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Abstract

The Markov chain Monte Carlo method as a statisticaechanics technique for
the study of macroscopic systems has furnished se&@ntific community with great
knowledge and advances in the theory of phase titimiss. While a number of Monte
Carlo models have been proposed for the study afae growth, these models have
not nearly being studied as exhaustively as in thmdels of magnetic systems, a
paradigm of which is the classical model of Ernelsing. In particular, studies of
phase transitions in surface/interface science aanometric scales are almost non-
existent. This article has been written to motivatesearch in this area of statistical
mechanics from the perspective of surface sciente.this article we survey the
rudiments of the method along with some models o$oddered systems such as
magnetic systems, material fracture, nano-pattewrrhation under ion bombardment,
and molecular chirality. We performed simulationd these models using the method
and obtained results that are in excellent agreemuaiith experimental observations.

Keywords: Nano-structure formation, Markov-chain Monte @adisordered systems, Spin glass,
molecular chirality, material fracture.

1.0 Introduction

The relevance and progress of theories of natungh@mena is strongly rooted in experiments thab@rthese
phenomena under viable and accessible conditionsveMer, with increasing technological advances d@Rperimental
apparatus evolve with increasing sophisticatiorroficcompanied by huge operation or acquisitiotsabat create barriers
which scientific enquiries must overcome beforeegipents designed to investigate them can be apgrov

Fortunately, the increasing technological innovadidnave created a new avenue for experimental prittvteugh the
enablement of numerical simulations that mimic#alexperiments in the virtual world embeddedhie central processing
unit of a computer. Such simulations are basecdertheoretical basis of the observed phenomenaadied,verifying their
results through comparison with experimental resatn be used to study areas not yet experimgstaliied.

The Monte Carlo method is a probabilistic simulatinethod used in applying the theories of statisfihysics to the
study of macroscopic systems [1 — 3]. Such systmmsermed “disordered” due to the largle-$ =) degree of freedom and
the stochastic nature of their macroscopic evéhsamics of surface nanostructure formation andutiom are commonly
studied by means of stochastic partial differerggliations. The sparse amount of simulation maatelgifficult to directly
map to the continuum space and the statistical améch foundation of the solid-on-solid models afteroleft out in their
formulation, most of which focus mainly on the cdétion of the probabilities of the relevant eveatsl the consequent
simulation approaches without much recourse tosthtistical mechanics background. This makes ficdit to effect the
above mapping and leaves a number of unansweretiops

This incompleteness in a number of reports, urttegeneral assumption that they are either knovimedevant, occurs
in other areas as well. However, the statisticachmaics theory is more completely explored and lb@esl in the
application to magnetic systems and phase transifib, 2, 4, 5]. Some of these advances are asult of what obtains from
the application of the theory to seemingly unraladesas (e.g self-organised criticality in granuterunds, biophysics, etc.),
which have also benefited from the reverse feedbéeclpplied results of the fostered advances itistitzal theory.

In this article we review the Markov chain Monterl@anethod in general as well as some models ardeyed systems
to which it has already been applied. The modetsiciered are the Ising model of magnetic systeraputter-erosion
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model for studying pattern formation on materiatfaces at nanometre length-scales, a model of rahfeilure, and a
model of molecular matching and packing. These nsodkow for the application of standard techniquésanalysis in
statistical physics. With recent advances in athoridesigns and combinatorial optimization in tle¢ical computer science
[6, 7], the simulation algorithm for these modets ®#eing continually developed with increasinglgtéa and efficient
simulations [4] which can help develop other fielsd vice-versa in the ever thinning interface leetwthe fields of
scientific endeavors.

We start with a review of the basic but fundamefgatures of a computer simulation of disorderesteayps based on the
theory of statistical physics. We start from staddmaterial and gradually progress to research oastlat the level of
advanced texts and reference materials. In theegbof this established theoretical simulation basie then discuss and
present results of a few of the existing modelsirefl to above, to facilitate the creation of new@in yet unexplored areas.
And, in particular, to motivate research towards sblution of open problems of statistical mechawicdisordered systems
from the perspective of surface science and nemtifs in surface science (e.g. see Ref. [8])

2. REVIEW OF THE MARKOV CHAIN MONTE CARLO METHOD
The macroscopic or thermodynamic properties of stesy can be calculated as a function of its miapiscproperties
through the relation (see e.g. Ref. [5, 9])

