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                       Abstract 

 
In this study, we will attempt to stabilize the multiple steady states of the well-

known competition-colonization model. The implications of this sophisticated analysis 
for delayed and full stabilizations have been made. The results which we have achieved 
and have not seen elsewhere are presented and discussed quantitatively. 

 
 
1.0     Introduction 

The well-known competition-colonization model [1] is an important educational model in mathematical ecology. The 
key feature of this model is that it has multiple steady-state solutions that require further stabilization [2]. The theory and the 
practical application examples which demonstrate the stabilization of interacting population systems have already been 
reported in the literature [2 – 5]. Our present stabilization analysis will be based on this theory. 
 

2.0 Mathematical formulation 
Following [1], we consider the following model equations: 

���

��
= ����	1 − ��� − ��      (1) 

��


��
= ����	1 − �� − ��� − �� − ������     (2) 

where��	�� is the density of species i at time t. As in most ecological model, �� and �� are positive constants which 
reflect some biological insights [1]. In this scenario, �� is called the birth rate of the density of species 1whereas �� is the 
birth rate of the density of species 2. The above system of model equations has two multiple steady-state solutions namely  
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�
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���
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 provided �� > ��

� where �� > 1.  
 

3.0 Methodology 
It is clear that the competition-colonization model will have multiple steady-state solutions which will vary as values of 

�� and �� also vary. By using the standard theory of linearization in the neighborhood of an arbitrary steady-state solution 
and calculating the Jacobian elements, we can characterize whether each steady-state solution is either stable or unstable. For 
the steady-state solutions which are unstable under the changing values of ��and ��, we follow the procedure of [2] to 
develop a controller based on Euler discretization scheme which was used to stabilize the unstable steady-state solutions or 
further stabilize the stable steady-state solution. 
 

4.0 Results and Discussions 
For the purpose of clarity, we shall consider various scenarios of stabilizing the steady-state solutions of a competition-

colonization model. Our results of this analysis will be clearly presented in this section. 
Result 1 
If �� = 2and �� = 5, such that ��� = 0.5 and ��� = 0.1 and using the initial conditions of 2 and 10 in the appropriate 

units of the interacting populations when the step length �	 = 	0.01, we have obtained the following results 
We observe from Table 1 that convergence starts to set in when the value of Tfinal is 10 up till when the value of Tfinal is30. 
        Result 2 
In this scenario, we consider when the values of �� and �� are 1.5 and 3 respectively such that ��� = 0.3333and ��� =
0.1667. Using the same initial conditions and step length as used in Result 1 analysis, we have observed a dominant  
 
Corresponding author: Ekaka-a E.N., E-mail: -, Tel.: +2347066441590 and +2348037898499 (Nwachukwu) 

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 525 – 526           



526 

 

Stabilizing a mathematical…    Ekaka-a, Nwachukwu, Agwu, Musa, Amos and Nafo    J of  NAMP  
          

Table 1: Stabilization of steady-state solution: case 1 
Tfinal Estimated ��� Estimated ��� Extent of stabilization 

2 0.5500 0.0213 Delayed stabilization 
4 0.5170 0.0577 Delayed stabilization 
6 0.5077 0.0813 Delayed stabilization 
8 0.5033 0.0921 Delayed stabilization 
10 0.5014 0.0986 Delayed stabilization 
12 0.5006 0.0994 Delayed stabilization 
14 0.5002 0.0998 Delayed stabilization 
16 0.5001 0.0999 Near stabilization 
18 0.5000 0.1000 Full stabilization 
20 0.5000 0.1000 Full stabilization 
22 0.5000 0.1000 Full stabilization 
24 0.5000 0.1000 Full stabilization 
26 0.5000 0.1000 Full stabilization 
28 0.5000 0.1000 Full stabilization 
30 0.5000 0.1000 Full stabilization 

occurrence of performance deterioration in the output of the steady-state solution particularly indicating negative coordinates 
of a steady-state solution. A similar observation has been made for the scenario when �� = 2 and �� = 6 such that ��� =
0.5and ��� = 0.1667. Therefore, our choices of steady-state solutions which are  based on the chosen values of the model 
parameters do not guarantee effective stabilization of these steady-state solutions. 
Result 3 
In this scenario, �� = 2 and �� = 4.5 such that ��� = 0.5000and ��� = 0.0556. We obtain the following results: 

Table 2: Stabilization of steady-state solution: case 3 
Tfinal Estimated ��� Estimated ��� Extent of stabilization 

2 0.5474 0.0247 Delayed stabilization 
4 0.5134 0.0408 Delayed stabilization 
6 0.5054 0.0494 Delayed stabilization 
8 0.5022 0.0530 Delayed stabilization 
10 0.5009 0.0545 Delayed stabilization 
12 0.5004 0.0551 Delayed stabilization 
14 0.5002 0.0554 Delayed stabilization 
16 0.5001 0.0555 Near stabilization 
18 0.5000 0.0555 Stabilization 
20 0.5000 0.0556 Full stabilization 
22 0.5000 0.0556 Full stabilization 
24 0.5000 0.0556 Full stabilization 
26 0.5000 0.0556 Full stabilization 
28 0.5000 0.0556 Full stabilization 
30 0.5000 0.0556 Full stabilization 

We also observe from Table 2 that near stabilization occurs when the value of Tfinal is 16. 
5.0 Conclusion 

The original formulation of a competition-colonization model lacks the application of stabilization of its steady-state 
solutions. In this study, we have successfully demonstrated that �� → ��� and �� → ��� as t or Tfinal increases. Therefore, 
the multiple steady-state solutions of a competition-colonization model which were not previously stabilized have been 
stabilized.In summary, we have been able to construct a controller which was used to stabilize the steady-state solutions of a 
competition-colonization model. It is worth mentioning that the competition-colonization model exhibits performance 
deterioration as popularly called in the applied control theory literatures. 
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