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Abstract

Let (X, A, 1) be a measure spacé&] ZA [JA, AZX,and f: X - Reand_q: A S
R extended real-valued measurable functions. Theiiiture defines the integral of f
[| the ground set of the measure space (X4, X, is the domain of f |] directly, but
defines the integral of g [| the domain of g is nibie whole of X |](See “(rather than the
entire space)” line 10, p.65 of [1]) as the integaf g* : X — & (if it exists)(See “(if it
exists)” line 11, p.65 of [1])

g(x), if xOA

0, if xOA

In this paper we define the integral of measuralile A - R AOA AZX, or A
= X, directly. Our definition, which is essentiallthe literature’s definition, captures
the definition of the integrals of f and g in thatérature. Some useful deductions and
consequences are then given.

where g*(x) :{
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1.0 Introduction

Our language and notation shall be standard, asdféer example in [1] and [2]. We denote bijD the restriction of the
functionf: C - Bto O # D O C. Without mention we workhroughout with the measure spac¥, (A, 1), and, of course(See
Proposition 2.1.1, p.48 of [1] and Proposition.8% p.65 of [3]), the domaiA of a measurable functiori : A — R® =
R{ e, —}, R = the reals, belongs to teealgebra A. We signify the end or absence of a foogd//.

THROUGHOUT, (X, A,u) is a fixed measure space, dndt A [0 A. With f, g,
g* as in the abstract

(i) The literature’s definition of the integral gfnow becomes a theorem : lif}sg du = Ig* du = neWIAg du. [| Section
X

4's THEOREM 4.9]].

(ii) Thus, [| Section 4’'s Corollary 4.11 and Exam@.12|], we show that the claim of Exercise 188.0f [4] is true in
general and not just for the Lebesgue integrafofa, b] - R.

(i) Similarly, for theintegral of f over A,

old jAfdpst fX, du =neijf | A du.

(iv) Very importantly, some new and clearer proofglementary properties of the integral are als@ioed.
(v) Finally, we are able to explagatisfactorily (COMMENT 4.13) the reasoning in the last sentesfdbe first paragraph of
page 134 of [2] in its proof of the Radon-Nikodymebrem.
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2.0  Measurable Simple Function
Definition of a Simple Function 1.1Let 0 # A0 X. The real-valued functios: A - R shall be called aimple function
if it has a finite ranged;, 0,,..., oy} O R, say(See line 15 of p.45 of [8}e do not allow simple functions to assume the

n
values + «), and line 3 of Section VII.1 p.105 of [2}fX) = ;ak)(/*k (X), a real).And so ifA = s~ Y(a), k=1, 2, ...,n,
we can writes as a linear combination
ST XA, F XA, Tt O XA - 0)
of characteristic functions, and, following p.47 [6] and p.78 of [6], call &) the standard representation or canonical
representation(See p.90 of [7]pf s. If sis a measurable function, andAal A, we call it ameasurable simple function.

Note 1.2 (i) Our definition of a measurable simple functiontcap's the literature’s definition witA = X. However, see the
statement of Proposition 2.1.7, page 54 of [1].

(i) It is clearly true, as one verifies triviallghat our new simple functios = WXa t O s Tt O XA is also
1 2 n

measurable if and only ifeaédq O A, k=1, 2, ...n.
(i) {Aq, Ay ..., A} is a partition ofA.[Note: The sets constitutingpartition are non-empty sets. S9,# A for eachk = 1,
2,...,n]
We here introduce the notion of Arceptable Representation 1(5ee last two lines of p. 78 of [6]) LEt# A O
A . We shall call the subfamily
{B1, By, ..., B} (ARF)

