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Abstract

We consider a model which takes into considerati@lectron-electron repulsion,
formulated in the Hubbard model along with the etean — electron attraction due to
electron — phonon interaction in the BCS formulatio A two — band Hamiltonian
model was used to derive the superconducting gapatiqns. The specific heat jump

A at the critical temperature Jwas obtained directly from the BCS gap equation.
The specific heat versus temperature curve has bémund to have almost similar

features to that in the work of Kishore and Llambaand that of Eliashberg theory of
superconductivity.

1.0 Introduction

Specific heat had traditionally been regarded estial test tool in the development of the theofysuperconductivity
and in the quest for new superconducting materidie. magnitude of the specific heat jump at thediteon temperature Tc,
and the exponentially vanishing specific heat at kemperature, unveiling the existence of a gaphim spectrum of
electronic excitations, contributed to establish vhlidity of the BCS theory [1, 2]. It also infosnus about the nature of the
phase transition and the symmetry of the pairirajes{3,4]. The specific heat is specially suitatdestudy the BCS

superconductors [3]. For example all the parametetse BCS formulal, = 1.14 6'[;% can in principle be determined

by a single specific heat measurement. It givescttitical temperature,l ., from the position of the jump, the Debye

C 1
temperature £, , from the slope of the specific heat verdid in the limitT, — O, and y from the ratio of high and low
temperature values of the sommerfeld constant.

2.0 BCS background

The BCS theory and its subsequent refinements basdlde Eliashberg equations shows that high atitemperatures
in phonon — mediated superconductors are favowdddgh phonon frequencies, and by a large dengigfates at the Fermi
level [1]. The Allen — Dynes formula [5], an int@lption based on numerical solutions of the Eli@sgbequations valid
over a wide range of coupling strengths and forousr shapes of the phonon spectrum, provides Usthgt formula

_w) [ 104(1+ 1))
c T 1on — ., 0_ ]
120 Ay — 1 - 0620, i on
where
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Where /lep is the dimensionless electron — phonon couplipgu, [10.1is the retarded coulomb repulsioE(W)is the
normalized phonon density of states (PDO%)",F (W) is the spectral electron — phonon interaction fiong N(O) is the

density of states at the Fermi level per spin agtdapom (EDOs)<| 2> is the properly averaged electron-ion matrix eleime
squared, and m is the average atomic mN;éO) <| 2> =1 is the so-called Hop field electronic parametehemieas,Mv_v22
is an average force constant.

The sommerfeld constary = (lim;_, C/T) is another important parameter given by speciéathG(T), the
normal — state specific heat, can be measured wsifigld larger than the upper critical fieIl:J'ICz (0) (if available).

Furthermore, ) is proportional to the EDOs renormalized by thetts — phonon interaction:
— 2 2 2

y=5nK; N(0) 1+ A,,) (2.5)
where K is the Boltzman constant and N(0) is the EDOs fue spin direction. Expressinil (O) in states peteV per
atom and per spin direction, andin mJ/Kzgat (gat= gram — atom), equation (2.5) becomes

N(0) (1+4,,)= 0212y (2.6)

The lattice specific heat provides information ba phonons. The slope of the specific heat,

B;=lim;_, d(C/T)/d(Tz), gives the initial Debye temperature

3
g = (12Rn“ j
58,

which depends on the sound velocities; R is thaligas constant.

3.0  Theoretical framework of the specific heat

Here we consider a model which in addition to hgvitectron — phonon induced attractive interactietween
electrons, also takes into account a repulsiveatoblinteraction, formulated in the Hubbard modélisTmodel has recently
been considered by Hocquet et al [6] to study thieal temperature and the isotope effect. Witlia Bogoliubov — Valatin
[7] approximation for the above model, one obtdiesBCS gap equation for one band as:

u
+— .
1 (ka NJAK VE& + 4%
2KT

A =——= tanh (3.1)
2% Ekz, + Azk
Considering the energy gap equation for the twadbandel, equation (3.1) becomes
A (T) — Z (Vllkk' +U )Alk' t VDle’ + A21k
» =- ==~ = tanh| ———
K X Of + A% 2T
(V12kk’ +U )A2k’ Vljgk' + A22k’
- Z tanh| ————— 3.2)
ko g 5 + 0% 2T
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( ) Z( 22Kk’ +U) 2k tanh \/ng’ +A22k’
ko § ng +A22k 2T

z ( 1oue tU )Alk' tanh VDlzk' + Aik’ (3.3)
K 2\/D12k + A 2T

whereV, - is scattering potential of a pair with both matesand 1 into band 2 and vice versa.

