# Strengthening the LP-Relaxation of Alternative Formulations of Two Stage Capacitated Facility Location Problems 

${ }^{1}$ Abdullahi N. and ${ }^{2}$ Sani B.<br>${ }^{1}$ Department of Mathematics and Computer Science, Nigerian Defence Academy, NDA Kaduna<br>${ }^{2}$ Department of Mathematics, Ahmadu Bello University, Zaria


#### Abstract

Alternative formulations for the Two Stage Capacitated Facility (Warehouse or Plants) Location Problem (TSCFLP) are compared and shown to be equivalent. The comparison, with main emphasis on strengthening the (linear programming) LPrelaxations is based on some theoretical and computational results. The theoretical aspect compares some relations among the subsets of some constraints of the problem sets. On the other hand, the computational aspect compares the relaxations in terms of the quality of the lower bounds which the original formulations produce when the flow conservation constraints (fcc) are properly represented. Where feasible, these LP based bounds are further strengthened by adding valid inequalities and the problems solved directly on some small and medium size test problems having various characteristics.


Keywords: Mixed integer programming, Facility (Warehouse, or Plant) Location problem, valid inequalities, LPrelaxation.

### 1.0 Introduction

The facility location problem (FLP) can be classified into different categories depending on the restrictions assumed. In the uncapacitated or simple plant location problem (SPLP), each facility is assumed to have no limits on its capacity. When each facility has a limited capacity the problem is called the capacitated PLP (CPLP). Other sub categories of these problems include the capacitated/uncapacitated PLP with: single source constraints, (CPLPSS), customer's facility preference, Pmedian problems, aggregate constraints, maximum covering location problems (MCLP) and so on. These are classified as the single stage/level location problems with two decisions to be made. One is the choice of the subset of facilities or plants to open while the second decision is which customers should be assigned to the chosen subset of plants.

When a distribution system consists of facilities on several hierarchically layered levels, where those on higher level can be determined independently of the chosen locations on a lower level, then these type of location problem are called multi stage models, see for example [1].

The TSCFLP is a multi stage model with two stages or levels but practically more than three decision levels. The first or upper most stage is the production plants, where the decision to be made is the choice of which plants to open. The second stage is the distribution depots and the decision to be made in this case is which subset of depots to open. The third stage is the customers and the decision here is to decide which customer should be assigned to which open depots i.e. the open plants to satisfy their demand requirement. Included in this last stage is the decision of the flow of product from the plants to the depots. The problem of choosing the location of facilities in order to serve a set of customers at minimum cost can be encountered in the public sector; (Libraries, health facilities, water treatment plants, the military etc) private sector (factories, telecommunications, Banks, agriculture etc) and managing the environment (waste disposal in chemical industries, tannery, breeding farms etc); Agar and Salhi [2] provided many applications of PLP's across all sectors of societies, while [1] provided various model classifications of PLP and TSCFLP and the methods of solving them.

This paper is concerned with modeling and solving directly the class of mixed integer programming (MIP) problems known as the two stage/level capacitated facility (plants or warehouse) location problem (TSCFLP). The modeling is done by strengthening the linear programming (LP) relaxation of the facility location problem. The model involves choosing the best

Corresponding author: Abdullahi N., E-mail: nasirualbani@yahoo.co.uk, Tel.: +2348035587641

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

locations for facilities in order to satisfy Customer's demands for certain commodities/products. Given a set of potential locations for facilities and a set of customers, the plant location problem (PLP) is to locate facilities in such a way that the total cost for assigning customers to facilities and satisfying the demand required by customers is minimized. The cost considered is the sum of the fixed costs of opening facilities and the costs for assigning customers to specific facilities.

The paper is organized as follows: section 1.1 gives some notations, definitions and briefly outlines some related works on strengthening the LP relaxation of TSCFLP, section 2 outlines alternative (MIP) formulations for the TSCFLP, section 3 presents the results of the study. Section 4 analyzes the quality of the lower bounds that can be obtained for this problem by LP relaxation and strengthening them. Finally, in section 5, we summarize and conclude our findings.

### 1.1. Notation, Definitions and some related work

Notation: The following notation is used conventionally except where otherwise stated.
$\left(S_{1}, \ldots \ldots S_{k}\right)=$ the set of equality or inequality constraints.
$F\left(S_{1}, \ldots \ldots S_{k}\right)=$ the feasible region defined by the constraints $\left(S_{1}, \ldots \ldots S_{k}\right) . \operatorname{conv}\left(S_{1}, \ldots \ldots \ldots S_{k}\right)=$ the convex hull of the corresponding region.
$v(p)=$ the value for the objective function of problem $P$.
$I=\{1, \ldots, m\}$, the set of plants.

$$
J=\{1, \ldots, n\}, \text { the set of customers. }
$$

$K=\{1, \ldots, p\}$, the set of depots;
$\boldsymbol{C}_{k j}=$ Total cost of transportation from depot k to serve customer $\mathrm{j}, \forall j \in J, \forall k \in K$
$\boldsymbol{g}_{k}=$ fixed cost associated with depot $\mathrm{k}, \forall k \in K$
$f_{i}=$ fixed cost associated with plant i $\forall i \in I$
$\boldsymbol{b}_{i k}=$ unit cost of transportation from plant i to depot $\mathrm{k}, \forall i \in I, \forall k \in K$
$\boldsymbol{d}_{j}=$ demand of customer $\mathrm{j}, \forall j \in J$
$\boldsymbol{S}_{k}=$ capacity of depot $\mathrm{k}, \forall k \in K$
$a_{i}=$ capacity of plant i $\forall i \in I$
The decision variables are define as
$\boldsymbol{X}_{k j}=$ fraction of the demand of customer j supplied from depot $\mathrm{k}, \forall j \in J, \forall k \in K$
$y_{i}=\left\{\begin{array}{l}0 \\ 1\end{array} \quad ; 0\right.$ if plant i is closed, and 1 if plant i is open, $\forall i \in I$
$\mathcal{W}_{i k}=$ units of demand transported from plant i to depot $\mathrm{k}, \forall i \in I, \forall k \in K$
$Z_{k}=\left\{\begin{array}{l}0 \\ 1\end{array} \quad ; 0\right.$ if depot k is closed, and 1 if depot k is open, $\forall k \in K$
$q_{i k j}=$ Cost of servicing customer $j$ from depot $k$ through plant $i, \forall i \in I, j \in J, k \in K$.
$\mathcal{W}_{i k j}=$ fraction of the demand of customer $j$ shipped from plant $i$ through depot $k$.
Definition 1: A linear programming (LP) relaxation is the relaxation of the original (LP) problem formed by removing or dropping the integrality restrictions on the concerned variables. Formally, a relaxation of a minimization problem is defined as follows.

Definition 2: Abdullahi and Sani [3]; Problem $(R Z): \min \{g(x, y) \mid x, y \in W\}$ is a relaxation of problem $(Z): \min \{f(x, y) \mid x, y \in V\}$, with the same decision variables, iff
i. $\quad F(R Z)$ contains $F(Z)$ i.e $F(R Z) \supseteq F(Z)$
ii. Over $F(Z)$, the objective function of $(R Z)$ dominates (i.e is better than) that of $(Z)$ i.e $\forall x, y \in V, g(x, y) \leq$ $f(x, y)$, where $V \subseteq W$.