S =kzlnQ (D
where the entrop§ is a macroscopic state varialfleis the number of microscopic states with energthenrange: + dE,
andkj is the Boltzmann’s constant. Note that the siatisdefinition of entropy given in (1) contains anplicit additive
constant. For macroscopic changes of state of yiséerm under reversible (infinitesimal) processes finst law of
thermodynamics states

4G = Z 9.dX%, )

13
where€ is the internal energy of the systéli, are the generalized forces (e.g. intensive vegglike pressure, surface
tension, etc.), andX; are the corresponding generalized displacemergs €gtensive variables like volume, area, etd.) [5
For irreversible processes the state varia®|€$;, andX; are undefined. For processes in which the reles@te variables
are, for instances, the volumeg, and the number of mol8g then€ = E(S, B, N) is the function of state and according to
(2) the infinitesimal change in the entropy is givey

1 p u
to which an application of Euler’s relation gives
= ¢ + PE_iR 4
Tttt )

Depending on the nature of the interaction of fysesn with its environment there may be one or nodrenergy exchange,
matter exchange, or exchange of spatial extenghwthétermines the statistical ensemble, i.e. adyesfhimicrostates subject
to one or more of these constraints, within whiod $ystem evolves and is simulated. In any suchasicethe equilibrium
state of the system is any of a large number ofkgprobable microstates, whereas the probabiffts microstate varies
between equilibrium states. In fact the number wfostates is infinite if the phase space pointsifa continuum.
For reversible processes carried out on a canoaitsemble wher8 and the number of particléé (N « n) are
constantd®B = dN = 0 and the number of microstat@swith energy€; at temperaturée is given by
E:
Q= exp(k—Blt) (5)
The relationship betwedh and€; is that between the average of a data set andl¢hsents of the data set; as we shall see
below the system must be allowed to equilibrate particular temperature before measurements atle,mavertheless, the
energy fluctuates about an average value afteethdlibration time such th& = w™'}; &;; wherew is the number of
microstates with (possibly different) energé&ghrough which the system evolved in the measuréprecess.
According to the fundamental postulate of statétill the microstates corresponding to a particaiacroscopic state are
equally probable, thus the probabilRyof a microstate with enerd, P, < 1/0;, i.e.

P, ( £ 6
. X —
o exp( ) (©)
or
p— 1 & 7
LT EeXp(kBt) ™

where the constait that ensures the normalization of the probaldiRe so thad,; P, = 1, is the so-called partition
function given by
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Z = Z exp(— k%t) (8)

14
Note that) = constant for the micro-canonical ensemble, whinpliesP;, = constant for this ensemble, hence, such states
can be sampled uniformly as in Monte Carlo intdgratand not by importance sampling as is the casieé canonical
ensemble.

The requirement that the macroscopic states bersiole imposes the condition of ergodicity on thieroscopic
phase space of this system such that every miteostast be accessible along a finite path or ttajgahat connects the
microstates in phase space. This is achieved bgt@ning the simulated microstates to a Markovirtlsaich that a new
state is attained from a previous one in the chBius in simulations of disordered systems in a&gistatistical ensemble
the goal is to visit the phase points or ensemblerastates m with a probabilityP, proportional to some given
distributionp(m), where the phase points are locally correlatesl $equence of pointa,, m,, ms, --- each derived from the
subsequent one and all constituting a Markov chain.

In the canonical ensembp€m;) is given byexp(— %) andP; is given by (7)p(m) is not necessarily normalized to have
B

unity integral or sum over the sampled region byiroportional to a probability. Noly is a conditional probability, i.e. the
probability of accessing the microstatg given that the system is in the microstetge ,
P, = P(m;|m;_,) x p(m,;) €C))

So P; are transition probabilities of transition fromamastatem;_, tom;. For us to obtain the partition function we would
have to first sample all microstates and evaluagestim of the distribution functiopgm;) which is, however, unnecessary
since we must have

P(m;im;_,) p(m;)/Z

P(m;_y/m;) p(m;_1)/2

(10)

that is,
p(m;_)P(m;lm;_,) = p(m;)P(m;_,|m;) (11)
The condition (11) is known as detailed balancallttws us to calculate transition probabilitiesenms of relative transition
probabilities between successive microstates withotually calculating the partition function. Hastance, in the canonical
ensemble (7) and (10) imply
AE
Pmi_1—>mi = exp(— E) (12)
B
whereA€ = &; — &€;_, is the energy difference in a transition from thmécrostatem;_, with energy€;_; to the next

microstatem; with energy€; in the Markov chain, anB,, ., = Pmimi-1) s the relative conditional probability that the

P(m;_q|m;)
system will evolve to microstata; from the microstaten;_;.

