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Exact hyperbolic, trigonometric and rational function travelling wave solutions to 

the Korteweg De Vries (KDV) equation using the ��� �⁄ � expansion method are 
presented in this paper. New travelling wave solutions to the KDV equation were 
obtained with Liu’s theorem. The solutions obtained were verified by putting them back 
into the equation with the aid of Mathematica. This shows that the ��� �⁄ � expansion 
method is a powerful and effective tool for obtaining exact solutions to nonlinear 
partial differential equations in physics, mathematics and other applications. 
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1.0    Introduction 

Most physical phenomena are described by partial differential equations that are nonlinear in nature. These nonlinear 
partial differential equations (NLPDE) appear in many fields such as Hydrodynamics, Engineering, Quantum field theory, 
Optics, Plasma physics, Biology, Fluid mechanics, Solid-state physics, etc. [1]. In Soliton theory, the study of exact solutions 
to these nonlinear equations plays a very germane role, as they provide much information about the physical models they 
describe. 

Various powerful methods have been employed to construct exact solutions to nonlinear partial differential equations. 
These methods include the inverse scattering transform [2], the Backlund transform [3-4], the Darboux transform [5], the 
Hirota bilinear method [6], the tanh-function method [7-8}, the sine-cosine method [9], the exp-function method [10], the 
generalized Riccati equation [11], the Homogenous balance method [12], etc.  

Recently a new method called the ��� �⁄ � expansion method was introduced by Wang et al. [13] to construct exact 
solution to nonlinear partial differential equations.  

The Korteweg de Vries equation (KDV) which is a non-linear PDE of third order has been of interest since 150 years 
ago. More recently, this equation has been found to describe wave phenomena in Plasma physics, anharmonic crystals, etc. 
The KDV is a non-linear equation which has soliton solutions. The Korteweg de Vries equation is of the form ���	, ���� + 
��	, �� ���	, ���	 + � ����	, ���	� = 0	 

KDV is non-linear because of the product shown in the second summand and is of third order because of the third 
derivative in the third summand. The aim of this paper is to construct travelling wave solution to the Korteweg de Vries 
equation by using the ��� �⁄ � expansion method. 

 
1.0 Description of the ��� �⁄ � expansion method. 

Here, we provide a brief explanation of the ��� �⁄ � expansion method for finding travelling wave solutions of nonlinear 
partial differential equations. Consider a nonlinear equation of two independent variables 	 and � of the form:  ���, �� , �� , ���, ��� , ��� , … � = 0																																																											�2� �	 is a polynomial in ��	, �� and its derivatives with respect to 	 and �. To begin, we transform equation (2) into a 
nonlinear ordinary differential equation by introducing the variable � given by: 
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��	, �� = 	����							� = 	 − ��																																																																				�3� 
Where � is a constant and equation (2) reduces to a nonlinear ordinary differential equation of the form  ���, ��, ���, ���� … � = 0																																																																															�4� 
The method assumes that the solution to equation (2) can be expressed as a polynomial in ��� �⁄ � 

���� = 	� � !��
� " 									#

 $%
�# ≠ 0																																																												�5� 

Where �%, �(, … , �# are constants to be determined and � = ���� is a solution of the linear ordinary differential 
equation of the form ������ + )����� + *���� = 0																																																																			�6� ) and * are arbitrary constants. The general solution of (6) gives [14]:  

��������� =

,-
--
--
-.
--
--
--
/ 0)1 − 4*2 23

33
45( sinh !0)1 − 4*2 �" + 51 cosh!0)1 − 4*2 �"
5( cosh!0)1 − 4*2 �" + 51 sinh !0)1 − 4*2 �"<=

==
> − )2	, 							)1 − 4* > 0		@A
BCDEFG�

04* − )1
2 23

33
4−5( sin !04* − )12 �" + 51 cos !04* − )12 �"

5( cos !04* − )12 �" + 51 sin !04* − )12 �" <=
==
> − )2 , 							)1 − 4* < 0		ICGJEKELB�CG�

				 515( + 51� − )2 , 						)1 − 4* = 0								MN�GEKNF																																																																																							

O 

Equation (4) is integrated as long as all the terms contain derivatives, where integration constants are considered to be 
zero. To determine	L, we consider the homogenous balance between the highest order derivative and the highest order 
nonlinear term(s).  

Substitute equation (5) with the determined value of L into equation (4), and collect all terms with the same order of ��� �⁄ � together. If the coefficients of ��� �⁄ �  vanish separately, we have a set of algebraic equations in  �%, �(, … , �#, �, ) 
and * that is solved with the aid of Mathematica.  

Finally, substituting �%, �(, … , �#, � and the general solution to equation (6) into equation (5) yield the travelling wave 
solution of equation (2). 