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

iii. It clearly follows that the optimal value of $R Z$ is less than or equal to the optimal value of $Z$ i.e, $\bar{Z}($. $z($.$) , (in case Table 3: Sensitivity analysis of minimization) since R Z$ has more feasible solutions than $Z$; where $Z($. is the optimal integer objective value, while $\bar{z}($.$) is the optimal objective value of the relaxed problem.$
Definition 3: Magnanti and Wong [4]: A polyhedron $\mathrm{P} \subseteq \mathbb{R}_{+}^{n} \times \mathbb{Z}_{+}^{m}$; where $n=(i \times k) \times(k \times j), m=(i \times k)$ is a formulation for a set $X^{T S C F L}$, if $X^{T S C F L}=P \cap\left(\mathbb{R}_{+}^{n} \times \mathbb{Z}_{+}^{m}\right)$. This definition indicates the existence of many formulations for a set $X$. and this raises the questions about "good" and 'not so good" formulations.

Definition 4: Magnanti and Wong [4]: Given a set $X \subseteq \mathbb{R}^{n}$ and two formulations $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ for $X$, we say that $\mathrm{P}_{1}$ is better than $\mathrm{P}_{2}$, if $P_{1} \subseteq P_{2}$. A formulation P is called ideal if $P \subseteq \operatorname{conv}(X)$.

Definition 5. Magnanti and Wong [4]: Problem $P$ is said to dominate (or is a stronger formulation than) problem $Q$ if $v(P) \geq v(Q)$ for all $\in Y$, with a strict inequality for at least one point $y \in Y$..

Definition 6. Magnanti and Wong [4]: Problem formulations P and Q are said to be equivalent MIP representation of the same problem if $v(P)(y, z)=v(Q)(y, z)$ for all $y_{i \in I}, z_{k \in K}$. i.e. The two models have the same integer variables and may have different continuous variables and constraints, but always give the same objective function values for any feasible assignment of the integer variables.

We discuss the LP relaxations of various alternative formulations of the TSCFLP strengthened by: (i). Representing the flow conservation constraints (fcc) correctly [5]. (ii).The valid inequalities based on Davis and Ray ( $D \& R$ ) [3]. (iii).The valid inequalities based on Ro and Tha $(R \& T)$ [6]. Analogous work on strengthening the LP relaxation of the TSCFLP based on Knapsack cover, flow cover and fixed charge path inequalities are presented in [7].

The main purpose of LP relaxation in solving MIP is to provide an optimal value which in turn provides a lower bound (in case of minimization) on the optimal value of the corresponding MIP. While other relaxations such as those based on lagrangian duality, semi definite programming and decomposition techniques are undoubtedly useful in special situations. LP relaxation generally gives reasonably tight bounds, and the methodology for solving LPs is very efficient and reliable [8]. Works on strengthening the LP relaxations of CFLP and hence the TSCFLP are reported in the literature. Most of the reports are centered on CFLP, but as usual the TSCFLP is an extension of CFLP and most of the results found for CFLP are valid for TSCFLP [7 and 9].

Studies on LP relaxations of alternative formulations of TSCFLP where the same feasible set is represented by different sets of constraints (which may provide different lower bounds) in the context of LP relaxation is not reported in the literature as far as we know. In [10], for example, work on single-client CFLP was considered and they gave extended flow cover inequalities with uniform capacities and their algorithm is an approximation with integrality gap $=1$. In [5], adapted flow cover inequalities for a general CFLP was considered. They used this cutting plane to tighten the formulation, thereby providing a better lower bound with integrality gap of less than one percent. Theirs is not an approximation algorithm like the former case. In [11], an approximation algorithm based on covering inequalities for a single client CFLP with integrality gap $\leq 2$ was considered. In our case, the flow conservation constraint ( $f c c$ ) [5], with the valid inequalities of Davis and Ray, $(D \& R)$ [3], are appended to various alternative flow formulations of the TSCFLP, while the valid inequalities due to Ro and Tcha ( $R \& T$ ) [6], were incorporated to the multicommodity formulation of TSCFLP. The effect of all these is discussed in sections 3 and 4.

On the comparison of alternative formulations of TSCFLP; in [12], an optimization problem over the set of lagrangian relaxations of two alternative formulations of TSCFLP with the objective of finding the relaxation that produces the best dual bound was considered. Also in [6], two alternative mathematical model formulations for the two-level distribution and waste disposal problem with capacity constraints (which is a special case of TSCFLP) are analyzed. They have shown that both formulations are equivalent. Also, comparison of alternative formulation can be seen in [13] but, in the context of comparing several lagrangian relaxations of the formulations of two-stage uncapacitated facility location problem. In the seminal work presented in [4], two general alternative formulations of MIP problem were considered but, with the objective of theoretically outlining model formulation selection criterion in the context of accelerating Benders's Decomposition. In this paper we considered seven flow formulations of alternative mathematical models, and one multicommodity formulation of TSCFLP, with the objective of analyzing their LP relaxations.

## 2. Model Formulations

Modeling the two Level/stage problems is slightly less straightforward than the one stage problem. There are two obvious ways of formulating the problem: "flow formulation" and the "multi commodity formulation". In the flow formulation we consider the flow at each level, and require conservation of flow between levels. It can be proved [5], that the LP relaxation of the multicommodity formulation is at least as strong as the LP relaxation of the flow formulation. A draw back with the multicommodity formulation is, however, that it grows rapidly as the size of the problem instance grows, see table 2 for example (cf. Table 1).

FLOW FORMULATION: TSCFLP can be stated as follows: A single product is produced at some facilities, plants or warehouses in order to satisfy customer demands. The product is transported from these plants (or major plants) to some depots (or minor plants) and then to the customers. The capacities of plants and depots are limited. The problem formulation for TSCFLP, as presented in [14] can be stated as follows:

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

$$
\begin{equation*}
Z_{f f 1}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} \mathcal{W}_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{\text {TSCFL }}\right\}, \tag{1-1}
\end{equation*}
$$

where

$$
\begin{align*}
& X^{\text {TSCFL }}=\left\{(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}:\right. \\
& \sum_{k \in K} x_{k j} \quad \forall j \in J  \tag{1-2}\\
& \sum_{j \in J} d_{j} x_{k j} \leq S_{k} z_{k} \quad \forall k \in K  \tag{1-3}\\
& x_{k j}-z_{k} \leq 0 \quad \forall j \in J, \forall k \in K  \tag{1-4}\\
& \sum_{k \in K} w_{i k} \leq a_{i} y_{i} \quad \forall i \in I  \tag{1-5}\\
& \sum_{i \in I} w_{i k}=\sum_{j \in J} d_{j} x_{k j} \quad \forall k \in K  \tag{1-6}\\
& W_{i k} \geq 0 \quad \forall i \in I, \forall k \in K  \tag{1-7}\\
& y_{i}, z_{k} \text { integer } \quad \forall i \in I, \forall k \in K  \tag{1-8}\\
& \left.0 \leq x_{k j} \leq 1, \quad 0 \leq y_{i} \leq 1, \quad 0 \leq z_{k} \leq 1, \quad \forall i, k, j\right\} \tag{1-9}
\end{align*}
$$