of A ameasurable partition of A if it is a partition ofA. If for somefy, Bo, ..., B O R, the measurable simple functia: A
- R can be represented as
s=PBiXg, +BoXe, + -+ B Xa, (AR)
we shall call (AR) aracceptable representation of s and call (ARF) aracceptable representing family for s. [| Compare first
Paragraph of Section VII.1 of [2] : ...where tAfgS form a measurable pairwise disjoint partitionxof]
Note 1.4(i) The family {A;, Ay, ..., A}, Ac=s(ay), k=1, 2, ...,n, in the standard representation of measurablplsim
functions: A - R is clearly an acceptable representing familysfor
(i) The standard representation of measurabl@lsifunction s = Oy X a, + Oy X a, + ...+ O Xa, is clearly an acceptable

representation os.
A simple easily digestible proof of the followifigndamental theorem is not easy to locate in tieediure.

FUNDAMENTAL THEOREM 1.5 If

ST 0 XA, T U X, Tt O XA @)
and

S:Bl)(Bl "'Bz)(e.2 "'---"'Br)(Br ((VAY)
are, respectivelythe standard representation andan acceptable representation of the measurable simple functian
tA - R, then,

> am(A) =D Bu(B)

Proof First observe that ead} is equal to one and only owg since ') is the standard representation. We note

next that, clearly, then
(i) foreachj {1, 2, ...,r}, B; O Acfor somek with 3; = ay,
(ii) for fixed k, there is at least oesuch thag; 0 A, and
(iii) thoseBy's contained ird, say, constitute a partition 8f.
So, if

Bi1, B1a, ..., Bipy are theBy's contained ind,

Bo1, Bo, ..., Bop, are theBy's contained inAy,

B Bz - By, are theBy's contained in,
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and so
{Bi1, By, ..., Blpl} is a partition ofA,,

{B1, By, ..., Bsz} is a partition ofA,,

{Bn, Bz, ..., Bnpn } is a partition ofA,,
then, we have the disjoint unions

Py P2 Pn
A=JBy. A= By . .. A= By,
t=1 t=1 t=1

Bu=ay fort=1,2, ...p, Ba=0p fort=1,2, ...ps ..,Pu = Onfort=1, 2, ....pn.
By additivity of ,

Py Py Py Py
a1p(Ag) = o U an: GlZH(Bn) = Z‘al n(B,) = ZBlt u(By),

P2

P2 P2 P2
02H(A) = 0ot thjz GZZM(th) = Z%H(Bm) = ZBZt“(BZt) ,
1 t=1 t=1 t=1

t=

Pn Pn Pn Pn
OnH(An) = Ot U BntJ = anzu(Bm) = zan”(Bnt) = ZBnt“(Bnt) :
t=1 t=1 t=1 t=1

Hence

n P P2
Z“k”(pk) = 01p(A) + 0(AY) + ... +0pU(AY) = ZBHM(BH) + ZBZt“(BZt) +
=1 =1

t=1

Pn
e ZBmM(Bm)
t=1
which clearly, since
{B]_]_, BlZ- . Blpl' Bz]_, Bzz, ieey szz, Bnl, an, . Bnpn}:{Bl’ Bz, iy Br},
r
is equal to ZBju(Bj) :
j=1
That is,

iaku(ﬂ) = Zr_:[i,-u(Bj).///

The Fundamental Definition of the Integral of Non-regative Measurable Simple Function 1.6Let the non-negative
measurable simple functios: A -~ R have the standard representation

n
S = X YO A, Tt O XA T ZakXAk '
k=1

We here (i.e., in this paper) define thetegral of s, denotedeS du as

(A + 0H(AY) + ... +a(A) = D o (A ).
k=1

NOTE 1.7 (i) The usual conventions
0 =0
and o [ =oo for a OR, a>0
are in vogue in the above definition of the intégEag., if a, = 4 andu(Ay) = o, thena,u(Ay) = 4 o = . Similarly, if as =
0 andu(As) = o, thenasp(As) = 0o = 0.
Journal of the Nigerian Association of Mathematic&hysics Volume5 (November, 2013)11 — 22
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(i) L\S du O[0, ] = [0, @) T{ 0} = R
(iii) Clearly, for non-negative measurable simplteA — R with p(A) = 0, IAS du =0, by the monotonicity of measure.

