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                       Abstract 
 
We consider a model which takes into consideration electron-electron repulsion, 

formulated in the Hubbard model along with the electron – electron attraction due to 
electron – phonon interaction in the BCS formulation.  A two – band Hamiltonian 
model was used to derive the superconducting gap equations. The specific heat jump 

C∆ at the critical temperature Tc was obtained directly from the BCS gap equation. 

The specific heat versus temperature curve has been found to have almost similar 
features to that in the work of Kishore and Llamba,  and that of Eliashberg theory of 
superconductivity. 

 
 
1.0    Introduction 

Specific heat had traditionally been regarded as a critical test tool in the development of the theory of superconductivity 
and in the quest for new superconducting materials. The magnitude of the specific heat jump at the transition temperature Tc, 
and the exponentially vanishing specific heat at low temperature, unveiling the existence of a gap in the spectrum of 
electronic excitations, contributed to establish the validity of the BCS theory [1, 2]. It also informs us about the nature of the 
phase transition and the symmetry of the pairing state [3,4]. The specific heat is specially suitable to study the BCS 

superconductors [3]. For example all the parameters in the BCS formula γθ
!

14.1
−= DcT  can in principle be determined 

by a single specific heat measurement. It gives the critical temperature, cT , from the position of the jump, the Debye 

temperature, Dθ , from the slope of the specific heat versus 3T  in the limit 0→cT , and γ  from the ratio of high and low 

temperature values of the sommerfeld constant. 
 

2.0 BCS background    
       

The BCS theory and its subsequent refinements based on the Eliashberg equations shows that high critical temperatures 
in phonon – mediated superconductors are favoured by high phonon frequencies, and by a large density of states at the Fermi 
level [1]. The Allen – Dynes formula [5], an interpolation based on numerical solutions of the Eliashberg equations valid 
over a wide range of coupling strengths and for various shapes of the phonon spectrum, provides us with the formula 
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Where epλ is the dimensionless electron – phonon coupling, 1.0≅∗µ is the retarded coulomb repulsion, ( )WF is the 

normalized phonon density of states (PDOs), ( )wF2α  is the spectral electron – phonon interaction function, ( )0N  is the 

density of states at the Fermi level per spin and per atom (EDOs), 
2I  is the properly averaged electron-ion matrix element 

squared, and m is the average atomic mass. ( ) η≡20 IN  is the so-called Hop field electronic parameter, whereas, 2
2wM  

is an average force constant. 

The sommerfeld constant )(lim 0 TCT →=γ  is another important parameter given by specific heat. Cn(T), the 

normal – state specific heat, can be measured using a field larger than the upper critical field ( )2 0
c

H (if available). 

Furthermore, γ  is proportional to the EDOs renormalized by the electron – phonon interaction: 

( ) ( )epB NK λγ +Π= 10
3

2 22               (2.5) 

where BK is the Boltzman constant and N(0) is the EDOs for one spin direction. Expressing ( )0N  in states per eV  per 

atom and per spin direction, and γ in gatKJm 2  (gat ≡ gram – atom), equation (2.5) becomes  

  ( ) ( ) γλ 212.010 =+ epN .      (2.6) 

The lattice specific heat provides information on the phonons. The slope of the specific heat, 

( ) ( )2
03 lim TdTCdT →=β , gives the initial Debye temperature  

31

3

4

5

12








=

β
πθ R

D  

which depends on the sound velocities; R is the ideal gas constant. 
 
3.0 Theoretical framework of the specific heat 

Here we consider a model which in addition to having electron – phonon induced attractive interaction between 
electrons, also takes into account a repulsive coulomb interaction, formulated in the Hubbard model. This model has recently 
been considered by Hocquet et al [6] to study the critical temperature and the isotope effect. Within the Bogoliubov – Valatin 
[7] approximation for the above model, one obtains the BCS gap equation for one band as: 
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Considering the energy gap equation for the two-band model, equation (3.1)  becomes  
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where kkV ′12 is scattering potential of a pair with both mates in band 1 into band 2 and vice versa. 

