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Abstract

In this paper, rarefied gas flow was modelled using only the diffuse reflection
boundary condition we examined the Poiseuille flow and Thermal creep volume flow
rates of rarefied gas. The linearized Boltzmann Equation served as our governing
equation and numerical examples were obtained to establish the range of Knudsen
number that is best suited for a good solution.
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1.0 Introduction

Having seen in some recent works the use of diffengethods to findings solutions to the classitaifproblems in
Rarefied Gas Dynamics [ 1-4], we would like in thisrk to revisit and solve in a special way theljpeon of Poiseuille flow
using the Finite difference method. We note firsalb that the literature concerning the basic peats we intend to solve
here is very extensive, hence in order to keepwloik to a modest length, we do not attempt toewvihe many works
already devoted to this topic. Instead we congigstra few of them.

Kosuge et al [5] investigated the problem of heanhdfer and temperature distribution in a binarytare of rarefied
gases between two parallel plates with differentperatures on the basis of kinetic theory. Underassumptions that the
gas molecules are hard spheres and undergo difefsection on the plates, the Boltzmann equatiors aaalyzed
numerically by means of an accurate finite diffeemethod, in which the complicated nonlinear smwh integrals are
computed efficiently by the deterministic numerikalnel method. As a result, the overall quantitisss obtained accurately
for a wide range of the Knudsen number. At the same, the behavior of the velocity distributiomfiion is clarified with
high accuracy.

The study by Titarev [6] was devoted to the develept of an efficient deterministic framework

for modelling of three-dimensional rarefied gasaoon the basis of the numerical solution of thdtZBwann kinetic
equation with the model collision integrals. Thanfrework consists of a high-order accurate impédiection scheme on
arbitrary unstructured meshes, the conservativegahare for the calculation of the model collisiotiegral and efficient
implementation on parallel machines. The main a&pfibn area of the suggested method was micro-sitaves.
Performance of the proposed approach was dematstoat a rarefied gas flow through the finite-lengiticular pipe. The
results showed good accuracy of the proposed #igoicross all flow regimes and its high efficiernd excellent parallel
scalability for up to 512 cores.

Yang et al [7] examined an accurate and direatrélgn for solving the semi-classical Boltzmann &tipn with
relaxation time approximation in phase space foalf treatment of rarefied gas flows of partictdsthree statistics. The
discrete ordinate method was first applied to @iize the velocity space of the distribution fuantio render a set of scalar
conservation laws with source term. The high omdeighted essentially non-oscillatory scheme was ihgplemented to
capture the time evolution of discretized veloclistribution function in physical space and timbeTmethod was developed
for two space dimensions and implemented on gasclear that obey the Maxwell-Boltzmann, Bose-Einstend Fermi-
Dirac statistics. Computational examples in oned amo-dimensional initial value problems of rarefigas flows were
presented and the results indicating good reselutibthe main flow features were achieved. Flowswide range of
relaxation times and Knudsen numbers covering wdiffe flow regimes were computed to validate theusbhess of the
method. The recovery of quantum statistics to tlassical limit was also tested for small fugaciglues.Other studies
worthy of note abound in the literature [8-13]
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However, in this study, Rarefied gas flow will bedelled using only the diffuse reflection boundapndition, this
means that further work could be done by usingiffase-specular boundary conditions. We shall amme existing solvers
namely; LAPACK and LINPACK, on the finite differeaanethod to examine the Poiseuille flow and Therrnaép volume
flow rates of rarefied gas. The linearized Boltzmaguation will serve as our governing equation mmecherical examples
will be established using different range of Knudsembers.

2.0 The Linearized Boltzmann Equation

The non-linearity form of the Boltzmann equatiore&sential in application if the gas is far frorerthal equilibrium.
However, if the state of the gas is near thermalilibgium, a linearised form of the Boltzmann edaatwill provide a
reasonably accurate description of the transpoengpimena. This form assumed that the perturbatiothefvelocity
distribution from its equilibrium form is small.