(iv) Clearly, our definition of the integral of nenegative measurable simple funct®nA - R captures the literature’s
definition of the integral of non-negative measilgabmples: A —» R, whenA = X. (See p.105 of [2] and p.47/48 of [5]).

(v) We have called the preceding Definition Edhdamental as it sets the stage and dic- tates all ensuingitiefis and
theorems. E. g. see preceding (iii).

(vi) Before defining next, directly, the definitiaof the integraIJ.A f du of extended real-valued non-negative measurable

:A - R¥, we wade through some elementary results on thgrial of non-negative measurable simpleA - R.

THEOREM 1.8 Letd ZA[OA and s: A - R a non-negative measurable simple function.
@) If

n
S= D 0y X,
k=1
and
r
5= D B Xe,
j=1

are, respectively, the standard representatioraaratceptable representatiorsathen,
n I
[.sdu=> au(A) =X Bu(B),
k=1 j=1
(i) If s,t:A - R are non-negative measurable simple functions thatls =t almost everywhere, thej.'lAS du =

IAt du.
(i) (Monotonicity) If s, t: A - R are non-negative measurable simple functions ghahs < t almost

everywhere, thenIAS du sjAt du.

(iv) If s,t: A - R are non-negative measurable simple functians,R, a = 0, then IAaS du = «a L\S du and

jA(s+t) dp = jAs du + jAt dy.
Proof (i) is immediate from THEOREM 1.5. Compare the digfbns of the integral in first paragraph of Seanti
2.2, p.47 of [5] and in first paragraph of Sectidh1,p.1050f [2].... Specifically,

n
#X) = Z(xk Xa (X), axreal, o= 0,
k=1
where theA/s form a measurable pairwise disjoint partitionXofThe integral ofp over X w.r.t. p is denoted bij AX)

du(x), or plainly bij @ dy, and it is defined as

n
[ @ au= 2 o k(A).
The usual convention® = 0 is in ...] .Observe that while [5] uses the staddrepresentation afto define the integral,

L\S du, of s, [2] uses an acceptable representa- tiors.080, we have here shown that it is correct to eisieer

representations. Before proving (i) — (iv) weethe following.
Suppose

SZ0Na, * O Xa, T T O XA
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t=PBuXe, +*BoXe, -t Bq/YBq
are the standard representations andt. Clearly the non-empty members of the family

{AcnB:k=1,2,...p,j=1,2,...0
constitute a partition o&, and so suppose this partition is

{AplmBql, Apszqz,...,Aprmqu} 0)

Then, clearly,

r
S_Zapk XApkank
k=1

and

r
t = ZBQk /YApkank
k=1

are acceptable representations ahdt, respectively, and{) a common acceptable representing familysfandt. By (i) of
the present THEOREM 1.8, therefore,

[.sdh =0, n(A, nB,) Xs)
k=1
and
J-At d},l = ZBQkM(APk n qu) 210)
k=1

A careful use ofXs) and Et) gives the proofs of (ii) — (iv). For (ii), fomainstance, the union of those members of
the common acceptable representing family, (on whichs # t, is a measurable set pfmeasure zero, and so their
contributions to X’s) and Et) is zero, while each of the remaining member@dfcontribute same amount tag) and Et)
sinces =t on each of them; and st = &s).///

OBSERVATIONS 1.9 LetdO zAOA.
() s=ko:A - R,x~0, for allx 0 A, the constant zero function énis a simple measurable function. Clearly,

S=Ko=0xa and J.AS du - IAOXA = 0u(A) = 0.
(i) If aOR,a=0,thenax,is a measurable simple function with integral
[ X du = apa).

