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                       Abstract 
 
The Markov chain Monte Carlo method as a statistical mechanics technique for 

the study of macroscopic systems has furnished the scientific community with great 
knowledge and advances in the theory of phase transitions. While a number of Monte 
Carlo models have been proposed for the study of surface growth, these models have 
not nearly being studied as exhaustively as in the models of magnetic systems, a 
paradigm of which is the classical model of Ernest Ising. In particular, studies of 
phase transitions in surface/interface science at nanometric scales are almost non-
existent. This article has been written to motivate research in this area of statistical 
mechanics from the perspective of surface science. In this article we survey the 
rudiments of the method along with some models of disordered systems such as 
magnetic systems, material fracture, nano-pattern formation under ion bombardment, 
and molecular chirality. We performed simulations of these models using the method 
and obtained results that are in excellent agreement with experimental observations.  
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1.0    Introduction 

The relevance and progress of theories of natural phenomena is strongly rooted in experiments that probe these 
phenomena under viable and accessible conditions. However, with increasing technological advances the experimental 
apparatus evolve with increasing sophistication often accompanied by huge operation or acquisition costs that create barriers 
which scientific enquiries must overcome before experiments designed to investigate them can be approved.  

Fortunately, the increasing technological innovations have created a new avenue for experimental probes through the 
enablement of numerical simulations that mimic real-life experiments in the virtual world embedded in the central processing 
unit of a computer. Such simulations are based on the theoretical basis of the observed phenomena and, after verifying their 
results through comparison with experimental results, can be used to study areas not yet experimentally studied. 

The Monte Carlo method is a probabilistic simulation method used in applying the theories of statistical physics to the 
study of macroscopic systems [1 – 3]. Such systems are termed “disordered” due to the large (� → ∞) degree of freedom and 
the stochastic nature of their macroscopic events. Dynamics of surface nanostructure formation and evolution are commonly 
studied by means of stochastic partial differential equations. The sparse amount of simulation models are difficult to directly 
map to the continuum space and the statistical mechanics foundation of the solid-on-solid models are often left out in their 
formulation, most of which focus mainly on the calculation of the probabilities of the relevant events and the consequent 
simulation approaches without much recourse to the statistical mechanics background. This makes it difficult to effect the 
above mapping and leaves a number of unanswered questions. 

This incompleteness in a number of reports, under the general assumption that they are either known or irrelevant, occurs 
in other areas as well. However, the statistical mechanics theory is more completely explored and developed in the 
application to magnetic systems and phase transitions [1, 2, 4, 5]. Some of these advances are as a result of what obtains from 
the application of the theory to seemingly unrelated areas (e.g self-organised criticality in granular mounds, biophysics, etc.), 
which have also benefited from the reverse feedback of applied results of the fostered advances in statistical theory. 

In this article we review the Markov chain Monte Carlo method in general as well as some models of disordered systems 
to which it has already been applied. The models considered are the Ising model of magnetic systems, a sputter-erosion  
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model for studying pattern formation on material surfaces at nanometre length-scales, a model of material failure, and a 
model of molecular matching and packing. These models allow for the application of standard techniques of analysis in 
statistical physics. With recent advances in algorithm designs and combinatorial optimization in theoretical computer science 
[6, 7], the simulation algorithm for these models are being continually developed with increasingly faster and efficient 
simulations [4] which can help develop other fields and vice-versa in the ever thinning interface between the fields of 
scientific endeavors.    

We start with a review of the basic but fundamental features of a computer simulation of disordered systems based on the 
theory of statistical physics. We start from standard material and gradually progress to research methods at the level of 
advanced texts and reference materials. In the context of this established theoretical simulation basis, we then discuss and 
present results of a few of the existing models referred to above, to facilitate the creation of new ones in yet unexplored areas. 
And, in particular, to motivate research towards the solution of open problems of statistical mechanics of disordered systems 
from the perspective of surface science and new frontiers in surface science (e.g. see Ref. [8])   
 