Following William [14] a linearized form of the Bamann equation was given as
, 3 , 3 ¢ dh(x,c)
Cy [(c - E) K, + R, + ZCXKO] +c, (c - E) K, + c,R, + — + Aoh(x, c)
Ao ' 72 / 1y, 2( 2 3 12 3
== |dcexp|—c" |h(x,c) |1+ 2cc"+={c*==)(c" —= 2.1
n%f p[ ] (x,¢) [ 3 ( 2) ( 2)] (2.1)

where h is a disturbance caused to the local MdiamelR, is the relative density in the x-direction, kK the
temperature gradient in the x-direction,

1 1
— m \2 — m \2

3.0  Finite Difference Method

Consider the problem of a rarefied gas in therBdfion between two parallel plates separated bigtance d, the
flow resulting from both a pressure and a tempeeatwadient. Using the linearized two dimensiongdraach of Cercignani
and Daneri [15] with the Bhatnagar-Gross-Krook Md@K), the Boltzmann equation to be solved isueet to

5-@?+5;99=,4—¢+v+2h{q;¢[h52—§)

Yoy 9z
v = [¢Fodé
[gh}v+r):waﬁﬂf
q = [égFod¢
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Where

¢ = relative changt in velocit y distributi on functior
{({X,{y,fz) = the molecular volecity

a@, .4, .d,) = the gas velocity
v = relative changein the particle density
7 = relative changein temperature
A = the collision frequency

The perturbation termg andt depend only on z (flow direction) and are relatedhe pressure and temperature gradient.

They are
z z
T=k,|—|, v+1T =k | —
(&) ver=w(3)
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wherek, is proportional to pressure gradient andis proportional to temperature gradient, and kesthsmall compared to
unity. The velocity of the reflecting moleculesiahe wall is specified by the Maxwellian distrilmut; then the boundary
conditions are:

(1 Yz 223
w( Zngnfy,z,fj(kl kz)(dj+kz[dj(hf Zj (3.2)

Where
1, if §,>0
Sgnéy {_1’ f fy <0
A solution in the form

z
o(E.v2)=0,) 2]+ a(r.0) (33)
was sought where
2o (€)= kv ko[her - 3] (3.4)
Substituting equation (3.3) into equation (3.1)hase
do R e T P G ]
£, 5+ 0, (y.) 5{ oo K [hs 2j+2Ahqz} (3.5)

Multiplying both sides of equation (3.5) by

[ DJexd-nlez +£2)

and integrating over full ranges, we have

F -l LI .
£, & + AF Zh(zqu Tt + & § hj (3.6)
where the function F is defined by
Fv.)=2 [ [ &onnle: & Jlaly., g ae, 37)
Integrating equation (3.6) under the boundary cioos
¢1(_%d %n ('Cy,z’{):o (38)
we have
(e Yy -1 ok, L2k, Aly -1
Fly.&,)=(,) j_%swy (2h) [ZhAqZ - h-gh jexp{ e }dt (3.9)

When the gas velocity, @ expressed by

q.(y)= [%JZIZ F exp(-hé2)dé, (3.10)

Equation (3.10) now reduces to

1 1 1 1 K, K,
hza,(y)=m2[ . n2Aly-t]| h¥q,(t)- ——-—4— |t
’5 2dh?4  2dh2)
N 1
-y —4 Jl[h2A|y—t|jdt (311)
2 2dh?A

where/, is defined by

=L yenf -y -2y
© y
1
= 20
Let A=dh?A=|"
T2
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y=hzdy
1
T =dh2At
h%qz =[2dh 2/1] {[1 vk —[2 -y (/7)} } (3.12)
Then equation (3.11) will be written as two intdgrquations, i.e.,
1a 1
w,7)-n Z.fiwp(q)\l_l(hz/uy—todt =1 (313)
and
el 1 1 s 1
wo(n)-m2 5w, (n)J_l(hz/Hy —t|jdt =5 [l J_l(hz/l|y —t|jdt (3.14)
where

0 =theinverseKnudsemumber
From equation (3.12), we have the velocity of the mpduced by the pressure gradient as,

1 1
= — 77'2
h?2 - 1-y 31
G = (1= W] (319
and that induced by temperature gradient as
1 1
= - JT? 1
h?2 - -y 3.16
qu 25 |:2 T :| ( )

The volume flow rate is then given by

G, = o[ a,(y)dy

1 a 1
T’ T 2 5,2 dp
= -—— ¥ dn |h2d? == 3.17
[25 452 Ji% P(,7) ,7 dZ ( )
Gr = p[ da.(y)dy
R 1 dT
= -—— ¥ dn |hzn kd? — 3.18
[45 257 2 ¥r () ’7] okd? (318)
Expressing equations (3.17) and (3 18) in non -dsimeral form gives;
O =55 75 f Yo (m)dn (3.19)
and -
1 5
T2 T
Qr =45~ 207 "2 1/JT(77)d77 (3.20)

The subscript® andT imply Poiseuille flow and Thermal creep respectively.

