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In this present study, the Adomain decomposition method is applied to the solution 

of General Riccati Differential Equations. The method is applied to some examples and 
the results show that the method is reliable, accurate and converges rapidly. 
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1.0    Introduction 

Recently a great deal of interest has been focused on the application of Adomian’s decomposition method for the 
solution of many different problems. For example in [1 - 8] boundary value problems, algebraic equations and partial 
differential equations are considered. The Adomian decomposition method, which accurately computes the series solution, is 
of great interest to applied sciences. The method provides the solution in a rapidly convergent series with components that are 
elegantly computed. The main advantage of the method is that it can be applied directly for all types of differential and 
integral equations, linear or nonlinear, homogeneous or inhomogeneous, with constant coefficients or with variable 
coefficients. Another important advantage is that the method is capable of greatly reducing the size of computation work 
while still maintaining high accuracy of the numerical solution. In this present article, we present the theoretical analysis and 
practical application of ADM. Furthermore, we present a further insight into the use of (ADM) for solving general Riccati 
differential equation. We compare the result obtained with the exact or theoretical solutions. 
 
2.0 The Basic Concepts of Adomain Decomposition Method 

For our construction, we shall refer general Riccati differential equation of the form 
��

��
 = T(t)x + U(t)x2 + V(t),     x(0)= W(t)                                                                                        (1) 

Where T(t), U(t), V(t) and W(t) are scalar functions. To solve we further assume that x(t) is sufficiently differentiable 
and  that the solution of (1) exists and satisfies the Lipschitz condition. ADM usually defines an equation in an operation 
form by considering the highest- ordered derivative in the problem. 

In an operator form, equation (1) can be written as 
S x(t)= T(t)x + U(t)x2 + V(t),                                                                                          (2) 
Where the differential operator S is given as 

S  = 
�

��
                                                                                                                                           (3) 

The inverse operator S-1 is considered a one fold integral operator defined by 

S-1 = � ��
�

�
                                                                                                                                     (4) 

If we operate S-1 on the right hand side of (2) and use initial condition xo(0) = W(t), we have 
X (t) = xo + S-1 (U(t)x2 +T(t)x + V(t))                                                                              (5)  
Let f(t, x) =  U(t)x2 +T(t)x + V(t) 
Then, equation (5) becomes 
X (t) = xo + S-1 f (t, x)                                                                                                    (6)  
The ADM introduce the x (t) in an infinite as 
	(�) = ∑ �(�)

�
���                                                                                                                        (7) 

Where the components	�(�) will be determined recursively. Moreover, the method defined the non linear function f(t, 
x) by the infinite series of the form. 
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f(t, x) =∑ ��

�
���                                                                                                                            (8)  

If we put equation (7) and (8) in (6), we obtain 
∑ �(�)
�
���  =   ∑ ��

�
���                                                                                                               (9) 

The next step is to seek a way to determine the component �(�) for which n ≥ 0. We first identify the zero components 
�(�) by all terms that arise from the initial conditions. The remaining component is determined by using the preceding 
component. 

 Each term of the series (7) is given by the recurrent relation. 
�(�) = W (t) 
	���(�) = S-1 (��), n ≥ 0                                                                                                             (10) 
���(�) = S-1 (U (t)		�

� +T (t)	� + V (t)) 
We must state here that in practice all term of the series in (7) cannot be determined and the solution will be 

approximated by series of the form. 
��(�) = ∑ �(�)

���
���                                                                                                                       (11) 

With (11), we obtain series solution for our system (1). The method reduces significantly the massive computation which 
may arise if discretisation methods are used for the solution of non- linear problems. 
Numerical Examples 
Example 1 

We consider the system 
X’(t) = x2    x(0) = 1 
T(t) =0, U(t) =1,V(t) = 1 and W(t) = 1                                                                               (12) 
With the theoretical solution given as 

X(t) = 
�

���
 

We apply ADM operator to equation (12) to produce 
Sx = x2                                                                                                                              (13) 
Operating S-1 on both sides of (13) and use the initial condition we obtain  
X (t)=x(0) + S-1 (x2) 
X0 = 1 + t                                                                                                                        (14) 
Xn+1=1 + S-1 (	�

�) 
X1 = 1 + S-1(1 + 2t + t2) 

X1= 1+t +t2+	
��

�
 

X2= 1+t +t2+	t3+
���

�
+
��

�
+
��

�
+

� 

!�
 

In the same manner, the rest of the component of the iteration formulae (14) can be obtained using the maple package. 
Example 2 

Consider the following example 
X’(t) = -x2(t) + 1   (x) = 0                                                                                                (15) 
Here T(t) = 0, U(t) = -1,V(t) = 1 and W(t) = 0. 