In(3.1), E, =0, + Un/2 —L; , is the Hartree Fock one particle energy, U is #pulsive intra-atomic interaction of the
Hubbard model, N is the total number of sitessrthe average number of electrons per $ilgis the bare particle energy in
the band, andJ; is the Fermi energy. Following BCS, the scatterimagrix elementV,,. due to phonon mediated interaction
is assumed to have a non vanishing vatu® /N with V >0 only if both |Ek| and |Ek,| are smaller than the Debye

energy aw, .
The specific heat jumpAC , at the critical temperaturg, is related to the temperature derivative of thease of
the gap parameter by the expression [8],

of dn?
po--3] - | [ ]
IR

The electronic specific hedE, of a superconductor is calculated using the failhgvexpression

_d
Ce—ﬁj'dkmk f,

where L, :\/(D—Df)2 +A(k)2 is the quasi — particle energy spectrum near themiFeenergy L,

f, = 1 is the Fermi — Dirac distribution function angl = 1 .

KT

E
l+exp| ———
KT
From the simple BCS form of the scattering matiixneent, (see equation (3.1)), the solutions of B&S gap

equation has the following structure

A=A if |E] < aw, 3.5)
=A, if |Ek| > hwg
Substituting equation (3.3) into equations (3.1J éh2), one obtains the equations E, A, and A, as:
da’ dA’
s %) 0.+ || (o).~} @0
T=T, T=T,
A = (V -u )AlFlD —UA, (sz - I:2D )’ 3.7)
A, =-UAFP -UA, (B -FP |

where
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n (D + [ )tanh[w’}
AW

2KT
FD:j d0

n (D + 0 )tanh [MJ

(3.8)

2KT

wo_ w-0;¢
Fy = I-W_Dfd 0 e

/7(D)is the electronic density of states (DOS) per sgih= 1,2, and </7 (D)>D and </7 (D»w are the thermally
averaged DOS, given as

=] d0n0) [‘ %}

(3.9)

@O =[amn0)(- 2]

od
We make the assumption that each pairing intemnagbiotential consisted of two parts: an attractilecteon — phonon
interaction Vp and an attractive non electron — phonon interacfice. coulomb electronic parf) . [9]. With this

assumption, the interaction potent\4}. can be written as:
-V, +V, By — O] < Aw,
Vo = (3.10)
U, , |Dk —Dk,|<hwC
where Wy and W, are the characteristics energy cut off of the Delyenon and non — phonon respectively.

In the bulk limit, the sums oveK' in equations (3.2) and (3.3) can be converted émergy integrals and also
applying the condition in equation (3.10) togethéth the introduction of energy density of statNa(O), under a weak

coupling ()I =N (O)V << 1) approximation (usingK ; =7 =1) we get

B == NO)] () 1 tann | 20 D,

1k’

-N() ] (vmk,)zA.#k’ tanh VD#(T)} d0,, (3.11)

2k’

A, U (T
B == N(O) () 22 tann | 20 D,

2k’

- N(O) | Vi) 22 tanh [’BDT(T)}d =, (3.12)
1k’

Applying the condition in equation (3.10), the natetion potentiaI(ka,) and the superconducting gap in equation
(3.11) could further be written for the phonon pdXi, and the coulomb electronic paﬂs'l, respectively as
A = (Vl _Ul) AlFlD - UlA'l (sz - FzD) + (V12 _UlZ) AzeD -Up, A'2 (sz - FzD) (3.13)
and
A= ~UAF® -UA, (FY -FP)-U,A,F2 -U,, A, (FY -FP) (3.14)
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where

/7(D+Df)tanh 7“DZ+A2”

o 2KT
FP =(""dDO wherea = 1, 2,

T 2J0% +4?
Similarly, the phonon part}\,, and the coulomb electronic paﬂslz, of equation (3.12) could be written respectivady
Az = (Vz _Uz) AzeD - UzA'z (sz - FzD) + (V12 _Ulz) AlFlD - U12 All (sz - FzD) (3.15)

and

A, =-U,AFP -U,A, (FY -F2)-U,AFP -U, A (FY -FP)  @3.16)
Substituting equation (3.14) from equation (3.18)abtain:

AV All :V1A1F1D + V12A2F2D '
further simplification gives

A = (1_ \/1':1D ) A - V12A2F2D (3.17)
Similarly, solving eqgns. (3.15) and (3.16) in tlaere way, yields
B, =(1-V,F?) A, - VA R” (3.18)
Adding equations (3.17) and (3.18) we obtain egrl.9) and also from equations (3.14) and (3.16dktain eqgn. (3.20)
A+, = (1-ViEP) A, -V, AR R )+ (1-V,FR) A, - Vi,0,FP) (3.19)

and
A+ A, = [FUAR -UA (R -FP)-UnaFP -upa; (B -F))

(3.20)
+ [_U 2A2F2D —UA, (sz - FZD)_U12A1F1D —U0, (sz - FzD )]
Rearranging egn. (3.20) we have:
Al +A, +U A (sz - FzD ) +U A (sz - FzD ) +ULA, (sz - FZD)
(3.22)
+U 12A'1 (FZW - FzD ) =-U 1A1F1D - l-J12A2F2D -U 2A2F2D - U12A1F1D
Assuming that the two bands, and A, are identical (degenerate case),
A =0, =A N=N,=N
U,=U,=U, F°=F =F°
O A +A,=2A, A} +A, =2A" and
U,+U,=2U, F° =F? =2F° [10]
Applying these assumptions in equation (3.21), ate g
20 [1+U(FY - FP)+U,,(FY - F2 ) = - 2aUF® - 2aU,,F° (3.22)
Also allowing these assumptions to hold for theaband interaction i.8/; =V, =V , then equation (3.19) reduces to
20 = 2 (1-VF® -V,,F°) (3.23)