(i) If O0#B & AandpB OR, B =0, the measurable simple functiss Oxa = Bxa is usually written simply aBxs. And by
the definition of the integral

[, = | OXas+BXe) At = OU(A-B) + BU(B) = BU(EB).
Hence, s = Bxg has the integrgdju(B). That is,
[.BXe =BuE@).

n n
Similarly, if {B, By, ...,B.} is a disjoint family of non-empty subsets A&fwith U B, ¢ A, define A- U B, = B. Suppose

k=1 k=1
B1, B2, ---sBn = 0. Then, the simple measurable
function
s=0a-s* PXg, + PoXs, + o +BoXe,
is same as

Bl)(Bl + B2X32+ ------- + Bk, -
By the definition of the integral,

[ sdu = 00A~B) +Bui(By) + BB + ... + Bo(By)
Journal of the Nigerian Association of Mathematic&hysics Volume5 (November, 2013)11 — 22
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=B1l(By) + Bal(B) + ... + Bal(Bn).
That is,

IA(lesl + B2X52 T + BnXBn ) du

=B1H(By) +Bau(B) + ... + Bnl(By).
(iv) The integral was defined using tlsndard representation of the non-negative measurable simple functprand
characterized by THEOREM 1.8(i) using acceptabpeasentations. The situation in the second p4itipfvhere a member
of the acceptable representing family (a membewbith s assumes the value 0) is not shown, is of commanroence.
When defining the integral, however, cognizanctaken of this absent member of the representinglyfaits contribution
being 0. This shall be done in what follows, iner@V places as is in the literature, without aitati

Let the non-negative measurable simple funcsioA - R have the standard or acceptable representation

S= )y X, 6)
k=1

and supposél # B 0 A, B O A. Then, the restrictiogB : B - R, (s|B)(b) = s(b) for allb 0 B, of sto B, is also a measurable
non-negative simple function with the standardareptable representation

r
SlB: Zaj XAjﬁB
=1

whereAy, A,, ..., A are theA/s in (p) having non-empty intersection wiBh Hence, by our definition and (i) of THEOREM
1.8, the integral of|B is

I
[,§Bau= 20 (A N B) )
j:
We shall simply write BS du for J.BQBdu and call itthe integral of s over B. Clearly,

sinceAcn B=0 = p( Acn B) =p(0) =0, (*) is also equal t(i o, (A, N B). So, we
k=1

have shown thatFACT 1.10 For non-negative measurable simple functien A — R with standard or acceptable

n
representatios = Zak Xa andd #BOA BUA, we have
k=1

stdu squde = > a,u(A nB)
j=1

=L\(Z% Xa nsj du = L\[Z% XAjXBJ du = L((Z 0y X, ))(Bj du
j=1 j=1 k=1
= jAsXB i

REMARK 1.11 Compare FACT 1.10 with Definition 1.23, p. 20[8F.
We assemble in the next theorem some well-knovapgaties of the integral of non-negative measurabtgple
functions whose profs are mutatis mutandi as iditeeture. And so we omit their proofs.

THEOREM 1.12 (i) LetA, B, COAwith[0 #B O COA. For non-negative measurable simpe A - R, J.BS du <

J.CS du. [FACT 1.10, THEOREM 1.8 (i) and the fact thex < Sxc]-

(ii) (See Proposition 2.3.2, p.62 of [1]) Let A - R be a non-negative measurable simple function,sapghose
(S)mets S A - Rn=1,2, .., is an increasing sequence of non-negatieasurable simple functions converging
pointwise tos. Then,

IASdM - LIToJ-AS” du.
Journal of the Nigerian Association of Mathematic&hysics Volume5 (November, 2013)11 — 22
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(iii) (See Proposition 2.1.7, p.54 of [1]) Considbe measurable spac¥, (A), and supposd : A~ R®*" is a non-
negative extended real-valued measurable funcfitren, there exists an increasing seque(sg),., of non-
negative measurable simple functiogs A— R converging pointwise td. ///

We furnish the proof of the next FACT 1.13. | hdwand the FACT useful but have not been able tat®dts proof in the
literature; it is only stated without proof in dirtwo lines of the proof of Theorem VII1.1.2, p.1692].

