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In this paper, the higher-order Gaussian kernel in meshsize boosting algorithm is 

presented. The algorithm is a bias reduction scheme but uses the higher-order 
Gaussian kernel instead of the regular fixed kernels. A comparative study for this 
scheme is conducted and the findings reveal bias reduction for higher order Gaussian 
kernels when compared with existing regular fixed kernels. 

 
 

Keywords: Boosting, kernel density estimates, bias reduction, higher-order Gaussian kernel, meshsize, fixed kernels. 
AMS classification: 62F40, 62G08 
 

 
1.0    Introduction 

Schapire [1] first proposed Boosting in kernel density estimation. Other authors [2 – 4] but to mention a few have also 
made contributions. Boosting is a means of improving the performance of a ‘weak learner’ in the sense that given sufficient 
data, it would be guaranteed to produce an error rate which is better than “random guessing”. 

Weak Learner’ is typically a decision tree algorithm in the context of classification. 
. It is applied in this context using the higher-order Gaussian kernel. Boosting does not only guarantee an error rate  that 

is better than random guessing but also deals with the correction of ‘noises’ at the tails of the distribution or where we have 
sparse cluster of data within a given region. 

   Mazio and Taylor [5] proposed an algorithm in which a kernel density classifier is boosted by suitably re-weighting the 
data. This weight placed on the kernel estimator, is a ratio of a log function in which the denominator is a leave-one-out 
estimate of the density function. A theoretical explanation is also given by [5] to show how boosting is a bias reduction 
technique i.e a reduction of the bias term in the expression for the popular asymptotic mean integrated squared error 
(AMISE) ( See [3]). 
2.0 METHODS 
(Existing Mazio and Taylor’s leave-one-out Algorithm) 

Step 1: Given { }nixi ,...,2,1, = , initialize ( ) niW 1
1 =  

Step 2: Select h (the smoothing parameter). 
Step 3: For m =1, 2, … M, obtain a weighted kernel estimate 
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where k is the kernel function and w is a weight function, m is the number of boosting steps ; and then update the 
weights according to  
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step 4: Provide output as 

              ( )∏
=

M

m
m xf

1

ˆ  renormalized  to integrate to unity 

Normalization is done by summing up the m-step density estimates and dividing this sum by each estimate.  
We shall see how the leave-one-out estimator of [5] in the weight function can be replaced by a meshsize estimator due to the 
time complexity involved.  
In the leave-one-out estimator of equation (2), we require (n+(n-1)).n function evaluations of the density for each boosting 
step ( where n is the sample size). Thus, we are using a meshsize in its place. The only limitation on this meshsize algorithm 

is that we must first determine the quantity nh
1  so as to know what the meshsize that would be placed on the weight 

function would be [6]. The need to use a meshsize in place of the leave-one-out lies on the fact that boosting is like the 
steepest-descent algorithm in unconstrained optimization and thus the meshsize is a good substitute that approximates the 
leave-one-out estimate of the function in updating the weight function [7,8,9]. The new meshsize algorithm is stated as: 
Meshsize boosting Algorithm for Higher-order Gaussian Kernel 

STEP 1: Given { xi , � =1,2,…n} initialize W1(i)  1/n  

STEP 2: Select h(the smoothing parameter) 
STEP 3: For m 1,2,…,M 
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(ii)  Update 
Wm+1  Wm(i) + mesh                                                                                             (4) 

STEP 4: Provide output 
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 and renormalize to integrate to unity. 
The weight function in equation (4) of the algorithm uses a meshsize instead of the leave-one-out log ratio function of 
equation (2). Also, the kernel function used is the higher-order Gaussian kernel unlike the fixed used in [6].  
The fixed kernel of [6] is given as follows: 
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While the n-dimension higher-order Gaussian kernel is 
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     , i=1,2,…,n and zero elsewhere.          (6) 

