1, p.188 of [4] is a restatement of our COROLLARY 4.11 above for Lebesgue integrable  f : [a, b] 

→ ℝ. 
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COMMENT 4.13  The last sentence of first paragraph of page 134 of [1] in its proof of the Radon-Nikodym Theorem reads: 
The function g : X → [0, ∞)  that agrees on each Bn with gn : Bn → [0, ∞) is then the required function. We furnish a proof. 
We refer to the proof of Theorem 4.2.2, p. 132 –134 of [2]. As claimed by the author: For each n the first part of this proof 

provides an A-measurable function gn : Bn → [0, ∞) such that ν(A) = ∫A n dg µ  holds for each A-measurable subset A of Bn 

[|Note: Of course if A = ∅,  ∫A n dg µ  does not make sense, but then ν(A) = 0|]. And, therefore, if  ∅ ≠ A ∈ ABn (≡ the trace 

A|Bn of  A on Bn) there exists ∆
ng : (Bn, ABn , µ) → ℝ+ such that   

ν(A) = ∫ ∩

∆

nBA n dg µ  =  ∫ ∩
∆

n
nB BAn dg µχ       (ρ1) 

Now, let ∅ ≠ A ∈ A. Suppose ∅ ≠ A∩Bn ∈ ABn.  By (ρ1) therefore, there exists  
∆
ng  : (Bn, ABn, µ) → ℝ+ such that  

ν(A∩Bn) = ∫ ∩

∆

nBA n dg µ  = ∫ ∩
∆

n
nB BAn dg µχ               (ρ2) 

Now, let 
nBAng ∩

∆χ =  hn. And so, from (ρ2), 

    ν(A∩Bn) = ∫
nB n dh µ                 (ρ3) 

Hence,  

 ν(A) = ν 







∩







AB

n
nU  

         = Σn ν(A∩Bn), which by (ρ3),  

         = ∫∑
nB nn dh µ , 

which by our THEOREM 4.2, 

         = ∫∑ X nn dh µ*  

which by the Monotime Convergence Theorem(Applicable if A∩Bn ≠ ∅ for infinitely many n) 

         =  ( )∫ ∑X nn dh µ*  

g = 
*
nn h∑  is the function being claimed. /// 

   
REMARK 4.14 The discussion in COMMENT 4.13 taking cognizance of THEOREM 4.2, THEOREM 4.8 and 
COROLLARY 4.11 strongly justifies our definition of the integral of  measurable  f : A → [– ∞, ∞] directly, for ∅ ≠ A ⊆ X, 
A ∈ A. It is hoped that new books on the integral will take to the presentation of this paper.   
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