The objective function (1-1) minimizes the sums of the fixed costs of opening both plants and depots, and the transportation costs of shipping demand from plants to depots and from depots to customers. The constraint (1-2) ensures that each customer's demand is fully met by the depots. Constraint (1-3) ensures that open depots do not supply more than their capacity, i.e, for each depot the sum of the demand of the customers it is supplying is less than or equal to its capacity. Constraint (1-4) ensures that customers are only served from open depots. Constraint (1-5) guarantees that open plants do not supply more than their capacities, i.e, for each plant the sum of the demand leaving it is less than or equal to the capacity it can hold. Constraint (1-6) indicates conservation of flow constraints for the depots. That is, for each depot the amount of demand entering the depot from the plants is equal to the demand leaving the depot to be transported to the customers. Constraint (1-7) consists of non negativity constraints on the amount of demand transported from plants to depots. Constraint (1-8) consists of integrality constraints on both plants and depots. Constraints (1-9) are non negativity and simple upper bound constraints restricting the fractional values of customers demand.

Surrogate constraints (1-10) and (1-11) can be added as follows:
$\sum_{i \in I} \sum_{k \in K} w_{i k} \leq \sum_{i \in I} a_{i} y_{i}$
$\sum_{k \in K} \boldsymbol{S}_{k} Z_{k} \geq \sum_{j \in J} d_{j}$
( $1-10$ ) is derived by summing (1-5) over all $i$ plants and states that the total capacity of the plants is at least as large as the total demand being transported from them to the depots. (1-11) is derived by summing (1-3) over all $k$ depots and using the equalities (1-2) and ensures that the total capacities of the depots is at least as large as the total demand being transported from them to the customers. These two constraints are redundant in the original formulation but strengthen some of the relaxations. The second formulation of the TSCFLP with the surrogate constraints added is:

$$
\begin{equation*}
Z_{f f 2}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} w_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{T S C F L}\right\} \tag{2-1}
\end{equation*}
$$

where

$$
X^{T S C F L}=\left\{(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}:(1-2) \text { to }(1-9)\right. \text { plus }
$$

$(1-10),(1-11)\}$. Adding these surrogate constraints will not change/or better the optimal objective values of both the MIP and its relaxation, rendering them redundant in this case, but they are useful in strengthening other relaxations like lagrangean relaxation [3].
In the work of [12], two formulations of TSCFLP were presented, the first one contained the valid inequalities of Davis and Ray [15]; and is given as follows:

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

$$
\begin{equation*}
Z_{f f 3}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} W_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{T S C F L}\right\}, \tag{3-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X^{\text {TSCFL }}=\left\{(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}:\right. \\
\sum_{k \in K} w_{i k} \leq a_{i} & \forall i \in I \\
\sum_{i \in I} w_{i k} \leq S_{k} & \forall k \in K \\
\sum_{k \in K} x_{k j} \geq d_{j} & \forall j \in J \\
\sum_{i \in I} w_{i k} \geq \sum_{j \in J} x_{k j} & \forall k \in K \\
W_{i k} \leq m_{i k} y_{i} & \\
x_{k j} \leq l_{k j} z_{k} & \forall i \in I, \forall k \in K,  \tag{3-8}\\
w_{i k}, x_{k j} \geq 0 & \forall k \in K, \forall j \in J \\
y_{i}, z_{k} \in\{0, & 1\}
\end{array}
$$

Where, $\boldsymbol{m}_{i k}=\min \left\{a_{i}, S_{k}\right\} \quad$ and $\quad l_{k j}=\min \left\{\boldsymbol{S}_{k}, \boldsymbol{d}_{j}\right\} \quad \forall i \in I, \forall j \in J, \forall k \in K$ are upper
bounds for the respective flows [12]. Valid inequalities (3-6) and (3-7) are based on [15]. Thus constraints (3-6,3-7) ensures that total flow between plant $i$ and customer $j$ can never exceed the minimum of customer $j^{\prime} s$ demand and the capacity at plant $i$, and total product flow between plant $i$ and depot $k$ can never be larger than the minimum of the capacity at depot $k$, and the maximum production generated at plant $i$ respectively. Constraints (3-4) and (3-5) are fulfilled as equalities for an optimal solution of (3-1)-(3-9). The second formulation of TSCFLP presented in [12] arises when the valid inequalities of [15], (constraints (3-6) and (3-7)) are written in a more concise form yielding an equivalent formulation of the TSCFLP, given as follows:

$$
\begin{equation*}
Z_{f f 4}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} \mathcal{W}_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{\text {TSCFL }}\right\} \tag{4-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X^{\text {TSCFL }}=\left\{(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}:\right. \\
\sum_{k \in K} x_{k j} \geq d_{j} & \forall j \in J \\
\sum_{i \in I} w_{i k} \geq \sum_{j \in J} x_{k j} & \forall k \in K \\
\sum_{k \in K} w_{i k} \leq a_{i} y_{i} & \forall i \in I \\
\sum_{i \in I} w_{i k} \leq S_{k} z_{k} & \forall k \in K \\
\mathcal{W}_{i k}, x_{k j} \geq 0 & \forall i \in I, \forall j \in J, \forall k \in K \\
y_{i}, z_{k} \in\{0, & 1\} \tag{4-7}
\end{array}
$$

A tight formulation of the TSCFLP was given in [5]. This formulation differs from the previous formulations on the way the flow conservation constraint (5-4) below is presented, which differs from constraints (1-6), (3-5) and (4-3). Mathematically the flow conservation constraints $\{(1-6),(3-5),(4-3)\}$ and (5-4) are equivalent, but computationally (5-4) as it is written, tightens the formulation and yields a better lower bound than those formulations ( $\mathrm{Z}_{\mathrm{ff} 1}, \mathrm{Z}_{\mathrm{ff} 2}, \mathrm{Z}_{\mathrm{ff} 3}$ and $\mathrm{Z}_{\mathrm{ff} 4}$ ) above. The software CPLEX, XPRESS and MINTO, [5], recognizes the path structure when the constraint is presented in the correct form. The Aardal formulation is as follows:

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

$$
\begin{equation*}
Z_{f f 5}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} w_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{\text {TSCFL }}\right\}, \tag{5-1}
\end{equation*}
$$

where

$$
\begin{array}{cc}
X^{\text {TSCFL }}=\left\{\begin{array}{ll}
(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}: \\
\sum_{k \in K} w_{i k} \leq a_{i} y_{i} & \forall i \in I \\
\sum_{i \in I} w_{i k} \leq S_{k} z_{k} & \forall k \in K \\
\sum_{i \in I} w_{i k}-\sum_{j \in J} x_{k j}=0 & \forall k \in K \\
\sum_{k \in K} x_{k j}=1 & \forall j \in J \\
\sum_{j \in J} x_{k j} \leq S_{k} z_{k} & \forall k \in K \\
X_{k j} \leq d_{j} z_{k} & \forall k \in K \\
y_{i} \leq 1 \quad \forall i \in I, \quad Z_{k} \leq 1 & \forall k \in K \\
W_{i k}, x_{k j} \geq 0 & \forall i \in I, \forall j \in J, \forall k \in K\}
\end{array}, ~(5\right.
\end{array}
$$