FACT 1.13 (See first two lines of proof of Theorem VII.1.2109 of [2]) Supp- osef, g : A — R®" are non-negative
extended real-valued measurable functions such thag almost everywhere. Is: A — R is a hon-negative measurable
simple func- tion satisfying 8 s< f, then there exists a non-negative measurable sifapttiont : A- R satisfying

(i) 0<t<g, and
(i) s=t almost everywhere.

Proof LetE={xOA: f(X) Zg(X)}. Clearly, (x OA: f(x) Z g} ={xOA: f(x) >g(x)} 0 {xOA: g(x) > f(x)}

and soE [0 A by Proposition 2.1.2, p.49 of [1] being a unimitwo measurable sets. By hypothesis, therefaf€) = 0. IfE
= [, then f = g everywhere, and clearly then, we have nothinditmsas we simply takeass. So, supposk # [1. Suppose
also that has the standard representation

ST Xa t 0N, T T O XA
Suppose, possibly after suitable rearrangement,
ANE 20,AnEZ0,...,AnEZ 0
but
AinE =0,AqnE=0,..., AnE=0.
Since {A, A;, ..., Ay} is a partition ofA andO # E O A, it follows that {A\nE, AonE, ..., AynE} is a partition ofE. Then, we
can writes as

S=0Xa e T 0N, et TUXA e T OgeaXa, T T XA T 0N e T Qo XA 0e T T O XA
is a,non-necessarily acceptable representationsdE.qg., if A, O E, say, (or more gene- rallfyg, Ay, ..., A, OE) thenA; —E
=0; but an acceptable representing family is a pantibf A and so members non-empty].

Now definet : A-~ R by

U= Xp e T 0 Xp,t 7 OgXa-e © OgraXa,, F T 0 XA F O)(AlnE * O)(Asz ot O)(Aqu'

Le.t= o X et O a, et -t OgXa,-£ + Og41Xa,., o ta X

n

m
Clearly,t is a non-negative measurable simple functionrfjgi functionh: A — R, h= ZBK Xe, is measurable- B,
k=1
B,, ..., Bnare measurable subsetsfoNote 1.2 (ii).|] satisfying & t < g ands =t almost everywhere. ///
NOTE 1.14 We shall soon run into an application of FACT 1liighe next section of this paper.
We move on to defindirectly the integral o2 NON-NEGATIVE EXTENDED REAL-VALUED MEASURABLE

f:A- R*, AOA. Supposé:A - R*is an extended real-valued non-negative
measurable function. Denote by M%Ef ) the set of all non-negative measurable simple

functionss: A - R satisfying 0< s< f. Clearly, MSF(< f) # O as the zero simple functieg : A -~ R, Ko(X) = 0 for allx [
A, belongs to MSH< f). Besides, THEOREM

1.12(iii) guarantees the non-emptiness of M&F ). Taking cognizance of NOTE 1.7(i)
and (ii), thereforalefine theintegral of f, denotede f du, by
IA fdu = sup{J.AS du :sOMSF(<f)}.

Clearly, if f: A - R is a non-negative measurable simple function thezenow two definitions of the integral
[ fdu *)
Journal of the Nigerian Association of Mathematic&hysics Volume5 (November, 2013)11 — 22
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A An
of f. Denote the meaning of (*) by the first definitibp JA f du and by the new definition bi\ f du. Hence,
AN
IA fdu = sup{jAs du :sOMSF(<f)) *)
A
But f 0 MSF'(<f) and SOJA f du is inside the brackets of the R.H.S of (**), ahére- fore, it follows from (**) that

A AN
jAf dusjA f du @)
But by THEOREM 1.8(iii) (Monotonicity), sinced MSF(<f) = 0<s< f, then,J.AS du < Jff du for alls 0 MSF (<

A

f),andso Sup sdu < | fdu.
LSup [sdus |,

That is,

IMf du < IAf du )
A A
(1) and (2) give
jAf du =IMf du . /11
A A
Consider extended real-valued non-negative mellsuré: A R Supposel # B [ A is measurable, and
consider the restriction
fIB:B - R, (f|B)(b) = f(b) for allb OB, of f toB.
The integral,jB f|B du, of fB is called théntegral of f over B, and denoted JB f du.