According to (12) the system will certainly changéo the microstaten; fromm,;_; if £ < &;_; since in this
casePy,  .m, = 1, whereas it will likely remain in the microstate_, if & > &;_; sinceb,, ., <1 in this case and
P, ,—m; = 0 @sAE — 0. This ensures that the vast phase space is “iapeet sampled in such a way that the system
evolves in the few most probable microstates inpghase space in the course of the simulation athdces the rigor and
inefficiency of having to go over or uniformly salp(“simple” sampling) the entire phase space ia talculation of
average quantities such as, e.g.

(€) = 2 Eiexp(—pE;) (13)
Yiexp(—pE)
In the calculation of (13) most of the Boltzmannigtgs exf{—B€;) are vanishingly small, corresponding to the vargé
number of microstates in which the system is uhjite be found, and therefore contribute verydittb the average value.
Note that, depending on the applicatirandT may have entirely different physical meaning.

2.1 Simulation Algorithm
Based on this theory, a Markov chain MC simulatiérthe evolution of the microstates of a systemstatistical mechanics
can be performed by using the following algoritlkmown as the Metropolis algorithm: Generate a t@ifigurationm,;_;
m;_; = {oy,0,, -, 0y} (14)
for the initial microstate of th¥-particle system and obtain the next microstatein the Markov chain by tweaking the
coordinates;, of a single th) particle. Calculate the acceptance probahility;_,, m;) of the new microstaten; using
the formula
a(m;_y,m;) = min(1, P, m,) (15)
This means that the transitiom,_, - m; is accepted i§; < &,_; [a(m;_;,m;) = 1] otherwise it is accepted with a
probability[a(mi_l,mi) =Py om; < 1] which, at constarft, decreases with increasing.
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This algorithm therefore ensures that the systemayd tend towards microstates of lower energy tharprevious one, but
unlike the so-called “greedy algorithms” [10] timegver accept a higher energy option, it also allthessystem to sometimes
(though with very low probability) accept a moveadigher energy microstate, wherein lies its posvet vast applications
to diverse optimization (minimization/maximizatiopioblems. For instance, if higher energy movesabdsays rejected then
there will be no possibility for the system to mauéd of any of the local minima in Fig. 1 and tlystem would therefore not
equilibrate to the global minimum. However, as timperature decreases the probability of the systering out of a local
minimum, if trapped there at o, also decrease and at such B may be difficult to attain a microstate of gidkenergy
minimum; depending on the energy landscape ofyhem.

It is best to run independent simulations withetiént initial conditions, e.g. one with a cold s{d@f = 0) and another with a
hot start T = =), so as to avoid inaccurate results due to lo¢alma pitfalls. For the cold start a starting capiiation or
microstate that is known to have the lowest enésgysed, while for the hot start a configuratioattbhorresponds to the
highest energy is used. The result of the indepgmslmulations must be the same irrespective okthging configuration,
otherwise one or both must have ended in localmim and further checks are necessary.

A A
\
N
local
local _—__ _ 096.1
minimum minimum
——_ Qlobal global
minimum minimum

Figure 1: Hypothetical energy landscape of twoeyst In (b) the global minimum is within a
very narrow region of the phase space of the sysikith means that reaching it may be
almost impossible if trapped elsewhere at Taw
Since the system equilibrates to a “global” enengyimum in which it then spends the rest of its djnthe

probabilityP(m;|m;_,) is time dependent , i.&2(m;|m;_,) = P, (¢) and its time dependence is governed by the master

equation
0Py, ()
2= > [Py ORmm, — P (ORnom ] (16)
mjimi
whereP,, (t) is the probability of the system being in the ro&tatem; at timet, andRmﬁm]. is the rate of transition from
. )
microstatem; tom;. In eqwhbnuma—z(t) =0 andRm]._mli = le._,mj.