In (3.1), ,2 fkk UnE ∈−+∈= is the Hartree Fock one particle energy, U is the repulsive intra-atomic interaction of the 

Hubbard model, N is the total number of sites, n  is the average number of electrons per site, k∈ is the bare particle energy in 

the band, and f∈ is the Fermi energy. Following BCS, the scattering matrix element kkV ′ due to phonon mediated interaction 

is assumed to have a non vanishing value NV− with 0>V  only if both kk EandE ′ are smaller than the Debye 

energy Dwh . 

The specific heat jump, C∆ , at the critical temperature cT  is related to the temperature derivative of the square of 

the gap parameter by the expression [8],  
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The electronic specific heat eC  of a superconductor is calculated using the following expression  

∫ ∈= kke fdk
dT

d
C  

where ( ) ( )22 kfk ∆+∈−∈=∈ is the quasi – particle energy spectrum near the Fermi energy f∈ , 
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1  is the Fermi – Dirac distribution function and 
KT

1=β . 

From the simple BCS form of the scattering matrix element, (see equation (3.1)), the solutions of the BCS gap 
equation has the following structure 
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Substituting equation (3.3) into equations (3.1) and (3.2), one obtains the equations for :, 21 asandC ∆∆∆  
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( )∈η is the electronic density of states (DOS) per spin, ,2,1=α  and ( )
D

∈η  and ( )
W

∈η  are the thermally 

averaged DOS, given as 
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We make the assumption that each pairing interaction potential consisted of two parts: an attractive electron – phonon 

interaction pV  and an attractive non electron – phonon interaction (i.e. coulomb electronic part) cU [9]. With this 

assumption, the interaction potential kkV ′  can be written as: 

  

















<∈−∈

<∈−∈+−

=

′

′

′

Ckkc

Dkkcp

kk

wU

wVV

V

h

h

,

,

     (3.10) 

where CD wandw are the characteristics energy cut off of the Debye phonon and non – phonon respectively. 

In the bulk limit, the sums over K′  in equations (3.2) and (3.3) can be converted into energy integrals and also 

applying the condition in equation (3.10) together with the introduction of energy density of states ( )0N , under a weak 

coupling ( )( )10 <<= VNλ  approximation (using 1== hβK ) we get  

( ) ( ) ( )
k

k

k

k
kkk d

T
VN ′

′′

′

′
′ ∈







 ∈
∈

∆
−=∆ ∫ 1

1

1

1
11 2

tanh
2

0
β

 

  

( ) ( ) ( )
k

k

k

k
kk d

T
VN ′

′′

′

′
′ ∈




 ∈
∈

∆− ∫ 2
2

2

2
12 2

tanh
2

0
β       (3.11) 

( ) ( ) ( )
k

k

k

k
kkk d

T
VN ′

′′

′

′
′ ∈







 ∈
∈

∆−=∆ ∫ 2
2

2

2
22 2

tanh
2

0
β

 

  

( ) ( ) ( )
k

k

k

k
kk d

T
VN ′

′′

′

′
′ ∈







 ∈
∈

∆
− ∫ 1

1

1

1
12 2

tanh
2

0
β

      (3.12) 

Applying the condition in equation (3.10), the interaction potential ( )kkV ′  and the superconducting gap in equation 

(3.11) could further be written for the phonon part, 1∆ , and the coulomb electronic part, 1∆′ , respectively as  

( ) ( ) ( ) ( )DWDDWD FFUFUVFFUFUV 22212221212221111111 −∆′−∆−+−∆′−∆−=∆    (3.13) 

and 

( ) ( )DWDDWD FFUFUFFUFU 22212221222111111 −∆′−∆−−∆′−∆−=∆′   (3.14) 
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Similarly, the phonon part, 2∆ , and the coulomb electronic part, 2∆′ , of equation (3.12) could be written respectively as  

( ) ( ) ( ) ( )DWDDWD FFUFUVFFUFUV 22112111212222222222 −∆′−∆−+−∆′−∆−=∆    (3.15) 

and 

( ) ( )DWDDWD FFUFUFFUFU 22112111222222222 −∆′−∆−−∆′−∆−=∆′  (3.16) 