For instance, it is important to write constraints (5-4) as $\sum_{i \in I} \mathcal{W}_{i k}-\sum_{j \in J} x_{k j}=0$, and not as $\sum_{j \in J} x_{k j}-\sum_{i \in I} \mathcal{W}_{i k}=0$, since the sign of a variable indicates whether or not it represents inflow or outflow.
Another alternative formulation was presented in [1] and it is as follows:

$$
\begin{equation*}
Z_{f f 6}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} w_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{\text {TSCFL }}\right\}, \tag{6-1}
\end{equation*}
$$

where

$$
\begin{align*}
& X^{\text {TSCFL }}=\left\{(w, x, y, z) \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}:\right. \\
& \sum_{k \in K} x_{k j}=1 \quad \forall j \in J  \tag{6-2}\\
& \sum_{j \in J} d_{j} x_{k j} \leq s_{k} z_{k} \quad \forall k \in K  \tag{6-3}\\
& x_{k j}-z_{k} \leq 0 \quad \forall j \in J, \forall k \in K  \tag{6-4}\\
& \sum_{k \in K} w_{i k} \leq a_{i} y_{i} \quad \forall i \in I  \tag{6-5}\\
& \sum_{i \in I} w_{i k}=\sum_{j \in J} d_{j} x_{k j} \quad \forall k \in K  \tag{6-6}\\
& W_{i k}-\min \left\{a_{i}, S_{k}\right\} y_{i} \leq 0 \quad \forall i \in I, \forall k \in K  \tag{6-7}\\
& \sum_{k \in K} S_{k} z_{k} \geq \sum_{j \in J} d_{j} \quad \forall k \in K, \forall j \in J  \tag{6-8}\\
& \sum_{i \in I} a_{i} y_{i} \geq \sum_{j \in J} d_{j} \quad \forall i \in I, \forall j \in J  \tag{6-9}\\
& \mathcal{W}_{i k}, x_{k j} \geq 0 \quad \forall i \in I, \forall j \in J, \forall k \in K  \tag{6-10}\\
&\left.y_{i}, z_{k} \in\{0, \quad 1\} \quad \forall i \in I, \forall k \in K\right\} \tag{6-11}
\end{align*}
$$

We contemplate the following equivalent formulation by dropping some unbinding constraints, and restructuring some which are redundant in the context of LP relaxation:

$$
\begin{equation*}
Z_{f f 7}=\min \left\{\sum_{i \in I} \sum_{k \in K} b_{i k} w_{i k}+\sum_{k \in K} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{\text {TSCFL }}\right\} \tag{7-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X^{\text {TSCFL }}=\{(w, x, y, z) & \in \mathbb{R}_{+}^{i \times k} \times \mathbb{R}_{+}^{k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}: \\
\sum_{k \in K} x_{k j}=1 & \forall j \in J \\
\sum_{j \in J} x_{k j} \leq S_{k} z_{k} & \forall k \in K \\
\sum_{i \in I} w_{i k}=\sum_{j \in J} d_{j} x_{k j} & \forall k \in K \\
\sum_{k \in K} w_{i k} \leq a_{i} y_{i} & \forall i \in I \\
\mathcal{W}_{i k}, x_{k j} \geq 0 & \forall i \in I, \forall j \in J, \forall k \in K  \tag{7-6}\\
y_{i}, z_{k} \in\{0,1\}, & \forall i \in I, \forall j \in J, \forall k \in K\}
\end{array}
$$

MULTI COMMODITY FORMULATION: In the multi commodity formulation we consider the flow on the path $(i, k, j)$ where, $i$, is a major plant, $k$ is a minor (depot) plant and $j$ is the customer, we let $\mathcal{W}_{i k j}$ denote the fraction of demand $d_{j}$ being routed via path $i \rightarrow k \rightarrow j$, and defines the cost at demand point $j \in J$ via path $i \rightarrow k \rightarrow j$ as $q_{i k j}=b_{i k j} d_{j}+c_{k j}$. This formulation allows us to model situations where cost depends on both the major plant, $i$, through minor plant $k$ (or depot) and demand point $j$. Such cases occur in practice if for instance flow rates from source $i$ to depot $k$ are less than the sum of flow rates from $i$ to $k$ plus $k$ to $j$. Apparently, flow formulation (ff), has more advantages to multi commodity formulation ( $m c f$ ) if the cost $q_{i k j}$ can be split in to two parts $b_{i k j}$ and $c_{k j}$ because $f f$ has far fewer decision variables (cf. Table 2), while the LP relaxation of both models are equivalent.

Klose and Drexl [1] and Aardal [5] proved that the LP relaxation of the multi commodity formulation is at least as strong as the LP relaxation of the flow formulation, and for many instances the difference can be quite large. An equivalent formulation of the TSCFLP based on path variables $w_{i k j}$ can be given as follows:

$$
\begin{equation*}
Z_{m c f}=\min \quad \sum_{i \in I} \sum_{k \in K} \sum_{j \in J} q_{i k j} w_{i k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}:(w, x, y, z) \in X^{T S C F L} \tag{8-1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X^{T S C F L}=\left\{\begin{array}{ll}
(w, x, y, z) \in \mathbb{R}_{+}^{i \times k \times j} \times \mathbb{Z}_{+}^{i} \times \mathbb{Z}_{+}^{k}: \\
\sum_{i \in I} \sum_{k \in K} w_{i k j}=1 & \forall j \in J \\
\sum_{k \in K} \sum_{j \in J} d_{j} w_{i k j} \leq a_{i} y_{i} & \forall i \in I \\
\sum_{i \in I} \sum_{j \in J} d_{j} w_{i k j} \leq S_{k} z_{k} & \forall k \in K \\
\sum_{k \in K} w_{i k j} \leq y_{i} & \forall i \in I \quad \forall j \in J \\
\sum_{i \in I} w_{i k j} \leq z_{k} & \forall k \in K \quad \forall j \in J
\end{array} l\right.
\end{array}
$$

$$
\begin{array}{ll}
\sum_{k \in K} s_{k} z_{k} \geq \sum_{j \in J} d_{j} & \forall k \in K \\
\sum_{i \in I} a_{i} y_{i} \geq \sum_{j \in J} d_{j} & \forall i \in I \quad \forall j \in J \\
W_{i k j} \geq 0 & \forall i \in I \quad \forall k \in K  \tag{8-9}\\
y_{i} \in\{0,1\} \quad \forall i \in I & \\
\left.z_{k} \in\{0,1\} \quad \forall k \in K\right\} &
\end{array}
$$

For more on this see [1] and [6]. The objective function (8-1) gives the total cost consisting of the cost of assigning customers to facilities plus the cost of establishing facilities and cost of opening depots. Constraints (8-2) ensure that demand is satisfied completely. Constraints (8-3), (8-4) take care of scarce capacities of facilities on both levels. Aggregate capacity constraints ( $8-7$ ) and ( $8-8$ ) are redundant but probably useful in order to tighten some relaxations such as lagrangean relaxation other than LP relaxation. Constraints (8-5) and (8-6) are valid inequalities that also strengthen LP relaxation.