2. REVIEW OF THE MARKOV CHAIN MONTE CARLO METHOD 
The macroscopic or thermodynamic properties of a system can be calculated as a function of its microscopic properties 
through the relation (see e.g. Ref. [5, 9])  � = �� ln Ω																																																																																								(1) 
where the entropy	� is a macroscopic state variable,	Ω is the number of microscopic states with energy in the range � + ��, 
and	�� is the Boltzmann’s constant. Note that the statistical definition of entropy given in (1) contains an implicit additive 
constant. For macroscopic changes of state of the system under reversible (infinitesimal) processes the first law of 
thermodynamics states   

�� = ������
�

																																																																																	(2) 
where	� is the internal energy of the system,	�� are the generalized forces (e.g. intensive variables like pressure, surface 
tension, etc.), and	��� are the corresponding generalized displacements (e.g. extensive variables like volume, area, etc.) [5]. 
For irreversible processes the state variables	�,	��, and	�� are undefined. For processes in which the relevant state variables 
are, for instance,	�, the volume	�, and the number of moles	�, then	� = �(�,�,�) is the function of state and according to 
(2) the infinitesimal change in the entropy is given by 

�� = 1
� �� + �

� �� − �
� ��																																																												(3) 

to which an application of Euler’s relation gives 

� = �
� +

��
� − ��

� 																																																																												(4) 
Depending on the nature of the interaction of the system with its environment there may be one or more of energy exchange, 
matter exchange, or exchange of spatial extent, which determines the statistical ensemble, i.e. assembly of microstates subject 
to one or more of these constraints, within which the system evolves and is simulated. In any such scenario the equilibrium 
state of the system is any of a large number of equally probable microstates, whereas the probability of a microstate varies 
between equilibrium states. In fact the number of microstates is infinite if the phase space points form a continuum.  
 For reversible processes carried out on a canonical ensemble where	� and the number of particles � (� ∝ ") are 
constant,	�� = �� = 0 and the number of microstates	Ω$ with energy	ℰ� at temperature	�  is given by 

Ω$ = exp& ℰ����'																																																																																			(5) 
The relationship between	� and	ℰ� is that between the average of a data set and the elements of the data set; as we shall see 
below the system must be allowed to equilibrate at a particular temperature before measurements are made, nevertheless, the 
energy fluctuates about an average value after the equilibration time such that	� = ω*+∑ ℰ-- ; where	. is the number of 
microstates with (possibly different) energies	ℰ- through which the system evolved in the measurement process.   
According to the fundamental postulate of statistical all the microstates corresponding to a particular macroscopic state are 
equally probable, thus the probability Ρ� of a microstate with energy	ℰ�,	Ρ� ∝ 1 Ω$⁄ , i.e.  

Ρ� ∝ exp& ℰ����'																																																																																			(6) 
or 

Ρ� = 1
2 exp& ℰ����'																																																																																(7) 

where the constant	2 that ensures the normalization of the probabilities	Ρ�, so that	∑ 	Ρ�� = 1, is the so-called partition 
function given by 
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2 = � exp&− ℰ����'�
																																																																									(8) 

Note that	Ω = constant for the micro-canonical ensemble, which implies	Ρ� = constant for this ensemble, hence, such states 
can be sampled uniformly as in Monte Carlo integration and not by importance sampling as is the case in the canonical 
ensemble.  
 The requirement that the macroscopic states be reversible imposes the condition of ergodicity on the microscopic 
phase space of this system such that every microstate must be accessible along a finite path or trajectory that connects the 
microstates in phase space. This is achieved by constraining the simulated microstates to a Markov chain such that a new 
state is attained from a previous one in the chain. Thus in simulations of disordered systems in a given statistical ensemble 
the goal is to visit the phase points or ensemble microstates 	5 with a probability	Ρ� proportional to some given 
distribution	6(5), where the phase points are locally correlated in a sequence of points	5+,57,58, ⋯ each derived from the 
subsequent one and all constituting a Markov chain.  