Now consider non-negative measurabteA — R, with measurablél # B ¢ A. Consider the functions

fxe : A- R™and f|B : A~ R™
We show that
THEOREM 2.1 To everys [0 MSF'(< fxg) corresponds &1 MSF'(< f |B), with same integral, and vice-versa

Proof Considers 0 MSF'(< fxg) and sas: A — R and 0< s< fyg, from which follows thas(x) = 0 forx 1 A—B

And that if s takesa # 0, thens™ l(0() 0 B. Letay, a5 ,..., o, _ 3 be the distinct non-zero values &fHence, s has the
representation
ST Xa, T OXA, Tt U T O/\/Ah_2+ OXA1—1+ O)(An Q)

say, where

AOAO...OA,_30B, a4, 0y, ...,0,_3% 0, A= S_l(qk), k=1,2,...n -3,Ano=A-B,
n-2

A._1={x0OB: f(x) = 0} B. Clearly, becaused MSF'(< fXg ), S(X) =0 onA,_3, A,=B— U A ={x0OB: f(x) £ 0,(x)
k=1

= 0}.

%//B

i

An_2=A-B
A
\% =A,_,;={x0B: f(x) = 0}
n-2
% :An:B—UAk =(xOB: f(x) #0,
I k=1
Fig.1. A Decomposition oA buts(x) = 0}.
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The above Fig.1 showss decomposition.
If A,_;=0 = A, then (J) becomes the acceptable representation

S= X, t O XA, t ot 0 X T OX, g
of s; otherwise
n-2
with A,_1=0#A,=B- U A, (0) now becomes the acceptable representation
k=1
SZ O Xa, F U Xa, t o T O gXa T OX, T OXy €2
of s, while withA, =0 # A,_4, (O) now becomes the acceptable representation
ST O Xa, U XA, Tt O g T OXAH + C))(An,1 &3)
of s
Now, if (Z;) is true, defing : B — R by
B2 X, * O Xa, * e T Oy )
and if &) is true, defind : B —» R by
U= o), T 0 s, t o MY N OXA1 (M2)
and if &) is true, defing : B —» R by
T=o X, o s, ¥t O g Xy F OXAH (M)

Clearly, in all casesd MSF'(< f |B) with ([4), (M,) and (13), respectively, acceptable representations. Gleal$o, in all
cases, by THEOREM 1.8(i),

fAsdu = nfjuku(ﬂ) = th du.

This concludes the proof in one direction. Fordtteer direction suppose

t:B - R andt 0 MSF(<f |B)
and suppose

t= Bl/\/Bl + BZXBZ to B Xs ©y)

r

is the standard representationtofThen, defines: B - R by

$= BXg, *PoXs, Tt B Xs T OXas ©2)
Clearly, @) is an acceptable representationsdfl MSF'(< fxg), and also

jBt due = DB, u(B,) :IASdp.///
j=1

Employing the preceding theorem one deduces imrtedgidrom ourdirect definition of the integral of non-
negative measurable: A ~ R that

THEOREM 2.2 If A,BOA andO # B ¢ A, thenfor extended real-valued non-negative measurébig — R,
L\f)(e du = jBf|Bdu sjBf du.
NOTE 2.31f A=X, THEOREM 2.2 is a definition oj‘B f du in the literature. And so & = X, then we have shown that