Obviously the efficiency of this algorithm, at tlse-called “importance sampling” of the phase spaggon in
which the system spends most of its time, will depen the energy landscape of the system; the igdgomwill be more
efficient and faster for a system with the enegydiscape of Fig. 1(a) than that of Fig. 1(b). Assult, a number of cluster
algorithms have been proposed to increase the afionlspeed and efficiency at “importance samplibhg’avoiding the
slow changes of state that occur with time in dersdages of the simulation (e.g. critical slowithgwn, frustration). Such
algorithms consider microstate transitions invajvatusters of particles instead of single parti§lgs— 14].

Since the system may end up in local minima it éstdr to let the simulation run for a while befdeking
measurements so as to allow the system to equéibthe time required for the system to equilibresteknown as the
equilibration time, which depends on the energyd$zape of the system. The configurations, or miates, are usually
stored as arrays whose elements are the singlielpatates corresponding to each particle of yséesn.

The energy of a microstate depends on the interatietween the particles and is the sum of theyerseof these
interactions. The particles, being indistinguiskealfe.g. fermions or bosons), must have identicafosndings and
interactions in such a way that the boundary pagi@are not distinct from the inner ones. Thisdhiaved by imposing
periodic boundary conditions on the system, thasgforming thé-dimensional system into(@® + 1)-dimensional torus,
so that the particles at one end of the system Heegarticles at the other end as nearest neighbdihe storage
requirements for specific problems or the geomatmature of certain systems may require other 8anconditions like
screw-periodic, anti-periodic, mean-field, or fre@ge etc., boundary conditions. Other lattice stines may also be more
appropriate for specific problems [1, 2].
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2.2 Uniform Deviates

The recipe for simulation is incomplete without €pdo) random numbers [10]. We can not chagsén a
deterministic version because that would be ursgaliit would either imply a prior knowledge ofettphase trajectory
followed by nature or that we are the ones dictatiinat course nature would take which is impossibtephysics in the
subatomic realm. Hencey, is chosen randomly by using floating-point unifodaviates such that eaah has the same
likelihood of being picked as any other. Our knadge of the probability of a trial microstate isal®ot enough because we
need to know when to accept or reject it accortlings probability. Again, a floating-point unifordeviate is used.

For instance, if the probability of an event is th&n the event will occur once out of every 1@mibts, as the
number of attempts tends to infinity. To simulatéstuniform deviates are used. The random numhersssumed to be
uniformly spread over an interval (0 to 1 for fio@tpoint random numbers) such that each randombeurnas an equal
probability of being chosen as any other one.

2.3 Finite Size Effects

The number of particles (system sizes) that magdesidered in a simulation is much less than thebar of
particles in a typical macroscopic system, i.e. shaulated system siZé « o« whereas in the thermodynamic limit we
should haveV — «. Typically, realN~102%® particles whereas simulatidh~10%. For instance, a system with only two

possible single-particle states will haa~219" microstates or configurations while the simulatfirase space comprises
of ~21%9 microstates.

However, use of smaN still gives very accurate results when compareth weal systems for whichi — o
provided the simulation is for temperatures farnfréhe critical temperature at which a phase trammsibccurs. For
temperatures close to and above the critical teatpeaT, the effects of using small, known as finite size effects, become
very strong and the simulation results become unate; the inaccuracy increases with decreainglence, for studies
involving phase transitions, or for simulationgexhperatures abowg, it is important to do a finite size scaling oétresults
to obtain the actual results of a real thermodycasystem.

The form of the finite size scaling will depend the set of thermodynamic quantities being measaretl their
scaling relations (1) (2) (3). It also dependstendrder parameter, which is a quantity that heelee of zero on one side of
the phase transition and a nonzero value on tter sttle of the phase transition; i.e. which is bkstep function whose step
occurs at the phase transition.

The origin of the finite size effects is in the eligence of the correlation lendgth(the length scale of the
fluctuations in the order parameter) at the crittemperature as a result of which it is impossiolget accurate results of
the thermodynamic properties of the systerfi. &om any simulation performed on a finite latti@nce the lattice size is
less than the value éf atT,. all the lattice points are correlated and one righle to obtain the scenario of linearly
independent single-particle states.

3.0 MODELS OF SOME DISORDERED SYSTEMS AND BASIC SIMULATION RESULTS.

In this section, we present some general simulatmuels which are typical examples of the succee$dhe
Markov chain Monte Carlo approach to the simulatibthe complex, disordered, systems frequentlypantered in nature
which are of great technological importance.