In the canonical ensemble	6(5�) is given by	exp:− ℰ;
<=�> and	Ρ� is given by (7).	6(5) is not necessarily normalized to have 

unity integral or sum over the sampled region but is proportional to a probability. Now	Ρ� is a conditional probability, i.e. the 
probability of accessing the microstate	5� given that the system is in the microstate	5�*+       	Ρ� = Ρ(5�|5�*+) ∝ 6(5�)																																																																		(9) 
So 		Ρ� are transition probabilities of transition from microstate	5�*+ to	5�. For us to obtain the partition function we would 
have to first sample all microstates and evaluate the sum of the distribution functions	6(5�) which is, however, unnecessary 
since we must have Ρ(5�|5�*+)Ρ(5�*+|5�) =

6(5�) 2⁄
6(5�*+) 2⁄ 																																																																				(10) 

that is, 6(5�*+)Ρ(5�|5�*+) = 6(5�)Ρ(5�*+|5�)																																						(11) 
The condition (11) is known as detailed balance. It allows us to calculate transition probabilities in terms of relative transition 
probabilities between successive microstates without actually calculating the partition function. For instance, in the canonical 
ensemble (7) and (10) imply 

Ρ5;AB→5; = exp&− ∆ℰ
���'																																																																											(12) 

where	∆ℰ = ℰ� − ℰ�*+ is the energy difference in a transition from the microstate	5�*+ with energy	ℰ�*+ to the next 

microstate	5� with energy	ℰ� in the Markov chain, and	Ρ5;AB→5; = D(5;|5;AB)
D(5;AB|5;) is the relative conditional probability that the 

system will evolve to microstate	5� from the microstate	5�*+.    
 According to (12) the system will certainly change into the microstate	5� from	5�*+ if 	ℰ� ≤ ℰ�*+ since in this 
case	Ρ5;AB→5; ≥ 1, whereas it will likely remain in the microstate	5�*+ if 	ℰ� > ℰ�*+ since	Ρ5;AB→5; < 1 in this case and 
Ρ5;AB→5; → 0 as	∆ℰ → ∞. This ensures that the vast phase space is “importance” sampled in such a way that the system 
evolves in the few most probable microstates in the phase space in the course of the simulation and reduces the rigor and 
inefficiency of having to go over or uniformly sample (“simple” sampling) the entire phase space in the calculation of 
average quantities such as, e.g.   

〈ℰ〉 = ∑ ℰ�exp(−Kℰ�)�∑ exp(−Kℰ�)� 																																																																																		(13) 
In the calculation of (13) most of the Boltzmann weights exp(−Kℰ�) are vanishingly small, corresponding to the very large 
number of microstates in which the system is unlikely to be found, and therefore contribute very little to the average value. 
Note that, depending on the application,	ℰ and	L may have entirely different physical meaning.   
 
2.1 Simulation Algorithm 
Based on this theory, a Markov chain MC simulation of the evolution of the microstates of a system in statistical mechanics 
can be performed by using the following algorithm, known as the Metropolis algorithm: Generate a trial configuration	5�*+ 5�*+ = MN+, N7, ⋯ , NOP																																																																																					(14) 
for the initial microstate of the	�-particle system and obtain the next microstate	5� in the Markov chain by tweaking the 
coordinate	N< of a single (	�th) particle. Calculate the acceptance probability	Q(5�*+,5�) of the new microstate 	5� using 
the formula 

Q(5�*+,5�) = minR1, Ρ5;AB→5;S																																																																	(15) 
This means that the transition	5�*+ → 5� is accepted if	ℰ� ≤ ℰ�*+ 	TQ(5�*+,5�) = 1U otherwise it is accepted with a 
probability	VQ(5�*+,5�) = Ρ5;AB→5; < 1W which, at constant	L, decreases with increasing	∆ℰ.  
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This algorithm therefore ensures that the system always tend towards microstates of lower energy than the previous one, but 
unlike the so-called “greedy algorithms” [10] that never accept a higher energy option, it also allows the system to sometimes 
(though with very low probability) accept a move to a higher energy microstate, wherein lies its power and vast applications 
to diverse optimization (minimization/maximization) problems. For instance, if higher energy moves are always rejected then 
there will be no possibility for the system to move out of any of the local minima in Fig. 1 and the system would therefore not 
equilibrate to the global minimum. However, as the temperature decreases the probability of the system moving out of a local 
minimum, if trapped there at low	L, also decrease and at such low	L it may be difficult to attain a microstate of global energy 
minimum; depending on the energy landscape of the system.  
It is best to run independent simulations with different initial conditions, e.g. one with a cold start (	L = 0) and another with a 
hot start (L = ∞), so as to avoid inaccurate results due to local minima pitfalls. For the cold start a starting configuration or 
microstate that is known to have the lowest energy is used, while for the hot start a configuration that corresponds to the 
highest energy is used. The result of the independent simulations must be the same irrespective of the starting configuration, 
otherwise one or both must have ended in local minimum and further checks are necessary.  