THEOREM 2.4 (Our direct definition oij f|B )= jx fXg O /i

The promised application in NOTE 1.14 of FACT 1lid$he proof of

THEOREM 2.5 (See Theorem VII.1.2(i), p.1090f [2])f f, g: A — R™ are extended real-valued non-negative measurable
functions such thaf =g almost  everywhere, then,

J.Af du :.[Agdu'
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Proof FACT 1.13 and THEOREM 1.8(ii).[Compare proof dfdf Theorem 1.2., p.109 of [2]]. ///

The proofs of various theorems on the integralmf-negative extended real-valued measurdbié — R* ( E.g.,
Monotonicity, Additivity, Positive Homogeneity, tHdonotone Convergence Theorem, Fatou’s Lemma,ate)as in the
literature mutatis mutandi. For an instance,

THEOREM 2.6 f: X - [0, ] measurable anw B, a countable disjoint union of non-empty measw@abl

sets. Then,J‘DBn fdu= stn f du.

Proof A careful adaptation of relevant parts of the probProposition 1.7, p. 112 of [2], taking due cizgimce of
THEOREM 2.2. Or of the relevant parts of the prob€orollary 2.4.2, p.71 of [1].///

3.0 Integral of Extended Real-Valued Measurable
f: A - R*™ Again THROUGHOUT, X, A, 1) is a fixed measure space. This is done as ifitdrature : Writef =" — f~
and we sayf has an integral if at least one ofJ.A f*du and J.A f~ du is finite and callj.A frdu - J.A f~du its

integral denoted JA f du. Call f integrable if both J;\ f* du and JA f~ du are finite and itsntegral denoted
-] a

With A = X we capture the definition in the literature. Nedhem looses its claims and with proofs mutatisamdit
as in the literature.

4.0 Conclusion
Again, THROUGHOUT, X, A, 1) is a fixed measure space. We can also extend REMD2.2 to

THEOREM 4.1 LetA, BOAwith O # B < A. For extended real-valued integrabfe A -~ R®.

L fxo du = jB £|B dy /1

With A = X it becomes the definition of the literature’s “tinéegral of f overB” (See p.65 of [1]). Finally, we show that

THEOREM 4.2 For integrablef: A - RS let
f(x), if xOA
fr: X o R%FH(X) = . .
0, if xOA
Then, f * is integrable, and oqu f du =lits JA f du (Second paragraph, p.65of [15])-">< f du.

Proof A number of comments are in order as we wadaititrahe proof.

COMMENT 4.3 First, the measurability of * needs be established. We record this as a
LEMMA (Problem 3.21(b), p.690f [3]) 4.4 Supposdés, DO A, 0 #E ¢ D and f: E — R® measurable. Define the function
g:D - R®
f(x), xOE
" H{ 0, xOE

Then, f is measurable- gis measurable. ///
COMMENT 4.5 Second paragraph of p.65 of [1] is not sure ifititegral of f * exists as signified by its phrase..if(it
exists) ...We show here that it actually exists.

Proof of Existence of .[x fDdu Case 1 f is a non-negative measurable simple function witimdard representation
X T O T + UXa - If A=Xwe have nothing to show. So suppésé X. Then,
1 2

ourJ.A fdu=oup(A) +oou(A) + ... +au(A) (62))

and,
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WXp, ¥ O A, T ta Xy * OXx-a
is an acceptable representationfdfand so
[ 17 du=aum(a) +oou(A) + .. +am(a) + OB -A)

=0H(AY) +O0U(AY) + ...+ AH(A) = (o).
Case 2 f is a non-negative extended real-valued measufabtgion f : A - R® Again if A =X we have nothing to show.
So supposé # X . Clearly,

ourJ.A f du= sup{IAS du :sOMSF(<f)} D)

But anys 0 MSF'(< f) clearly has anique extensions*: X — R to X, s* 0 MSF'
(2f*), and clearly also

ourJ.AS du = IX s* du ML)
Similarly, clearly, anys* O MSF'(< f * ) has a unique restriction £ s. And clearly,s 0 MSF'(< f) and
ourIAS du = J.x s* du NAD)

From @), (AA) and AAA) now follows that ourJ.A fdu= J;( f* du.