The idea of higher-order kernels via bias reduction dates back to [10,11]. Schucany and Summers [12] also applied the 
generalized jackknife to bias reduction in kernel density estimation and showed that it is equivalent to using higher-order 
kernels [13]. Ishiekwene et al [6] first introduced the meshsize boosting algorithm and has been used in several other areas of 
boosting just like the bootstrap boosting algorithm of [14]. See [15,16].  
An expression for the asymptotic mean integrated squared error (AMISE) is given as (See [17]) 
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Where m=1,2,… , h is the smoothing parameter, k is the kernel, n is the sample size and f is the distribution. 
3.0 DISCUSSION 
           In this section, we shall use three sets of data to illustrate our algorithm and BASIC programming language is used. 
Table 1 is a sample of size forty and is the lifespan of car batteries in years. Table 2 is a sample of size sixty-four and is the  
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number of written words without mistakes in every 100 words by a set of students in a written essay. Table 3 is the scar 
length of patients randomly selected in millimeters [18,19].  
         Implementation of this algorithm is done in BASIC programming language using two boosting steps. The results are 
shown in Figures 3.1a – 3.3b. Figure 3.1a is the graph for Table 1 showing the bias reduction while Figure 3.1b for Table 1 
shows the MISE. Figure 3.2a is the graph for Table 2 showing the bias reduction while Figure 3.2b for Table 2 shows the 
MISE. Figure 3.3a is the graph for Table 3 showing the bias reduction while Figure 3.3b for Table 3 shows the MISE.  
            In all three data sets used in this paper, we can clearly see the bias reduction which in turn translates to a reduction in 
the MISE. Table 4 shows the various window widths, bias2,variance and the MISE for all three data sets. 
4.0  CONCLUSION 
            We have shown that the higher-order Gaussian kernel can be used in place of the classical fixed kernel in boosting in 
kernel density estimation. The charts- Figs. 3.1a – 3.3b and table 4 reveals that the higher-order Gaussian kernel method of 
orders not greater than ten does better than the classical fixed kernel method in kernel density estimation. It is therefore 
recommended for use in place of the classical fixed kernel method in boosting in KDE having exhibited the qualities of bias 
reduction which translates to a reduction in the MISE.  
Table 1 
 
2.2 4.1 3.5 4.5 3.2 

3.7 3.0 2.6 3.4 1.6 

3.1 3.3 3.8 3.1 4.7 

3.7 2.5 4.3 3.4 3.6 

2.9 3.3 3.9 3.1 3.3 

3.1 3.7 4.4 3.2 4.1 

1.9 3.4 4.7 3.8 3.2 

2.6 3.9 3.0 4.2 3.5 

 
Table 2 
88 58 92 77 81 86 90 67 

69 84 85 78 79 72 86 94 

70 68 69 84 88 89 82 75 

74 79 67 68 96 90 66 69 

70 75 81 80 77 79 80 91 

86 83 79 69 83 73 75 85 

76 93 97 87 75 83 81 76 

74 78 83 69 91 88 82 80 

 
Table 3 
1.2 1.4 2.6 2.0 1.4 1.7 1.6 1.5 1.48 1.6 

2.2 1.35 1.35 1.2 1.6 1.2 1.6 1.2 2.0 1.4 

1.7 1.6 2.0 2.4 1.8 1.6 1.64 1.3 2.0 1.9 

1.4 2.0 1.4 1.7 1.9 1.6 2.0 2.4 1.8 1.6 

1.64 1.3 1.4 2.4 1.6 2.4 2.0 1.4 1.6 1.8 

1.2 2.0 2.2 1.8 1.9 2.0 2.3 1.4 1.8 1.64 

2.0 2.3 1.2 1.3 1.9 2.0 2.4 2.0 2.6 1.3 

1.7 1.6 1.5 1.9 2.4 2.1 2.3 1.8 1.4 1.9 

2.0 1.3 1.9 1.42 1.47 1.4 1.9 2.0 2.0 2.4 

1.9 2.0 2.4 2.0 1.98 2.2 1.6 2.4 2.6 2.0 

1.6 1.7 1.9 2.2 1.86 1.4 1.9 1.7 1.6 2.3 
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          Fig 3.1a: Graph Showing the Bias for Table 1                                    Fig 3.1b: Graph Showing the MISE for Table 1 
 
 

     

          Fig 3.2a: Graph Showing the Bias for Table 2                                 Fig 3.2b: Graph Showing the MISE for Table 2 
 
 

     

              Fig 3.3a: Graph Showing the Bias for Table 3                            Fig 3.3b: Graph Showing the MISE for Table 3 
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