 

 

 

 

 

 

 

 

 

Since the system equilibrates to a “global” energy minimum in which it then spends the rest of its time, the 
probability	Ρ(5�|5�*+) is time dependent , i.e. 	Ρ(5�|5�*+) = Ρ5;(X) and its time dependence is governed by the master 
equation YΡ5;(X)YX = � ZΡ5[(X)\5[→5; − Ρ5;(X)\5;→5[]

5[^5;
																																																		(16) 

where	Ρ5;(X) is the probability of the system being in the microstate	5� at time	X, and	\5;→5[ is the rate of transition from 

microstate	5� to	5-. In equilibrium	_Ρ5;(`)_` = 0 and	\5[→5; = \5;→5[.     
Obviously the efficiency of this algorithm, at the so-called “importance sampling” of the phase space region in 

which the system spends most of its time, will depend on the energy landscape of the system; the algorithm will be more 
efficient and faster for a system with the energy landscape of Fig. 1(a) than that of Fig. 1(b). As a result, a number of cluster 
algorithms have been proposed to increase the simulation speed and efficiency at “importance sampling” by avoiding the 
slow changes of state that occur with time in certain stages of the simulation (e.g. critical slowing down, frustration). Such 
algorithms consider microstate transitions involving clusters of particles instead of single particles [11 – 14].  

Since the system may end up in local minima it is better to let the simulation run for a while before taking 
measurements so as to allow the system to equilibrate; the time required for the system to equilibrate is known as the 
equilibration time, which depends on the energy landscape of the system. The configurations, or microstates, are usually 
stored as arrays whose elements are the single-particle states corresponding to each particle of the system.  

The energy of a microstate depends on the interactions between the particles and is the sum of the energies of these 
interactions. The particles, being indistinguishable (e.g. fermions or bosons), must have identical surroundings and 
interactions in such a way that the boundary particles are not distinct from the inner ones. This is achieved by imposing 
periodic boundary conditions on the system, thus transforming the	a-dimensional system into a	(a + 1)-dimensional torus, 
so that the particles at one end of the system sees the particles at the other end as nearest neighbors.  The storage 
requirements for specific problems or the geometrical nature of certain systems may require other boundary conditions like 
screw-periodic, anti-periodic, mean-field, or free-edge etc., boundary conditions. Other lattice structures may also be more 
appropriate for specific problems [1, 2]. 
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Figure 1: Hypothetical energy landscape of two systems. In (b) the global minimum is within a 
very narrow region of the phase space of the system which means that reaching it may be 
almost impossible if trapped elsewhere at low. 
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2.2 Uniform Deviates 
The recipe for simulation is incomplete without (pseudo) random numbers [10]. We can not choose	N< in a 

deterministic version because that would be unrealistic, it would either imply a prior knowledge of the phase trajectory 
followed by nature or that we are the ones dictating what course nature would take which is impossible for physics in the 
subatomic realm. Hence,		N< is chosen randomly by using floating-point uniform deviates such that each	N< has the same 
likelihood of being picked as any other. Our knowledge of the probability of a trial microstate is also not enough because we 
need to know when to accept or reject it according to its probability. Again, a floating-point uniform deviate is used.  