The exact solution is x (t) = 
"#$��

"#$��
                                                                                                 (16) 

To solve equation (15) by means of ADM, (15) becomes %�(�) = -x2(t) + 1   
X(0) = t                                                                                                                          (17) 

X1 =  � −
��

�
           

X2= � −
��

�
+

���

�'
	−

� 

!�
 

X3= � −
��

�
+

���

�'
	−

� 

!�
+

�(�)

�(�'
+
��*�++

'��,'
 +

*�+�

���('
−

�+�

'�'�'
  

In the same manner, the rest of the component of the iteration formulas (17) can be obtained using the maple package. 
Example 3 

Consider the following example 
X’(t) = t2+x2(t)   x(0) =  1                                                                                               (18) 
Here T(t)=0, U(t)=1,V(t)=t2 and W(t)=1 
 We apply ADM operator to equation (18) to produce 
sx = t

2+x                                                                                                                         (19) 
Operating S-1 on both sides of (19) and use the initial conditions, we obtain 
X (t) = 1+ S-1 t2+ S-1 x 

Implies 
 x0 = 1 ++ S-1 t2+ S-1 x 
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x0 = 1 +   
��

�
           

Xn+1 (t) = 1 + S-1 t2+ S-1 xn                                                                                               (20) 
Then; 
X1 (t) = 1 + S-1 t2+ S-1 x0 

X1 (t) = 1 + t + 
��

�
 + 

��

!
 +

� 

!�
  

 X1 (t) = 1 + t + t2 + 
*��

�
+
,��

�'
 + 

��

�(
 +
� 

,
+
���-

'�*
 +

'�)

,'!
+

��++

!��
+

�+#

��!(
+

�

'�'�'
 

The rest of the component of the iteration formula (20) can be obtained using the maple package. 
 

3.0 Numerical Result and Discussion 
We now obtain numerical solution of Riccati differential equation. Table 1 shows comparison between the 2- iterate of 

ADM and exact solution for example 1. Table 2 shows comparison between the 3- iterate of ADM and exact solution for 
example 2. Table 3 shows comparison between the 2- iterate of ADM  Tayor matrix, Runge Kutta, Picard and Euler  for 
example 3  

 
Table 1, comparison between the 2- iterate of ADM and exact solution for Example 1 
T Exact solution 2-iterate ADM Error 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1.000000000 
1.111111164 
1.250000000 
1.428571463 
1.666666627 
2.000000000 
2.500000238 
3.333333969 
5.000001907 
10.000009537 

1.000000000 
1.111111164 
1.249999881 
1.428571224 
1.666666746 
2.000000000 
2.500000000 
3.333333969 
5.000000000 
10.000004768 

0.000000000 
0.000000000 
0.000000119 
0.000000238 
0.000000119 
0.000000000 
0.000000238 
0.000000000 
0.000001907 
0.000004768 

 
Table 2, comparison between the 3- iterate of ADM and exact solution for Example 2 
T Exact solution 3-iterate ADM Error 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0996679946 
0.1973753203 
0.2913126124 
0.3799489622 
0.4621171572 
0.5370495679 
0.6043677771 
0.6640367702 
0.7162978702 
0.7615941560 

0.0996679946 
0.1973753160 
0.2913124564 
0.3799469862 
0.4641033328 
0.5369833784 
0.6041244734 
0.6633009219 
0.7143823394 
0.7571662670 

0.0000000005 
0.0000000043 
0.000000156 
0.000001976 
0.00001382 
0.00005619 
0.0002433 
0.0007358 
0.001916 
0.00428 

 
Table 3, comparison between the 2- iterate of ADM  Tayor matrix, Runge Kutta, Picard and Euler  for Example 3  
Method t=0.5 t=0.90 t=0.95 
Taylor matrix 
Picard 
2-iterate ADM 

1.989580000 
1.969000000 
1.964676823 

4.44700000 
4.21300000 
4.4060704915 

4.945000000 
4.671000000 
4.940949522 

 
4.0 Conclusion 

In this present paper, we applied ADM for solving General Riccati Differential Equation. The method is applied in a 
direct way without using perturbation discretisation, transformation, and linearization. It may be concluded that ADM is very 
powerful and efficient in finding the analytical solutions for a wide class of linear and non- linear differential equation. The 
method gives more realistic series solution that converges very rapidly in physical problems. It is worth mentioning that the 
method is capable of reducing the volume of the computational work as compared to the classical methods while still 
maintaining the high accuracy of the numerical result. 
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