## 3. Computational Results

The problem instances are from [14]. In Table 1 and Table 2 we present the problem characteristics for both the instances used for the flow and multi commodity formulations of TSCFLP respectively. We considered small and medium size problems of the type, $a \times b \times c$, where $a, b$ and $c$ denotes the number of major Facilities (Plants), number of minor Facilities (Depots) and number of Clients (Customers) respectively.

Table 1 problem characteristics for the flow formulation

| Probl |  | Size | Number of <br> variables | Number of <br> Constraints |
| :---: | :--- | :--- | :--- | :--- |

Table 2 problem characteristics for the multi commodity formulation

| Problem | Size | Number of <br> variables | Number of <br> Constraints | Number of <br> nonzeros |
| :--- | :--- | :--- | :--- | :--- |
| MC1 | $3 \times 5 \times 10$ | 158 | 100 | 847 |
| MC2 | $5 \times 8 \times 25$ | 1013 | 365 | 5351 |
| MC3 | $5 \times 10 \times 25$ | 1265 | 417 | 6655 |
| MC4 | $5 \times 16 \times 25$ | 2021 | 573 | 10567 |

In Table 2, the same group of instances as in Table 1 is formulated using variables $w_{i k j}$ denoting the flow on the path $(i, k, j)$, and variables $w_{i k}, x_{k j}, y_{i}, z_{k}$ as in the flow formulation, for the multi commodity formulation. In Table 3, we show the results from solving the instances by pure Branch and Bound only, and in Table 4, we show the results from solving the instances by representing the flow conservation constraint (fcc) correctly. We use the notation abbccd for the instances, where $a$ denotes the number of plants, $b b$ the number of depots, $c c$ the number of customers and $d$ the number of the instances in the set having the same size, we also use $z($.$) and \bar{z}($.$) denoting the optimum integer and continuous (LP$ relaxed) solutions of the problems respectively. $\quad \xi_{\text {bound }}=\frac{z(.)-\bar{z}(.)}{z(.)} * 100 \%$ is the measure of the relative quality of the bounds, often referred in the literature as duality gap (\%) (or \% duality gap), [16, 17]. For the computation we coded the formulations according to the syntax of AMPL [18] and use IBM-CPLEX 12.5.0 solver, implemented on a HP corei3 processor 2.27 GHz 4 GB RAM PC.

The following implication of definitions (5) and (6) above stands.
Theorem 1. Magnanti and Wong [4] Suppose P and Q are equivalents formulation of a MIP. P dominates (is superior to) Q iff $v(P) \geq v(Q)$ for all $y_{i}, z_{k} \in \operatorname{conv}(y \times z)$ with a strict inequality for at least one $y_{i}, z_{k} \in \operatorname{conv}(y \times z)$.

Proof: $\Longleftarrow$ Suppose $(P) \geq v(Q)$, for all $y_{i}, z_{k} \in \operatorname{conv}(y \times z)$, then Q does not have any valid inequality w.r.t. P. but there exists at least $y_{0}, z_{0} \in \operatorname{conv}(y, z)$ such that $v(P)\left(y_{0}, z_{0}\right)>v(Q)\left(y_{0}, z_{0}\right)$ implies that P has a valid inequality that is not equal to any valid inequality in $P$.
$\Rightarrow$ Now if P dominates (is superior) Q , then Q , by definition of dominance does not have any valid inequality that is equal to any inequality w.r.t. Q , this implies that $v(P) \geq v(Q)$ for all $y_{i}, z_{k} \in \operatorname{conv}(y \times z)$, and there exist a $y_{0}, z_{0} \in$ $\operatorname{conv}(y, z)$ such that $v(P)\left(y_{0}, z_{0}\right)>v(Q)\left(y_{0}, z_{0}\right)$.

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

The computational results are given in Table(s) 3 to Table(s) 5. For example in Table 3 b and $3 \mathrm{c}, \mathrm{Z}_{\mathrm{ff} 3}$ and $\mathrm{Z}_{\mathrm{ff} 4}$ have the same optimal integer objective values for the flow formulation, in the same vain $Z_{f f} 1$ and $Z_{f f 6}$ have the same optimal integer objective values. Similarly in Table $4 \mathrm{~b}, 4 \mathrm{c}$ and $4 \mathrm{e}, \mathrm{Z}_{\mathrm{ff} 3}, \mathrm{Z}_{\mathrm{ff} 4}$ and $\mathrm{Z}_{\mathrm{ff7}}$ have the same optimal integer objective values respectively. In order to highlight further the relationship that exists between the various formulations, Figures 1 to 6 are graphs of some selected parameters of the computations. For example, Figures 1 and 2 are graphs of MIP and LP CPU time for the problems size for all the flow formulations respectively. From these graphs we can conclude that $\mathrm{Z}_{\text {ffl }}$ has higher CPU time for both MIP and LP-relaxations. Among the formulations, for example, Figure 5 and Figure 6 shows that $\mathrm{Z}_{\mathrm{ff} 3} \& \mathrm{Z}_{\mathrm{ff} 4}$ have higher optimal integer objective function costs, followed by $\mathrm{Z}_{\mathrm{ff1}} \& \mathrm{Z}_{\mathrm{ff} 6}$, wile, $\mathrm{Z}_{\mathrm{ff} 7}$ and $\mathrm{Z}_{\mathrm{ff5}}$ have the least costs respectively. Also $\mathrm{Z}_{\mathrm{ff1}}$ has higher number of MIP and dual simplex iterations than $\mathrm{Z}_{\mathrm{ff6}}$. Analogous interpretations can be given to the rest of the Tables and Figures.

## 4. Results Analysis

Here we compare the relative quality of the optimal integer values of the formulations $Z_{f f}$ and $Z_{m c f}$ and their LPrelaxations. For this comparison we introduce the following additional notations. When formulation $Z_{f f}$ and $Z_{m c f}$ were solve by $\mathrm{B} \& \mathrm{~B}$ only, the values for the optimal integer objective and LP-relaxations will be denoted by $z_{f f}^{A}(),. z_{m c f}^{A}($.$) and$ $\bar{z}_{f f}^{A}(),. \bar{z}_{m c f}^{A}($.$) respectively. And when they are solved by B\&B with correct representation of the flow conservation$ constraint, the values for the optimal integer objective and LP-relaxations will be denoted by $z_{f f}^{B}(),. z_{m c f}^{B}($.$) and$ $\bar{Z}_{f f}^{B}(),. \bar{z}_{m c f}^{B}($.$) respectively. From Table(s) 3$ to Table 5 we have the following results:

Lemma $1 Z_{f f}=Z_{m c f}$, that is, both the flow and the multi commodity formulation of the TSCFLP are equivalent.
Proof: The following equivalence relations hold by definition [6]:
(a) $x_{k j}=\sum_{k \in K} d_{j} w_{i k j}$
(b) $\mathcal{W}_{i k}=\sum_{j \in J} d_{j} w_{i k j}$
(c) $\sum_{k \in K} x_{k j}=d_{j}=1$
(d) $c_{k j}+b_{i k} d_{j}=q_{i k j}$

Given these equivalence relations we prove that $z_{f f_{1}}($.$) is equivalent to z_{m c f}($.$) .$
i. The objectives (1-1) and (8-1) in both formulations are equivalent:

$$
\begin{aligned}
& \sum_{i \in I} \sum_{k \in K} \sum_{j \in J} q_{i k j} w_{i k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k} \quad \text { then from (d) we have: } \\
= & \sum_{i \in I} \sum_{k \in K} \sum_{j \in J}\left(b_{i k j} d_{j}+c_{k j}\right) d_{j} w_{i k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k} \quad \text { then from (a) and (b) we have } \\
= & \sum_{i \in I} \sum_{j \in J} c_{k j} \sum_{k \in K} d_{j} w_{i k j}+\sum_{i \in I} \sum_{k \in K} b_{i k} \sum_{j \in J} d_{j} w_{i k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k} \\
= & \sum_{i \in I} \sum_{k \in K} b_{i k} w_{i k}+\sum_{i \in I} \sum_{j \in J} c_{k j} x_{k j}+\sum_{i \in I} f_{i} y_{i}+\sum_{k \in K} g_{k} z_{k}
\end{aligned}
$$

Demand constraints (1-2) and (8-2) are equivalent. Since for each $j=1, \ldots, n$

$$
\begin{aligned}
& \sum_{k \in K} x_{k j}=\sum_{i \in I} \sum_{k \in K} d_{j} w_{i k j} \quad \forall j \in J \quad \text { then from (c) } \\
& d_{j}=\sum_{i \in I} \sum_{k \in K} d_{j} w_{i k j} \quad \forall j \in J \Rightarrow \sum_{i \in I} \sum_{k \in K} w_{i k j}=1
\end{aligned}
$$

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

ii. Flow conservation constraints (1-6) is satisfied in $M C F \quad \sum_{i \in I} W_{i k}=\sum_{j \in J} d_{j} X_{k j} \quad \forall k \in K$ for each $\mathrm{k}=1, \ldots, \mathrm{p}$ $\sum_{j \in J} d_{j} \mathcal{X}_{k j}$ is the demand for customer $j$ from depot $k$, and by definition, this must come from plant $i$. From (b) above,

$$
\begin{gathered}
\mathcal{W}_{i k}=\sum_{j \in J} d_{j} \mathcal{W}_{i k j}, \text { taking the sum over k, we have } \sum_{k \in K} \mathcal{W}_{i k}=\sum_{k \in K} \sum_{j \in J} d_{j} \mathcal{W}_{i k j} \text { then from (a) } \\
\text { and }(8-3) \Rightarrow \quad \leq a_{i} \mathcal{Y}_{i} \quad \forall i \in I
\end{gathered}
$$

iii. Plant capacity constraints (1-5) and (8-3) are equivalent.
$\sum_{k \in K} \mathcal{W}_{i k} \leq a_{i} y_{i} \forall i \in I \quad \sum_{k \in K} \sum_{j \in J} d_{j} \mathcal{W}_{i k j} \leq a_{i} \mathcal{Y}_{i} \quad \forall i \in I$, the right hand sides of the two inequalities are
equivalent, we show that the left hand sides are also equivalent. From (b)

$$
\sum_{k \in K}\left[\sum_{j \in J} d_{j} \mathcal{W}_{i k j}\right]=\sum_{k \in K} w_{i k} \quad \forall i \in I \Rightarrow \sum_{k \in K} w_{i k} \leq a_{i} y_{i} \quad \forall i \in I
$$

Depot capacity constraint (1-3) and (8-4) are equivalent.

$$
\sum_{j \in J} d_{j} \boldsymbol{x}_{k j} \leq S_{k} Z_{k} \quad \forall k \in K, \quad \sum_{i \in I} \sum_{j \in J} d_{j} \mathcal{W}_{i k j} \leq S_{k} Z_{k}, \forall k \in K
$$

Similarly the right hand sides of the two inequalities are equivalent. We show the left hand sides also are equivalent. From (1-6) $\sum_{j \in J} d_{j} x_{k j}=\sum_{i \in I}\left[\mathcal{W}_{i k}\right] \quad \forall k \in K$ from (b) $=\sum_{i \in I} \sum_{j \in J} d_{j} \mathcal{W}_{i k j}$
iv. Constraints (8-7) , (8-8) are redundant just like (1-10), (1-11). The rest: that is (1-7, 1-8, \&1-9) and (8-9, 8-10, and 811) are the non-negativity and integrality restrictions on the respective variables of the two formulations respectively.

Lemma 2 let $Z_{f f 1}, \ldots \ldots \ldots, Z_{f f 7}$ and $Z_{m c f}$ be formulations for the set $X^{T S C F L} \subseteq \mathbb{R}_{+}^{n} \times \mathbb{Z}_{+}^{m}$; where some $Z_{f f i-p} ; 1 \leq p<i ; i=$ $1, \ldots \ldots \ldots, 7$ and $Z_{m c f}$ are better than some $Z_{f f}$. If we consider the MIP problem $Z_{f f}=Z_{m c f}=\min \left\{C^{T} x: x \in X^{T S C F L}\right\}$ where $x=(w, x, y, z)$ and denote by $z_{f f}()=.\min \left\{C^{T} x: x \in Z_{f f}\right\}, \bar{z}_{f f}()=.\min \left\{C^{T} x: x \in Z_{f f}, X^{T S C F L} \subseteq \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}\right\}$, the values of the associated optimal integer and LP-relaxations of problem $Z_{f f}$ or $Z_{m c f}$, then the following hold:

```
\(\bar{z}_{f f 7}^{A}()<.\bar{z}_{f f 1}^{A}(.) \leq \bar{z}_{m c f}^{A}(.) \leq \bar{z}_{f f 6}^{A}(.) \leq \bar{z}_{f f 4}^{A}(.) \leq \bar{z}_{f f 3}^{A}(\).
\(z_{f f 1}^{A}()=.z_{f f 6}^{A}()=.z_{m c f}^{A}(\).
\(z_{f f 3}^{A}()=.z_{f f 4}^{A}(\).
\(z_{f f 7}^{A}() \leq.\{(i i),(i i i)\}\) dominates \(z_{f f 1}^{A}(),. z_{f f 6}^{A}(),. z_{m c f}^{A}, z_{f f 3}^{A}(\).\() and z_{f f 4}^{A}(\).
    \(\bar{z}_{f f 4}^{B}()=.\bar{z}_{f f 5}^{B}()=.\bar{z}_{f f 7}^{B}(\).
    \(\bar{Z}_{f f 1}^{B}(.) \leq \bar{z}_{f f 6}^{B}(\).
    \(z_{f f 4}^{B}()=.z_{f f 5}^{B}()=.z_{f f 7}^{B}(\).
    \(z_{f f 1}^{B}(.) \leq z_{f f 6}^{B}(\).
```