For instance, if the probability of an event is 0.1 then the event will occur once out of every 10 attempts, as the 
number of attempts tends to infinity. To simulate this uniform deviates are used. The random numbers are assumed to be 
uniformly spread over an interval (0 to 1 for floating-point random numbers) such that each random number has an equal 
probability of being chosen as any other one.  
 
2.3 Finite Size Effects 

The number of particles (system sizes) that may be considered in a simulation is much less than the number of 
particles in a typical macroscopic system, i.e. the simulated system size	� ≪ ∞ whereas in the thermodynamic limit we 
should have	� → ∞. Typically, real	�~1078 particles whereas simulation	�~107. For instance, a system with only two 
possible single-particle states will have	2O~2+defmicrostates or configurations while the simulation phase space comprises 
of	~2+dd microstates. 

However, use of small	� still gives very accurate results when compared with real systems for which	� → ∞ 
provided the simulation is for temperatures far from the critical temperature at which a phase transition occurs. For 
temperatures close to and above the critical temperature	Lg the effects of using small	�, known as finite size effects, become 
very strong and the simulation results become inaccurate; the inaccuracy increases with decreasing	�. Hence, for studies 
involving phase transitions, or for simulations at temperatures above	Lg, it is important to do a finite size scaling of the results 
to obtain the actual results of a real thermodynamic system. 

The form of the finite size scaling will depend on the set of thermodynamic quantities being measured and their 
scaling relations (1) (2) (3). It also depends on the order parameter, which is a quantity that has a value of zero on one side of 
the phase transition and a nonzero value on the other side of the phase transition; i.e. which is like a step function whose step 
occurs at the phase transition. 

The origin of the finite size effects is in the divergence of the correlation length	h (the length scale of the 
fluctuations in the order parameter) at the critical temperature as a result of which it is impossible to get accurate results of 
the thermodynamic properties of the system at	Lg from any simulation performed on a finite lattice. Since the lattice size is 
less than the value of	h at	Lg all the lattice points are correlated and one is unable to obtain the scenario of linearly 
independent single-particle states.   
 
3.0 MODELS OF SOME DISORDERED SYSTEMS AND BASIC SIMULATION RESULTS. 

In this section, we present some general simulation models which are typical examples of the successes of the 
Markov chain Monte Carlo approach to the simulation of the complex, disordered, systems frequently encountered in nature 
which are of great technological importance.  

 
3.1 Magnetism and the Ising Model 

Magnetism is one of the most studied phenomena in materials. It has been a study of active and intense research 
interest for centuries [15, 16]. Any material is composed of atoms bound together by cohesive van-der-Waals, covalent, 
electrovalent, or metallic (electron gas) interactions which reduce to electrostatic interactions between dipoles made up of the 
negatively charged electrons on one end and the positively charged ion cores on the other. Each electron has an intrinsic, 
purely quantum mechanical, angular momentum called the spin	i of the electron. Associated with each electron spin is a 
magnetic moment of magnitude 	 jkg i (i.e. noting that the gyro-magnetic ratio	 jkg in this case is twice the ratio of the magnetic 

moment to the angular momentum) which is solely responsible for the magnetism of the material;	l is the electronic 
charge,	m is the mass of the electron, and	n the speed of light in vacuum. Thus the magnetic property is a quantum 
mechanical property and does not have a classical analog, which means that the Hamiltonian	ℌ of the system does not include 
position and linear momentum operators. 

 The exchange energy due to spin-spin interactions between spin	p and spin	q can be specified as	 je
keger;[ i�i- where	s�- 

is the distance between the spins. For a magnetic material in a magnetic field, therefore, the only changes in the energy of the 
system are those due to the interaction of the spins with each other and with the external magnetic field	t. Hence, the 
Hamiltonian	ℌ of the system is given by 
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ℌ = l7
m7n7�� 1

s�- i�i-�-u�
− l
mn�ti�

�
																																																										(17) 

This is equivalent to the model of Ernest Ising for which, for simulations on lattices of unit spacing with nearest neighbor 
interactions, the eigenvalues of the Hamiltonian is expressed as 

� = −v�i�i-
〈�,-〉

− t�i�
�

																																																																																		(18) 
 where	v is the unit of the spin-spin exchange interaction and is often chosen to be	+1, in which case the lowest energy state 
will tend to have neighbouring spins aligned and the low temperature ground state will be a ferromagnet (all spins aligned), 
or	−1 in which case the lowest energy state will tend to have neighboring spins opposed in orientation and the low 
temperature ground state will be an anti-ferromagnet (alternating spins).	〈p, q〉 denotes a nearest neighbor pair, and	t is the 
unit of the spin-field coupling.   