 
2.0 Application 

In this section, we apply the ��� �⁄ � expansion method to construct travelling wave solution of the Korteweg de Vries 
equation. Consider the KDV equation (1) which can be written as:  �� + 
��� + ����� = 0																																																																														�7� 

We make the transformation �	, �� = 	����, � = 	 − �� .  ���� = Q�Q� . ���� = 	−� Q�Q�  ���	 = Q�Q� . ���	 = 	Q�Q�  

����	� = ��	 S ��	 T���	UV 

= QQ� . ���	 W QQ� . ���	 T����UX = 	 QQ� W QQ� T����UX = 	Q��Q�� 

Equation (7) becomes  −��� + 
��� + ����� = 0																																																																																	�8� 
Integrating equation (8) once with respect to � and setting the integration constant to zero yields 

−�� + 
 �1
2 + ���� = 0																																																																																				�9� 
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To get	L, we balance the highest order derivative ��� and the highest order nonlinear term	�1. 2L = L + 2	 ⟹ L = 2 
Then equation (5) becomes  

���� = 	�1 !��
� "1 + �( !��

� " + �%									where	�1 ≠ 0																																				�10�	 
Where �%, �(	and �1 are constants to be determined later. From (10) 

����� = 	−2�1 !��
� "� + �−2�1) − �(� !��

� "1 + �−2�1* − �()� !��
� " − �(* 

������ = 	6�1 !��
� "b + �10�1) + 2�(� !��

� "� + �8�1* + 4�1)1 + 3�()� !��
� "1 + �6�1)* + 2�(* + �()1� !��

� " + 2�1*1
+ �()* 

Substituting equation (10) and its derivatives into equation (9) and collecting all terms with the same power of cde
d f together 

yields a simultaneous set of nonlinear algebraic equations as follows: 

!��
� "% :							4�1*1� + 2�()*� + �%1
 − 2�%� = 0																																						 

!��
� "( :							6�1)*� + 2�(*� + �()1� + �%�(
 − �(� = 0																							 

!��
� "1 :							16�1*� + 6�()� + 8�1)1� + 2�%�1
 + �(1
 − 2�1� = 0 

!��
� "� :							2�(� + 10�1)� + �(�1
 = 0																																																						 

!��
� "b :							12�1� + �11
 = 0																																																																										 

Solving this algebraic system of equation with the aid of Mathematica yields two different sets of solution:  

Case	1:				�1 =	−12�
 									 	�( =	−12�)
 										�% =	−12�*
 										� = ��)1 − 4*� 
Case	2:				�1 =	−12�
 									 	�( =	−12�)
 										�% =	−2��)1 + 2*�
 										� = −��)1 − 4*� 

Substituting the different sets of solution to the algebraic equation and the general solution to equation (6) into equation (10), 
we obtain three types of travelling wave solutions of the Korteweg de Vries equation. 
Case 1 
When	)1 − 4* > 0, we obtain a hyperbolic function solution: 

���� = 	−12�
 !i j5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��k − )2"1 − 12�)
 !i j5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��k − )2" − 12�*
  

Where i =	0lmnbo1  and � = 	 − ��)1 − 4*�� 
���� = 	12�
 i1 p1 − !5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��"

1q																																		�11� 
If we set 5( = 0 and 51 ≠ 0 in equation (11), we obtain 

���� = −3�
 �)1 − 4*� pcsch1 S0)1 − 4*2 r	 − ��)1 − 4*��sVq																�12� 
If we set 5( ≠ 0 and 51 = 0 in equation (11), we obtain 

���� = 3�
 �)1 − 4*� psech1 S0)1 − 4*2 r	 − ��)1 − 4*��sVq																				�13� 
When	)1 − 4* < 0, we obtain a trigonometric function solution: 
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���� = 	−12�
 !t j−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� k − )2"1 − 12�)
 !t j−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� k − )2" − 12�*
  

Where t = 	0bonlm
1  and � = 	 + ��4* − )1�� 

���� = 	−12�
 t1 p1 + !−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� "1q																																											�14� 
If we set 5( = 0 and 51 ≠ 0 in equation (14), we obtain 

���� = −3�
 �4* − )1� pcsc1 S04* − )1
2 r	 + ��4* − )1��sVq																														�15� 

If we set 5( ≠ 0 and 51 = 0 in equation (14), we obtain 

���� = −3�
 �4* − )1� psec1 S04* − )1
2 r	 + ��4* − )1��sVq																															�16� 

When	)1 − 4* = 0, we obtain a rational function solution: 

���� = 	−12�
 T 515( + 51� − )2U1 − 12�)
 T 515( + 51� − )2U − 12�*
  

Where � = 	 

���� = 	−12�
 T 515( + 51	U1 																																																																																																				�17� 
 
Case 2 
When	)1 − 4* > 0, we obtain a hyperbolic function solution: 

���� = 	−12�
 !i j5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��k − )2"1 − 12�)
 !i j5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��k − )2" − 2��)1 + 2*�
  

Where i =	0lmnbo1  and � = 	 + ��)1 − 4*�� 
���� = 	12�
 i1 p13 − !5( sinh�i�� + 51 cosh�i��5( cosh�i�� + 51 sinh�i��"