Next, is to solve numerically the unknown functialysandy; in equations (3.13) and (3.14) respectively.

In order to solve equations (3.13) and (3.14)ite difference methodwas utilized after discretization as
1 n-1

- Zl//PkJ-:ﬂ J_lu %(rn +7,,)- rudr =1 (321

1 n-1

Th ﬂ_E;wTk J;T:ﬂ J—lu %(Tn + Tn+l)_ T‘]dl’ =%' ”_% _[Z‘]lu %(Tn + Tn+1)_ T‘]dT (322
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Where/,, is the stepwise function @/ ,and {//r, the stepwise function d/;

The constant value of the functiong, and /5, on each interval is interpreted as the value at rtipoint. The
transcendental functio'rh'_(x) has a singularity whexX — O.
According to the obvious way of differences, equadi(3.21) and (3.22) reduce to the matrix

n-1
DA, =1 forn=0,1,2,........ ,n-1 (3.23)
k=0
n-1
> By, =9, forn=0,1,2,....... ,n-1 (3.24)
k=0
where
1 (2k-n-2)a 2h + l_ n
A, =0, —m?| . | |———A—-1||dT 325
w = On =7 [ ( o ‘ (325)
A, =B, (3.26)
1 i 2h+1-n
9y = -7 j;\J{TA 7| |dr (327)

Integration equations (3.25) and (3.27) using tleperties ofJ, we have;

If h#k
A, =7" J{Z‘f (u - (2n)'1]:| - JOHZ? (u + (2n)‘1m (328)

Aw = [ 21 JJO[Q n] (329)
T2 T

g, =7" Jz{ ° (1——2“1_””“2 il(l+—2h+1_”j (3.30)

m? n

If h=k

4.0 Numerical Results

Using LAPAK and LINPAC solvers we obtained the do¥ing results
Table 1: Poiseuille flow and Thermal Creep volume flow ratesusing Finite Difference Method. Parameter used:
Accommodation coefficient= 1

Channel width (g) or inverse Knudsen Finite Difference Method (FDM) Finite Difference Method (FDM)

number (kn) No of Elements = 100 No of Elements = 100
No of Gaussian Points = 50 No of Gaussian Points = 50
Poiseuille Flow rates Thermal creep volume flow rates

0.0010 4.194779 1.814151

0.0100 3.049363 1.235673

0.1000 2.032757 0.694946

0.5000 1.601950 0.398527

1.0000 1.538786 0.294933

1.5000 1.553608 0.241208

2.0000 1.595032 0.206283

4.0000 1.846180 0.133843

6.0000 2.141391 0.099800

8.0000 2.451381 0.079584

10.000 2.768504 0.066139

50.000 9.263045 0.015036

100.00 17.06334 0.007810
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The finite difference method can only take accomatioth coefficient of one. This is due to the fdwattwe adopted
only the diffuse reflection boundary condition. @&nge of inverse Knudsen numbers from 0.001 to I&@9aensidered which
accommodated the slip flow, transition flow and tdlisionless flow regime.

The results show an agreement of 96.6% within lipeasd collisionless regime and 99.9% in the titions regime. The
flow rate shows its minimum &, = 1.0 in the transition regime. This result also agregtl that of Cercignani and Daneri
[15] who pointed out that the minimum occurs betw&d and 1.2. It was also observed that as ther$evKnudsen number
gets very large, the volume flow rate shoots ustirally; reason was that the mean-free-path besdanger.

In the computation of the Thermal Creep Volume FRate, the same parameters were used and the atssukhows
an agreement of 96.6% within the slip and collilges regime and 99.9% in the transition regimeas noticed that as the
channel gets wider the thermal creep volume flaesrgets smaller.

5.0 Conclusion

Finite difference method was able to give excelkesults on Poiseuille and Thermal creep at aivelgtmuch shorter
computation and can be comparable to the othetienlmethods even up to 99% accuracy. Howeverpuldt not take
accommodation coefficient of order greater thanlmewause of the consideration of only the diffusenidary condition.
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