The spin operators (actually	i = iw for each spin, assuming the field is oriented along the	x-axis so that	t = tw) 
have eigenvalues	± +

7ℏ where	ℏ = {
7| is the Dirac action constant. In simulations the eigenvalues of the spin operator	i are 

chosen to be	±1. Thus the number of single-particle microstates of the system is reduced to only two; for up and down 
orientations of the intrinsic spin.  

When the exchange interaction energy	v varies from bond to bond then we have a spin-glass system which is widely 
studied with a variety of interesting ramifications [17].  
 
3.2 Surface Nanostructure Formation: Results of Simulation with the HKGK Model. 

A more recent observed phenomenon in surface science, than the magnetism of condensed matter described above, 
is the formation of self-organized nano-patterns on material surfaces when bombarded by a beam of energetic particles, with 
energies in the range of keV [8, 18 – 23]. The surface morphology arises as a result of the interplay between the roughening 
processes of stochastic removal of surface particles by ion-sputtering, and the smoothening processes of diffusion of surface 
particles or radiation-induced viscous flow.  The roughening process creates instability of the surface against further 
perturbations by the eroding ions such that the sputter yield becomes curvature dependent with the result that surface 
depressions are eroded in preference to surface protrusions. According to the continuum theory, it is this curvature 

dependence that leads to the formation of ripples of wavelength	} = 2~�2�/|�|, where	� is the surface diffusivity, and	� is 
a surface tension coefficient. The wavelength of the ripples is on the nanometer scale and they are oriented along the 
direction with the largest	|�| [21].   

The experimentally observed ripple orientation is parallel to the projection of the ion beam direction onto the surface 
plane for large incidence angles (close to grazing incidence), and perpendicular to the projection for small incidence angles; 
except for metallic surface with anisotropic diffusion in which case the ripple orientation is perpendicular to a 
crystallographic direction (i.e. the one favored for diffusion) at small incidence angle.   

Hartmann, Kree, Geyer, and Koelbel (HKGK) proposed a discrete solid-on-solid Monte Carlo model [24] for the 
simulation of surface modification and evolution by ion-bombardment which, in contrast to the Ising model above, simulates 
the surface morphology indirectly by resorting to the effect of collision cascades on the surface evolution without the direct 
need for a surface Hamiltonian. These collision cascades are set off in the near sub-surface layer by the impinging ion and are 
responsible for the redistribution of the energy of the impinging ion to the surface particles.  The energy	�(�) received by a 
surface particle at position	� = (�+, �7, �8)  due to the arrival of the ion somewhere in the vicinity of this surface particle is 
assumed to be of the Gaussian form [25]:  

�(�) = �
R√2~S8Q67 exp�− �872Q7 − �+7 + �77267 �,																																												(19)		 

where	Q and	6 are the widths of the collision cascade ellipsoid parallel and perpendicular to the ion beam direction, 
respectively. A sputtering process is simulated by eroding surface particles in the vicinity of the impact position of  
the ion with probabilities proportional to	�(�) [26 – 28], and a diffusion or smoothing process is simulated by using any of 
the available diffusion models (e.g. [29, 30]), depending on the experimental hopping rates for the material concerned.  