3.1 Magnetism and the Ising Model

Magnetism is one of the most studied phenomenaaitemals. It has been a study of active and inteasearch
interest for centuries [15, 16]. Any material isngmsed of atoms bound together by cohesive vamtels, covalent,
electrovalent, or metallic (electron gas) interatsi which reduce to electrostatic interactions betwdipoles made up of the
negatively charged electrons on one end and thigiyedg charged ion cores on the other. Each etectrias an intrinsic,
purely quantum mechanical, angular momentum cdhedspinS of the electron. Associated with each electrom spia

magnetic moment of magnitudrégs (i.e. noting that the gyro-magnetic raﬁ? in this case is twice the ratio of the magnetic

moment to the angular momentum) which is solelypoesible for the magnetism of the materéalis the electronic
chargem is the mass of the electron, andhe speed of light in vacuum. Thus the magnetmperty is a quantum
mechanical property and does not have a classieddg, which means that the Hamiltongof the system does not include
position and linear momentum operators.

The exchange energy due to spin-spin interactietween spir and spirj can be specified ar;%sisj wherer;
ij

is the distance between the spins. For a magnetierral in a magnetic field, therefore, the onlaeges in the energy of the
system are those due to the interaction of thesspiith each other and with the external magnettdfi. Hence, the
Hamiltonian$) of the system is given by
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This is equivalent to the model of Ernest Ising ¥idrich, for simulations on lattices of unit spacwigh nearest neighbor
interactions, the eigenvalues of the Hamiltoniaexigressed as

E=—]ZSiSj—HzSi (18)
. . . <I:‘j>. i . . . . .
where/ is the unit of the spin-spin exchange interactiod is often chosen to kel, in which case the lowest energy state
will tend to have neighbouring spins aligned ang Ithw temperature ground state will be a ferromagaié spins aligned),
or—1 in which case the lowest energy state will tendh&we neighboring spins opposed in orientation #red low
temperature ground state will be an anti-ferromagakernating spins)d, j) denotes a nearest neighbor pair, Hnig the
unit of the spin-field coupling.
The spin operators (actually= S, for each spin, assuming the field is oriented gltrez-axis so thatl = H,)
have eigenvalueﬁ%h whereh = % is the Dirac action constant. In simulations tigeesvalues of the spin operatbare

chosen to bg-1. Thus the number of single-particle microstateghef system is reduced to only two; for up and down
orientations of the intrinsic spin.

When the exchange interaction enefgsaries from bond to bond then we have a spin-gdgstem which is widely
studied with a variety of interesting ramificatiqis].

3.2 Surface Nanostructure Formation: Results of Simlation with the HKGK Model.

A more recent observed phenomenon in surface sgie¢han the magnetism of condensed matter descaibede,
is the formation of self-organized nano-patternsraterial surfaces when bombarded by a beam ofjetierparticles, with
energies in the range of keV [8, 18 — 23]. Theaeefmorphology arises as a result of the interp&ween the roughening
processes of stochastic removal of surface pastlojeion-sputtering, and the smoothening procestd#fusion of surface
particles or radiation-induced viscous flow. Thmughening process creates instability of the serfagainst further
perturbations by the eroding ions such that thettepyield becomes curvature dependent with theltrdbat surface
depressions are eroded in preference to surfacgupians. According to the continuum theory, itthés curvature

dependence that leads to the formation of rippfesawvelengtht = 2,/2K/|v|, wherekK is the surface diffusivity, andis
a surface tension coefficient. The wavelength @& tipples is on the nanometer scale and they demted along the
direction with the largegv| [21].

The experimentally observed ripple orientationasatiel to the projection of the ion beam direct@mnrio the surface
plane for large incidence angles (close to grakicglence), and perpendicular to the projectionsimall incidence angles;
except for metallic surface with anisotropic diffus in which case the ripple orientation is perpeuldr to a
crystallographic direction (i.e. the one favoredddfusion) at small incidence angle.

Hartmann, Kree, Geyer, and Koelbel (HKGK) proposediscrete solid-on-solid Monte Carlo model [24] tbe
simulation of surface modification and evolutionibp-bombardment which, in contrast to the Isingdelabove, simulates
the surface morphology indirectly by resorting lhe effect of collision cascades on the surfacewtianl without the direct
need for a surface Hamiltonian. These collisiorcades are set off in the near sub-surface layéndoympinging ion and are
responsible for the redistribution of the energyhe impinging ion to the surface particles. ThergyE (x) received by a
surface particle at position= (x;, x,,x3) due to the arrival of the ion somewhere in thenity of this surface particle is
assumed to be of the Gaussian form [25]:

E xZ  xP+ x22>
E(x) = ——— ex (——— , 19
(\/ﬁ)gapz P\ 2a2 2p? 1

wherea andp are the widths of the collision cascade ellipspatallel and perpendicular to the ion beam directio
respectively. A sputtering process is simulate@imgding surface particles in the vicinity of thepact position of

the ion with probabilities proportional £(x) [26 — 28], and a diffusion or smoothing processimsulated by using any of
the available diffusion models (e.g. [29, 30]), eleping on the experimental hopping rates for theera concerned.