Proof: i. constraints (3-5) and (4-3) is a relaxation of constraint (1-6), by definition 1 the first inequality holds; by lemma 1 the second inequality holds; $\mathrm{Z}_{\mathrm{ff} 3}$ implied $\mathrm{Z}_{\mathrm{ff} 4}$ and by definition 5 and the results on Table 3 b and 3 c , the relationships hold.
ii. $\mathrm{Z}_{\mathrm{ff} 1}$ and $\mathrm{Z}_{\mathrm{ff6} 6}$ are both flow formulation, by lemma 1, both are equivalent.
iii. from Table 3b and 3c, and ii above, the relation hold.
iv. This follows from definition 4, 5 and theorem 1. And Table 3 f shows the values of the optimal objective function for the instances solved are at least better than $\mathrm{Z}_{\mathrm{ff} 1}, \mathrm{Z}_{\mathrm{ff} 6}, \mathrm{Z}_{\mathrm{ff3} 3}$ and $\mathrm{Z}_{\mathrm{ff} 4}$.
v. from lemma 1, (c) constraint (4-2) is equivalent to constraints (5-5) and (7-2), which say all customers' demands must be fully met, hence the result.
vi. This follows from definition 5 and the results for solving the instances in Table 4 a and 4 d respectively. vii. This follows from a direct consequence of (v) above.
viii. (vi) implies (viii), as in (vii) above.

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP
Table 3a: Results from solving the instances by Branch and Bound only for $Z_{f f 1}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 55152.8619 | 49815.26011 | 9.7 | 0 | 62 | 51 | 0.0938 | 0.0306 |
| 305102 | 67061.31787 | $\square 4622.98088$ | 3.6 | 0 | 52 | 57 | 0.1248 | 0.0466 |
| 305103 | 36575.5455 | 33912.30113 | 7.3 | 0 | 51 | 45 | 0.1402 | 0.031 |
| 508251 | 63392.8448 | 59633.96184 | 5.9 | 0 | 197 | 92 | 0.234 | 0.0626 |
| 508252 | 53793.94231 | 51297.94476 | 4.6 | 0 | 119 | 85 | 0.296 | 0.1092 |
| 508253 | 22503.2 | 20344.14025 | 1.0 | 0 | 141 | 130 | 0.3736 | 0.093 |
| 510251 | 62129.54196 | 58319.22228 | 6.1 | 0 | 207 | 142 | 0.4672 | 0.109 |
| 510252 | 43234.99827 | 39112.08207 | 9.5 | 0 | 157 | 128 | 0.4518 | 0.1556 |
| 510253 | 109651.0481 | 106048.1401 | 3.3 | 0 | 181 | 130 | 0.654 | 0.1716 |
| 516251 | 135244.858 | 132656.3339 | 1.9 | 0 | 218 | 198 | 0.6074 | 0.2182 |
| 516252 | 77216.70671 | 70387.46144 | 8.8 | 1 | 264 | 143 | 0.888 | 0.2492 |
| 516253 | 28860.38889 | 23478.0224 | 1.9 | 0 | 310 | 170 | 1.0286 | 0.234 |

Average duality gap 7.4\%; Note that $Z_{f f 2}$ has the same optimal solution with $Z_{f f 1}$
Table 3b: Results from solving the instances by Branch and Bound only for $Z_{f f 3}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 64116 | 63938.95607 | 0.28 | 0 | 53 | 46 | 0.0622 | 0 |
| 305102 | 83841 | $82835.371 \square 4$ | 1.2 | 0 | 47 | 47 | 0.0932 | 0 |
| $30 \square 103$ | 49013 | 48993.04545 | 0.04 | 0 | 43 | 37 | 0.0456 | 0.0306 |
| 508251 | 132875 | 131451.6889 | 1.1 | 0 | 202 | 115 | 0.3273 | 0.0466 |
| 508252 | 104173 | 103615.8862 | 0.53 | 0 | 112 | 109 | 0.2958 | 0.0616 |
| 508253 | 39028 | 38161.45919 | 2.2 | 0 | 117 | 87 | 0.3584 | 0.0776 |
| 510251 | 123694 | 123430.125 | 0.21 | 0 | 135 | 112 | 0.3898 | 0.0926 |
| 510252 | 104612 | 102067.9776 | 2.4 | 0 | 121 | 86 | 0.468 | 0.1086 |
| 510253 | 165860 | 165385.6358 | 0.3 | 0 | 133 | 97 | 0.4838 | 0.1246 |
| 516251 | 242194 | 240456.9255 | 0.72 | 0 | 188 | 139 | 0.702 | 0.1406 |
| 516252 | 139364 | 137077.3121 | 1.64 | 0 | 171 | 99 | 0.7016 | 0.1566 |
| 516253 | 82667 | 81586.36069 | 1.31 | 0 | 186 | 152 | 0.7952 | 0.2032 |

## Average duality gap 1\%

Table 3c: Results from solving the instances by Branch and Bound only for $Z_{f f 4}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 64116 | 59828.44423 | 6.7 | 0 | 42 | 38 | 0.0632 | 0 |
| 305102 | 83841 | 80727.63726 | 3.7 | 0 | 44 | 43 | $0.0 \square 3$ | 0 |
| 305103 | 49013 | 45364.33803 | 7.4 | 0 | 48 | 30 | 0.1252 | 0.0316 |
| 508251 | 132875 | 128204.6241 | 3.5 | 0 | 139 | 77 | 0.1562 | 0.0466 |
| 508252 | 104173 | 98830.3783 | 5.1 | 0 | 88 | 81 | 0.1872 | 0.0626 |
| 508253 | 39028 | 34269.78501 | 12.2 | 0 | 133 | 59 | 0.2192 | 0.047 |
| 510251 | 123694 | 120437.5971 | 2.6 | 0 | 136 | 90 | 0.3436 | 0.0786 |
| 510252 | 104612 | 94084.80585 | 10.1 | 0 | 108 | 65 | 0.3278 | 0.063 |
| 510253 | 165860 | 162150.7091 | 2.2 | 0 | 111 | 80 | 0.3432 | 0.063 |
| 516251 | 242194 | 238752.7811 | 1.4 | 0 | 161 | 107 | 0.437 | 0.078 |
| 516252 | 139364 | 129452.4162 | 7.1 | 0 | 155 | 88 | 0.484 | 0.1096 |
| 516253 | 82667 | 77272.31793 | 6.5 | 0 | 129 | 80 | 0.6044 | 0.1246 |