We performed extensive simulations using this model and the surface profiles obtained from a typical simulation are 
shown in Fig. 2. As can be seen from this figure, the simulation model accurately generates the observed surface ripples and 
their orientation with respect to the ion beam direction and ion incidence. The projection of the ion beam direction onto the 
surface is represented by the short thin bar on the profiles. These results are in excellent agreement with the experimental 
observations [26 – 28] of the ripple orientation being perpendicular to the ion beam direction for incidence angles less than a 
threshold angle determined to be about 70°. They are also in excellent agreement with the experimental results that the ripple 
amplitude grows with sputter time; this is shown by the increasing magnitude of the surface height range on the vertical grey 
scale of the figure. 
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Figure 2: Surface profiles for different sputtering times (Monte Carlo steps). From top to bottom, left to right: t = 0.5, 1.5, 4, 
9, 14, and 20 ions/atom. The vertical scale indicates the surface height range. The ion beam direction is indicated by the bar 
on the profiles, showing that the ripple orientation is perpendicular to ion beam direction as expected since � = ��° here. 
 
3.3 Molecular Chirality and the YNL Matching Algori thm: Simulation Results. 
 The problem of measuring the extent to which an object fails to coincide with or match its mirror image [31 – 39] 
when optimally superimposed on the mirror image was recently tackled in a direct way through simulations of the matching 
process using the Markov chain MC method [40] (YNL algorithm). The measure of chirality or degree of matching of the 
objects (an object and its image or two different objects as in molecular similarity or facial resemblance) that have been 
optimally superimposed by the YNL algorithm is based on the concept of the Hausdorff distance between sets as proposed by 
Buda and Mislow [33].   
 This direct approach entails the simulation of the matching process which includes a large number of rotations and 
translations such that the Hausdorff distance	�� between the objects being matched is as small as possible.  	�� = 0 if an 
object is achiral or if two objects match, and	�� > 0 if an object is chiral or two objects do not match. The challenge is that 
one may get very close to the global minimum of 	�� only to be pushed into a completely different region of the	�� 
landscape with the slightest of translations in the matching process. But the YNL Monte Carlo matching algorithm [40] 
always arrive at the optimal match. Hence, this algorithm can be of immense benefit to the handling of harmful 
enantiomorphs of useful chiral molecules in drug design, to database searches in the area of sequence alignment and queries 
on other databases, and to the understanding of the mechanism of chirality transfer from a chiral dopant to an achiral host.  
 The YNL algorithm searches for the optimal superimposition of an object	� and its mirror image	�′ = −�, or 
second object, by performing a series of random rotations and translations of	� keeping	�′ stationary. The simulation is 
started with a random orientation and translation of	� which represents the initial state or configuration.  The matching 
process is iterated down over the ‘temperature’, thus annealing the process and ensuring that as the system cools, the rotation 
and translation reduces in magnitude so that at high ‘temperature’ the system moves freely from one region of the	�� 
landscape to another in the search for the region that contains the global minimum, and much less freely when this region is 
supposed to have been found (at low ‘temperature’). During each iteration stage over the temperature, it is kept fixed 
while	�MC Monte Carlo steps of the matching process are performed.   
 In each MC step the state of the system, which is the orientation and position of	� relative to	�′, is changed by 
rotating and translating	� and the move is accepted according to the standard MC transition acceptance rules, tailored 
towards acquiring minimum	�� or	��min

. 	��min
 provides a measure of the chirality	�� of the object through the chirality 

measure of Buda et al. [33] 
   

	��(�) = 	��min
(�, �′)

�(�) 																																																																									(20) 
where		��min

(�, �′) is the minimum Hausdorff distance between	� and	�′ over all positions and orientations of	� and	�′,	�(�) 
is the diameter of	�. The results of our simulations as applied to the multidimensional search for the most chiral tetrahedral 
plane shapes with D2, C2, and C1 symmetries are presented in Table 1. As can be seen from the table, our results are in 
excellent agreement with the results of Buda, Auf der Heyde, and Mislow [32, 33] who obtained their results by using 
another, albeit more tedious, numerical optimization method. 
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Table 1: A summary of our (YNL) results of the most chiral tetrahedral, and their comparison to the results of Mislow and 
co-workers (BHM).  
 