We performed extensive simulations using this maael the surface profiles obtained from a typigalugation are
shown in Fig. 2. As can be seen from this figuine, simulation model accurately generates the obdesurface ripples and
their orientation with respect to the ion beam dimn and ion incidence. The projection of the l@am direction onto the
surface is represented by the short thin bar orpthéles. These results are in excellent agreeméifit the experimental
observations [26 — 28] of the ripple orientatiomnigeperpendicular to the ion beam direction folidenice angles less than a
threshold angle determined to be about 70°. Theyko in excellent agreement with the experimaetllts that the ripple
amplitude grows with sputter time; this is showntbhg increasing magnitude of the surface heighgeam the vertical grey
scale of the figure.
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Figure 2: Surface profiles for different sputterimges (Monte Carlo steps). From top to bottont, tefright: t = 0.5, 1.5, 4,
9, 14, and 20 ions/atom. The vertical scale inégdhe surface height range. The ion beam direiiamicated by the bar
on the profiles, showing that the ripple orientatis perpendicular to ion beam direction as expksieced = 50° here.

3.3 Molecular Chirality and the YNL Matching Algori thm: Simulation Results.

The problem of measuring the extent to which ajeailfails to coincide with or match its mirror ig& [31 — 39]
when optimally superimposed on the mirror image vemntly tackled in a direct way through simulatiof the matching
process using the Markov chain MC method [40] (Yalgorithm). The measure of chirality or degree @fteching of the
objects (an object and its image or two differebfeots as in molecular similarity or facial reseantde) that have been
optimally superimposed by the YNL algorithm is bdhea the concept of the Hausdorff distance betveetm as proposed by
Buda and Mislow [33].

This direct approach entails the simulation of tfetching process which includes a large nhumbeotations and
translations such that the Hausdorff distasigebetween the objects being matched is as smalbssilpe. dy = 0 if an
object is achiral or if two objects match, afd> 0 if an object is chiral or two objects do not matthe challenge is that
one may get very close to the global minimum &f only to be pushed into a completely different oegof thedy
landscape with the slightest of translations in thegching process. But the YNL Monte Carlo matchaigorithm [40]
always arrive at the optimal match. Hence, thisodgm can be of immense benefit to the handlinghafmful
enantiomorphs of useful chiral molecules in drugigie, to database searches in the area of seqaéigement and queries
on other databases, and to the understanding ofidlebanism of chirality transfer from a chiral dopto an achiral host.

The YNL algorithm searches for the optimal sup@asition of an object and its mirror imagd = —A, or
second object, by performing a series of randoratimis and translations df keepingd’ stationary. The simulation is
started with a random orientation and translatibd evhich represents the initial state or configunatioThe matching
process is iterated down over the ‘temperaturels tnnealing the process and ensuring that ayskens cools, the rotation
and translation reduces in magnitude so that at hgmperature’ the system moves freely from ongiom of thed,
landscape to another in the search for the rediandontains the global minimum, and much lesdyfretaen this region is
supposed to have been found (at low ‘temperatuiglying each iteration stage over the temperatiires kept fixed
while Ny, Monte Carlo steps of the matching process arepagd.

In each MC step the state of the system, whicthésorientation and position df relative toA’, is changed by
rotating and translating and the move is accepted according to the standfdtransition acceptance rules, tailored
towards acquiring minimurd, ordy . . dy . provides a measure of the chirality of the object through the chirality
measure of Buda et al. [33]

dy,..(A,A)
X (A) = == (20)
wheredy . (A,A") is the minimum Hausdorff distance betweandA’ over all positions and orientationsAdfndA’, d(4)

is the diameter ofl. The results of our simulations as applied torthétidimensional search for the most chiral tetdraé
plane shapes with DC,, and G symmetries are presented in Table 1. As can be Bee the table, our results are in
excellent agreement with the results of Buda, Aef Heyde, and Mislow [32, 33] who obtained theisules by using
another, albeit more tedious, numerical optimizatizethod.
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Table 1: A summary of our (YNL) results of the most chiralrehedral, and their comparison to the resultdisfow and
co-workers (BHM).