Substituting equation (3.14) from equation (3.13) we obtain: 

  DD FVFV 221211111 ∆+∆=∆′−∆ , 

further simplification gives  

  ( ) DD FVFV 22121111 1 ∆−∆−=∆′        (3.17) 

Similarly, solving eqns. (3.15) and (3.16) in the same way, yields  

   ( ) DD FVFV 11122222 1 ∆−∆−=∆′       (3.18) 

Adding equations (3.17) and (3.18) we obtain eqn. (3.19) and also from equations (3.14) and (3.16) we obtain eqn. (3.20)  

  ( ) ) ( )(( )DDDD FVFVFVFV 1112222221211121 11 ∆−∆−+∆−∆−=∆′+∆′   (3.19) 

and 
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Rearranging eqn. (3.20) we have: 
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Assuming that the two bands 21 ∆∆ and  are identical (degenerate case), 
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DDD FFFUUU ==== 2121 ,  

      ,2,2 2121 ∆′=∆′+∆′∆=∆+∆∴ and  

  
DDD FFFUUU 2,2 2121 ===+  [10] 

Applying these assumptions in equation (3.21), we get 

  ( ) ( )[ ] DDDWDW FUUFFFUFFU 12221222 2212 ∆−∆−=−+−+∆′   (3.22) 

Also allowing these assumptions to hold for the intraband interaction i.e. VVV == 21 , then equation (3.19) reduces to 

 ( )DD FVVF 12122 −−∆=∆′         (3.23) 

Substituting equation (3.23) into (3.22) we have  
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Considering the limits 00 1212 →→ VandU , we have 
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also equations (3.17) and (3.18) reduce to  

  ( ) ( ) 22221111 11 ∆−=∆′∆−=∆′ DD FVandFV      (3.25) 
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For a single band model, equations (3.24) and (3.25) reduce to 
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and  

  ( ) 112 1 ∆−=∆ DVF         (3.27) 

We shall use equations (3.26) and (3.27) to calculate the temperature derivative of the square of the gap parameters 

21 ∆∆ and at the critical temperature cT  in order to obtain the specific heat jump C∆ . Differentiating equation (3.27) with 

respect to T and taking the limit 01 →∆ as cTT → we get  
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Similarly differentiating equation (3.26) with respect to T and taking the limit 0, 21 →∆∆  as cTT →  we get  
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and the jump in the specific heat at cT as  
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Here ** UVV −=  and DVF−= 1ξ . And eliminating V  from equation (3.32) by using the expression for cT  
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which has been obtained from equation (3.26) by taking the limits 01 →∆ and 02 →∆ , we have  

   01 * =− DFV          (3.34) 

Substituting the value 
*U  from equation (3.34) into equation (3.32) we get 
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For the constant DOS near Fermi energy and the thermally averaged DOS ( ) ( )fD
∈=∈ ηη , the equation (3.30 – 3.35) 

show that in absence of repulsive interaction U  
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Multiplying both sides of equation (3.36) by 
γ
1

 and rearranging it, we have  
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where γ is given by the coefficient of the normal state specific heat electronic constant ( )TCV γ−  expressed as 

( ) 32 22
fk ∈Π= ηγ .  

Therefore equation (3.37) becomes  
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using the Cauchy’s residue theorem, in the limit 0→CT , the equation (3.38) becomes  
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Fig. 1. CTc∆ versus DC wkT h/ for constant density of states (from equation (3.36)) 
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4.0 Conclusion 
Within the BCS framework, the exact analytical expression for the specific heat jump c∆  is given by equation (3.33) and 

3.35). From our theoretical calculations it was found that the specific heat jump at CT  for a two – band superconductor is 

given by γ43.1=∆ CC T . This is in agreement with existing results in the literatures [2, 11 and 12]. From Fig. 1, it was 

found that the behavior of CC T∆ versus Dc wkT h for constant density of states was different from those of Kishore et al 

[2], Marsiglio et al [11] and Carbotte [12].          
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