1q																																																												�18� 
If we set 5( = 0 and 51 ≠ 0 in equation (18), we obtain 

���� = −3�
 �)1 − 4*� pcoth1 S0)1 − 4*2 r	 + ��)1 − 4*��sVq + �
 �)1 − 4*�																�19� 
If we set 5( ≠ 0 and 51 = 0 in equation (18), we obtain 

���� = −3�
 �)1 − 4*� ptanh1 S0)1 − 4*2 r	 + ��)1 − 4*��sVq + �
 �)1 − 4*�																				�20� 
When	)1 − 4* < 0, we obtain a trigonometric function solution: 

���� = 	−12�
 !t j−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� k − )2"1 − 12�)
 !t j−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� k − )2" − 2��)1 + 2*�
  

Where t = 	0bonlm
1  and � = 	 − ��4* − )1�� 
���� = 	−12�
 t1 p13 + !−5( sin�t�� + 51 cos�t��5( cos�t�� + 51 sin�t�� "1q 																																																								�21� 

If we set 5( = 0 and 51 ≠ 0 in equation (21), we obtain 

���� = −3�
 �4* − )1� pcot1 S04* − )1
2 r	 − ��4* − )1��sVq − �
 �4* − )1�																�22� 

If we set 5( ≠ 0 and 51 = 0 in equation (21), we obtain 

���� = −3�
 �4* − )1� ptan1 S04* − )1
2 r	 − ��4* − )1��sVq − �
 �4* − )1�																				�23� 

When	)1 − 4* = 0, we obtain a rational function solution: 
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���� = 	−12�
 T 515( + 51� − )2U1 − 12�)
 T 515( + 51� − )2U − 2��)1 + 2*�
  

Where � = 	 

���� = 	− 12�
 T 515( + 51	U1 																																																																																																																						�24� 
Theorem 1: Liu’s theorem [15]. 
If equation (2) has a kink-type solution in the form  ���� = �v�tanhrψ�s�																																																																																																																																	�25� 
Where �v is a polynomial of degree	x. Then it has a certain kink bell type solution in the form ���� = �v�tanhr2ψ�s ± G sechr2ψ�s�																																																																																																			�26� G is the imaginary number unit. 
We can apply Theorem 1 to equation (12), (13), (19) and (20) to construct new set of travelling wave solutions to the 
Korteweg De Vries equation.  
Using Theorem 1, equation (12) becomes 

���� = −3�
 �)1 − 4*� + 3�
 �)1 − 4*� ztanh c0)1 − 4*	�f ± G sech c0)1 − 4*	�f{n1 									�27� 
Where � = 	 − ��)1 − 4*��  
Using Theorem 1, equation (13) becomes 

���� = 3�
 �)1 − 4*� − 3�
 �)1 − 4*� ztanh c0)1 − 4*	�f ± G sech c0)1 − 4*	�f{1 													�28� 
Where � = 	 − ��)1 − 4*�� 
Using Theorem 1, equation (19) becomes 

���� = �
 �)1 − 4*� − 3�
 �)1 − 4*� ztanh c0)1 − 4*	�f ± G sech c0)1 − 4*	�f{n1 													�29� 
Where � = 	 + ��)1 − 4*�� 
Using Theorem 1, equation (20) becomes 

���� = �
 �)1 − 4*� − 3�
 �)1 − 4*� ztanh c0)1 − 4*	�f ± G sech c0)1 − 4*	�f{1 													�30� 
Where � = 	 + ��)1 − 4*�� 

The travelling wave solutions of the Korteweg De Vries equation obtained using the ��� �⁄ � expansion method for the 
hyperbolic, trigonometric and rational function types are presented in equations (11), (14), (17), (18), (21) and (24). When the 
arbitrary constants 5( and 51 are taken to be zero separately in equations (11), (14), (18) and (21), we derive special soliton 
solution presented in equations (12), (13), (15), (16), (19), (20), (22) and (23). If we set	
 = 6, � = 1   and	)1 − 4* = 2|, 
equations (12) and (13) become identical to Brauer’s solutions to the KDV equation [16].  

Applying Liu’s theorem to equations (12), (13), (19) and (20), we obtain new travelling wave solutions in the form of 
equations (27), (28), (29) and (30). All the travelling wave solutions to the KDV equation obtained were checked by putting 
them back into equation (1) with the aid of Mathematica.            
 
3.0 Conclusion 

Hyperbolic, trigonometric and rational function travelling wave solutions to the Korteweg De Vries equation have been 
obtained using the ��� �⁄ � expansion method. Liu’s theorem was also applied to obtain other travelling wave solutions. The 
results have been verified by putting them back into the KDV equation with Mathematica. Conclusively, the ��� �⁄ � 
expansion method is a powerful tool for finding exact solution to nonlinear partial differential equations in physics, 
mathematics and other fields.   
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