Case 3f : A — R®integrable orintegral exists is now immediate from Case 2, employ- ing the demusitionsf =f* — f
“and f*= f*"— f* ~ and the easily checked fact thiat* = (f )* and f* ~ = (f)*. And this completes the proof of
THEOREM 4.2. /1]

COMMENT 4.6 LetO #A0X,A0A, and f: A -~ R®an extended real-valued func- tion. Consider theet A = {AnE :
E O A} of A on A. Then, A, is ac-algebra omA andp|Ax is a measure onADenotep|Ax byua. Then, A, Ap, Ha) IS @
measure space. We have.

THEOREM 4.7 With notation as in the precedinfj,is A-measurable- f is Ay-measurable.

Proof Clear!///
We also have

THEOREM 4.8 With notation as above, we can consider

(i) our J.A f du, and
(i) (usual definition)J.A f du w.r.t. the measure spaok @Aa, Ha,)-

Then, ourj.A f du = (usual definition?[A f du w.rt. the measure spack @a, Ha). @)

Proof Check the equality in4) first for f a non-negative simple measurable function. Theth, tlis confirmed,
check the equality fara non-negative extended real-valued measurabé&ifmm Finally check the equality féran arbitrary
extended real-valued measurable function. /// fh@are 4.7.6, p.187/188 of [4] |]. So, we now haith WHEOREM 4.2.
THEOREM 4.9 With notation as above

lit's J;\ fdu = our-"A f du = (usual deﬁnitionjA f du w.r.t. the measure space A, @, Un,). ///

REMARK 4.10 Compare the second equality in the preceding THEKR.9 with [1, lines 6 — 10 of the proof of theore
5.1.13, p. 207]. From THEOREM 4.9 follows th@OROLLARY 4.11 With notation as above

lit's J.A f du = (usual deﬁnitioni‘A f du w.r.t. the measure spaok, @, Ha). ///

Example 4.12 Exercise 1, p.188 of [4] is a restatement of G@ROLLARY 4.11 above for Lebesgue integralfle [a, b]
- R.
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COMMENT 4.13 The last sentence of first paragraph of pagedf34] in its proof of the Radon-Nikodym Theorenads:
The function g : X - [0, ) that agrees on each B, with g, : B, - [0, ) is then the required function. We furnish a proof.
We refer to the proof of Theorem 4.2.2, p. 132 —&BfR]. As claimed by the authoFor each n the first part of this proof

provides an A-measurable function g,,: B, —» [0, o) such that v(A) = JAgn du holds for each A-measurable subset A of B,

[[Note: Of course iA =11, JAgn du does not make sense, but theéa) = 0[]. And, therefore, if] # A O Ag, (= the trace
A|B,, of AonB,) there existsgr?: (Bn, Agn, 1) — R" such that
A A
VA=, gy du= | gl Xae, du e

Now, letd # A A. Supposél # AnB, U Ag.. By (p1) therefore, there exists
g,? . (Bn, Agn, ) — R" such that

vanB) = [ gndu = [ ghxas, du 62
Now, let g,?)(An g, = D And so, from ),
V(ANB,) = IB h, du 62)

Hence,

o [(U 35 A}

=%, V(AnB,), which by 03),

= 2o, hdn,

which by our THEOREM 4.2,

=3 . b du

which by the Monotime Convergence Theorem(ApplieabAn B, # [0 for infinitely manyn)
= |, (>, 1) du
g= Z n m is the function being claimed. ///

REMARK 4.14 The discussion in COMMENT 4.13 taking cognizance TWHEOREM 4.2, THEOREM 4.8 and
COROLLARY 4.11 strongly justifies our definition tiie integral of measurable: A - [— o, o] directly, for 0 # A O X,
A OA. Itis hoped that new books on the integral wéke to the presentation of this paper.
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