Substituting equation (3.23) into (3.22) we have
U u
1=|V - - 12 +V,, [F°
[ 1+U(RY -FP)+ULFY -FP2) 1+U(RY +F?)+UL(F" -F?) ﬂJ
Considering the limitd),, - O and V,, — 0, we have

U
1=|V - F° 3.24
Vo) o
also equations (3.17) and (3.18) reduce to
A, = (1-V,FP)a, and &, = (1-V,FP)a, (3.25)
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For a single band model, equations (3.24) and J3&thice to

U
1=|V - FP 3.26
[ 1+U(F2W—F2D)j ! (3.26)
and
A, = (1-VFP)A, (3.27)

We shall use equations (3.26) and (3.27) to caleulhe temperature derivative of the square of ghp parameters
A, and A, at the critical temperaturé, in order to obtain the specific heat junfy. . Differentiating equation (3.27) with

respect to T and taking the limfy, -~ OasT — T we get

2 2
[dAz} = (@-VF, ) {%} , (3.28)
T=T, dt T=T,

dT
Similarly differentiating equation (3.26) with resp to T and taking the limifA,, A, — 0 asT — T we get

dA? dF
F, U (G, -G 2 VvV -und D.
O AR

+(V -u D)GD[dAzl} +Fp v 9 —Fo) (3.29)
T | 3T,
where
. < rWD e (2kT. O+0, )tanh(0)
-Wp /2KT¢ 2 |:|
wn, ok n (2kT. O+0, ) tanh(0)
P = Jlawo, ), 90 2
W /2KT n (ZKTC O+, )
DA J‘—hWD J2KT, do (4ch )2 (D) '
W0, )2KTe n (Zch 0-0 )
Gy = I (~w-ay ) j2Ke (4ch) Q(D) ’
tantf 0 tanhO -0
QD)= anDz el = (3.30)
and
ug = U
1+U (R, - Fp) (3.31)

dAZ
Upon substitutior'|:d—_|_2 from equation (3.28) into equations (3.29) and)(8:é get
T=Tc

(V*)ai_i_u 2F a(Fw - FD)
dA? __ 0T, T, , (3.32)
ar (\/*)GD +U*2FD52 (GW_GD)

and the jump in the specific heat Btas

aC= [‘ﬂ (7). +& (70), -0, ) s

dar
HereV =V -U’ andé =1- VFD. And eliminatingV from equation (3.32) by using the expressionTor
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which has been obtained from equation (3.26) bintathe limitsA; -~ OandA, — O, we have

1-V'F, =0 (3.34)
Substituting the valu&J " from equation (3.34) into equation (3.32) we get
i aFD+(U*FD)2 a(F, -Fy)
{dAl} __ 9T, 0Tc (3.35)
dr T=Tc Go +(U*FD)4 (GW_GD)

For the constant DOS near Fermi energy and thentdgr averaged Doil‘j (D)>D =n (Df ) the equation (3.30 — 3.35)

show that in absence of repulsive interactlidn

L1687 [0, ) KT, tanh(aw, /2KT. )

JhWD /2KT; Q(D) d0

—Twg /2KTe

[2] (3.36)

1
Multiplying both sides of equation (3.36) by and rearranging it, we have
4

Ac 16<7 (O, ) tanh{aw, /2KT,, )
Vrc y Ith/ 2KTe Q(D) d 0

I/ 2KTe

(3.37)

where yis given by the coefficient of the normal state cfie heat electronic constan(C\, —ﬂ') expressed as

y=2n%2n(0,)/3.
Therefore equation (3.37) becomes
Ac _ 24tanh(aw, /2KT,)

2
Ve n-F, (3.38)
7wp /2KTg
QO)dO

using the Cauchy’s residue theorem, in the lifjit — O, the equation (3.38) becomes

where F,= I
~Iw /2KTe

Ac_ m12 = 143y (3.39)

KT/hw
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Fig. 1. AC/TC versusKT. / iw;, for constant density of states (from equation (9.36
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4.0 Conclusion
Within the BCS framework, the exact analytical egwmion for the specific heat jumfyC is given by equation (3.33) and

3.35). From our theoretical calculations it wasrfduhat the specific heat jump @t for a two — band superconductor is
given by A, /TC = 143y . This is in agreement with existing results in literatures [2, 11 and 12]. From Fig. 1, it was

found that the behavior A\ /T, versusKT, /Aw, for constant density of states was different fréwose of Kishore et al
[2], Marsiglio et al [11] and Carbotte [12].
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