Symmetry Method Internal angles �� Relative to 
BHM 

D2 BHM (35.1, 60.5, 35.1, 84.4) 0.221 1 

 YNL (35.01, 60.51, 35.01, 84.44) 0.221 1 

C2 BHM (45.6, 58.5, 38.0, 34.7) 0.252 1 

 YNL (45.23, 58.62, 37.92, 35.24) 0.253 1.004 

C1 BHM (44.4, 59.7, 37.7, 36.0) 0.248 1 

 YNL (45.15, 58.55, 37.74, 35.12) 0.253 1.02 

 
3.4 Material Fracture and the Fiber Bundle Model 
 Fracture in heterogeneous materials is a complex physical problem which has been a focus of research interest for a 
long time [41 – 43]. Fiber bundle models (FBMs) form a fundamental class of approaches to the fracture problem through 
their capture of the essential features of material breakdown. They are models of materials as composites of fibers such that 
the breakdown of the material is as a result of the propagation of fracture among the failing fibers. One such model which 
provides a deep understanding of the intrinsic nature of the fracture process is the dynamic fiber bundle model [44]. 
According to the dynamic FBM the material breaks down as a result of the fatigue of its fibers over time. That is, when the 
material is stressed or loaded the fibers share the load and get progressively stressed with time such that even if the external 
load or source of stress is removed the acquired fatigue in the fibers remain and are incremented with the introduction of a 
new source of stress until the individual fibers reach their threshold and fail, leading to the overall failure of the material with 
time. This differs from the static FBM [45] which attributes the failure of the individual fibers to their quasi-static loading 
due to the gradual increase in the external load.   
 The dynamic FBM includes a normalised combined load sharing rule [44] 

iR�, s�-S = 1
s�-�

1
∑ s�-*��∈�

																																																																						(21) 
s�- is the distance between an active fiber	p and a failed fiber	q,	� denotes the set of active fibers, and	� is a variable parameter 
that controls the effective range of interaction among the fibers. This combines the local load sharing rule (� = ∞) in which 
the load borne by a failed fiber is shared equally among the four nearest neighbour fibers, the global load sharing rule (� = 0) 
in which the load of a failed fiber is shared among all existing fibers, and the variable range load sharing rule (0 < � < ∞) in 
which the load of a failed fiber is shared beyond the nearest neighbours but not globally, with the range depending on	�. 
 The probability	�-(X) of the breaking of a fiber	q in one sweep of the lattice in the time interval	�< is given by       

�-(X) = N-�(X)�<																																																																																(22) 6 is the Weibull index (2 ≤ 6 ≤ 50) which gives the degree of heterogeneity of the system; as	6 increases the material 
becomes more homogeneous.	N-(X) is the stress on the fiber	q at time	X. The results of our simulations is presented in Fig. 3. 
 

 
Figure 3: Comparison of the time to failure Tf (dimensionless) obtained for material heterogeneity level	6 = 10 (inset 6 = 5 ), 
as the range of interaction � varies. L is the system size. 
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       Our results indicate that the failure time of the material decreases with increasing range of interaction between the 
composites of the material and this decrease is precipitous when the interaction range is just above next nearest neighbour 
interaction. Also, our results indicate that the time to failure is delayed if the material is made less heterogeneous; that is, of 
fewer composites. Again, these results are in excellent agreement with experimental observations [42, 46] 
 
Conclusions 
       This article reviews the modern theory and implementation of computer simulations disordered condensed matter 
systems and fluids, based on the statistical mechanics approximation method of Markov chain Monte Carlo techniques. We 
started with the fundamentals without recourse to any system or problem for a generalized treatment and then discussed a 
number of recent applications including Ising model or spin-glass model of magnetic systems, a solid-on-solid model of 
nanostructure formation on surfaces driven by ion-bombardment, statistical MC models of material fracture, and a MC model 
of chirality which is applicable as a matching algorithm. Basic and typical results of our simulations of the different complex 
systems are presented.  
       It is hoped that the in-depth treatment of the rudiments of the method, and the excellent agreement of its results in 
diverse applications would motivate and stimulate its application to the solution of still unsolved statistical physics problems 
from the perspective of the richer energy landscapes to be encountered in nanometric surface science.  
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