Symmetry Method Internal angles Xu Relative to
BHM
D, BHM (35.1, 60.5, 35.1, 84.4) 0.221 1
YNL (35.01, 60.51, 35.01, 84.44) 0.221 1
C, BHM (45.6, 58.5, 38.0, 34.7) 0.252 1
YNL (45.23, 58.62, 37.92, 35.24) 0.253 1.004
C, BHM (44.4,59.7, 37.7, 36.0) 0.248 1
YNL (45.15, 58.55, 37.74, 35.12) 0.253 1.02

3.4 Material Fracture and the Fiber Bundle Model

Fracture in heterogeneous materials is a comgigzipal problem which has been a focus of reseiatehest for a
long time [41 — 43]. Fiber bundle models (FBMs)nfoa fundamental class of approaches to the fragixoklem through
their capture of the essential features of matéri@hkdown. They are models of materials as cortgmsi fibers such that
the breakdown of the material is as a result ofgitepagation of fracture among the failing fibebsme such model which
provides a deep understanding of the intrinsic neatf the fracture process is the dynamic fiberdbeirmodel [44].
According to the dynamic FBM the material breaksvdas a result of the fatigue of its fibers ovendi That is, when the
material is stressed or loaded the fibers sharéotict and get progressively stressed with time $iiaheven if the external
load or source of stress is removed the acquirggutain the fibers remain and are incremented Withintroduction of a
new source of stress until the individual fiberaafe their threshold and fail, leading to the oudelure of the material with
time. This differs from the static FBM [45] whicltrdbutes the failure of the individual fibers their quasi-static loading
due to the gradual increase in the external load.

The dynamic FBM includes a normalised combined lslaaring rule [44]

1 1
Sry) == v 21

Y Dier ™y
tj t
r;; is the distance between an active fiband a failed fibef, F denotes the set of active fibers, anid a variable parameter
that controls the effective range of interactiomoam the fibers. This combines the local load slwgrifle ¢ = ) in which
the load borne by a failed fiber is shared equathong the four nearest neighbour fibers, the gllzal sharing rulef = 0)
in which the load of a failed fiber is shared amafgxisting fibers, and the variable range lobdrgg rule Q < y < «) in
which the load of a failed fiber is shared beydmel nearest neighbours but not globally, with theyeadepending op.

The probability?; (t) of the breaking of a fibgrin one sweep of the lattice in the time intedjais given by

Pi(t) = o ()5 (22)

p is the Weibull indexZ < p < 50) which gives the degree of heterogeneity of thetesy; ap increases the material
becomes more homogeneowgt) is the stress on the fibgat timet. The results of our simulations is presented @ Bi

0.08

0.04

0.02

0 I 1 L I
(o} 2 4 6 8 10

Y
Figure 3: Comparison of the time to failure(@limensionless) obtained for material heteroggrieitelp = 10 (insetp = 5),
as the range of interactignvaries. L is the system size.
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Our results indicate that the failure tiniehee material decreases with increasing rangatefaction between the
composites of the material and this decrease @pteus when the interaction range is just aboe nearest neighbour
interaction. Also, our results indicate that thedito failure is delayed if the material is madeslbeterogeneous; that is, of
fewer composites. Again, these results are in &mehgreement with experimental observations 442,

Conclusions

This article reviews the modern theory anmgplementation of computer simulations disordereddemsed matter
systems and fluids, based on the statistical mechapproximation method of Markov chain Monte Gadchniques. We
started with the fundamentals without recourseny system or problem for a generalized treatmedttaen discussed a
number of recent applications including Ising modelspin-glass model of magnetic systems, a solidalid model of
nanostructure formation on surfaces driven by iombardment, statistical MC models of material fuaef and a MC model
of chirality which is applicable as a matching altfon. Basic and typical results of our simulatiaighe different complex
systems are presented.

It is hoped that the in-depth treatment tad tudiments of the method, and the excellent ageeé of its results in
diverse applications would motivate and stimuléteapplication to the solution of still unsolvedtsttical physics problems
from the perspective of the richer energy landssapde encountered in nanometric surface science.
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