[^0]Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani Jof NAMP
Table 3d: Results from solving the instances by Branch and Bound only for $Z_{f f 5}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 4452 | 1474.197807 | 66.9 | 0 | 18 | 22 | 0.0306 | 0.015 |
| 305102 | 5365 | 3146.201088 | 41.4 | 0 | 37 | 31 | 0.0782 | 0.0466 |
| 305103 | 6265 | 2365.17827 | 62.3 | 0 | 37 | 22 | 0.1092 | 0.0626 |
| 508251 | 9475 | 6763.782251 | 28.6 | 0 | 162 | 63 | 0.1568 | 0.0776 |
| 508252 | 8032 | 6382.212178 | 20.5 | 0 | 100 | 66 | 0.1722 | 0.0936 |
| 508253 | 6328 | 4040.014117 | 36.2 | 0 | 128 | 94 | 0.2032 | 0.1086 |
| 510251 | 10095 | 5602.913232 | 44.5 | 0 | 237 | 63 | 0.2804 | 0.093 |
| 510252 | 10839 | 4829.453995 | 55.4 | 0 | 182 | 78 | 0.4052 | 0.093 |
| 510253 | 9655 | 6734.395924 | 30.3 | 0 | 124 | 85 | 0.4054 | 0.093 |
| 516251 | 11654 | 8117.376639 | 30.4 | 0 | 264 | 84 | 0.7948 | 0.1236 |
| 516252 | 10054 | 5440.059974 | 45.9 | 0 | 280 | 89 | 0.6862 | 0.1396 |
| 516253 | 8249 | 5450.517218 | 33.9 | 0 | 272 | 101 | 0.718 | 0.1556 |

Average duality gap $41 \%$

Table 3e: Results from solving the instances by Branch and Bound only for $Z_{f f 6}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 55152.8619 | 52855.61174 | 4.2 | 0 | 103 | 49 | 0.0938 | 0.0306 |
| 305102 | 67061.31787 | 66420.58656 | 1. | 0 | 35 | 49 | 0.0942 | 0.0466 |
| 305103 | 36575.5455 | 36077.40661 | 1.4 | 0 | 46 | 37 | 0.0946 | 0.031 |
| 508251 | 63392.8448 | 62834.96705 | 1.0 | 0 | 136 | 120 | 0.1262 | 0.0616 |
| 508252 | 53793.94231 | 53396.96705 | 1.0 | 0 | 124 | 102 | 0.1266 | 0.0776 |
| 508253 | 22503.2 | 22380.84869 | 5.4 | 0 | 77 | 94 | 0.1892 | 0.0926 |
| 510251 | 62129.54196 | 61280.50053 | 1.4 | 0 | 162 | 126 | 0.4386 | 0.1086 |
| 510252 | 43234.99827 | 42595.93414 | 1.5 | 0 | 149 | 113 | 0.3754 | 0.1246 |
| 510253 | 109651.0481 | 109072.8718 | 1.0 | 0 | 133 | 131 | 0.3908 | 0.124 |
| 516251 | 135244.858 | 134626.9252 | 0.5 | 0 | 158 | 182 | 0.5006 | 0.1556 |
| 516252 | 77216.70671 | 76883.20928 | 0.43 | 0 | 163 | 130 | 0.4848 | 0.1716 |
| 516253 | 28860.38889 | 26794.82175 | 7.2 | 0 | 230 | 186 | 0.563 | 0.1876 |

Average duality gap $1.7 \%$

Table 3f: Results from solving the instances by Branch and Bound only for $Z_{f f 7}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 9784 | 7670.846455 | 21.6 | 0 | 21 | 30 | 0.0938 | 0.016 |
| 305102 | 49719 | 47980.98624 | 3.5 | 0 | 25 | 27 | $0.1 \square 92$ | 0.031 |
| 305103 | 31205 | $27964.32 \square 3$ | 10.4 | 0 | 21 | 26 | 0.1086 | 0.0626 |
| 508251 | 47249.6667 | 44214.65511 | 6.4 | 0 | 88 | 70 | 0.1562 | 0.047 |
| 508252 | 41797.2222 | 38568.68722 | 7.7 | 0 | 101 | 81 | 0.1872 | 0.047 |
| 508253 | 17602 | 15514.14131 | 11.9 | 0 | 51 | 73 | 0.1866 | 0.047 |
| 510251 | 23952 | 21987.65612 | 8.2 | 0 | 51 | 75 | 0.203 | 0.063 |
| 510252 | 26752 | 23554.07376 | 12.0 | 0 | 99 | 75 | 0.4994 | 0.0936 |
| 510253 | 30641 | 29607.14141 | 3.4 | 0 | 64 | 96 | 0.3118 | 0.1096 |
| 516251 | 90652.9412 | 88832.24385 | 2.0 | 0 | 104 | 115 | 0.3584 | 0.11 |
| 516252 | 28433 | 26916.53454 | 5.3 | 0 | 98 | 107 | 0.3894 | 0.1406 |
| 516253 | 13958 | 12540.75158 | 10.2 | 0 | 94 | 128 | 0.3892 | 0.1566 |

## Average duality gap 8.5\%

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

Table 4a: Results from solving the instances by Branch and Bound and representation of fcc for $Z_{f f 1}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 7650.04761 | 5230.304569 | 32 | 0 | 135 | 51 | 0.156 | 0.0316 |
| 305102 | 8844.82529 | 6438.293597 | 27 | 0 | 126 | 55 | 0.1718 | 0.0466 |
| 305103 | 7543 | 4302.187724 | 43 | 0 | 106 | 60 | 0.2588 | 0.047 |
| 508251 | 14244.0083 | 11608.26248 | 19 | 0 | 818 | 97 | 0.608 | 0.0786 |
| 508252 | 11214.57500 | 9761.603636 | 13 | 0 | 518 | 123 | 0.7804 | 0.0946 |
| 508253 | 7931.66667 | 6050.060965 | 24 | 0 | 491 | 161 | 0.827 | 0.094 |
| 510251 | 14412.19805 | 10658.5035 | 26 | 0 | 733 | 134 | 1.202 | 0.1256 |
| 510252 | 14493.58876 | 10282.44702 | 29 | 0 | 845 | 168 | 1.4044 | 0.1566 |
| 510253 | 16972.3169 | 13050.25395 | 23 | 0 | 809 | 135 | 1.6078 | 0.156 |
| 516251 | 18353.06312 | 15412.14717 | 16 | 0 | 540 | 143 | 1.8878 | 0.1876 |
| 516252 | 15365.67724 | 11719.90232 | 24 | 207 | 5612 | 206 | 2.044 | 0.2036 |
| 516253 | 12174.5000 | 9047.522327 | 26 | 39 | 2812 | 261 | 3.7602 | 0.2196 |

## Average duality gap 25\%

Table 4b: Results from solving the instances by Branch and Bound and representation of fcc for $Z_{f f 3}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 4452 | 1728.853261 | 61 | 0 | 30 | 28 | 0.0622 | 0.0316 |
| 305102 | 5365 | 3369.668585 | 37 | 0 | 69 | 45 | 0.0932 | 0.0466 |
| 305103 | 6265 | 2577.293478 | 59 | 0 | 68 | 33 | 0.1242 | 0.031 |
| 508251 | 9475 | 6930.892982 | 27 | 0 | 152 | 100 | 1.091 | 0.0616 |
| 508252 | 8032 | 6395.639842 | 20 | 0 | 99 | 89 | 0.1866 | 0.0776 |
| 508253 | 6328 | 4311.268014 | 32 | 0 | 128 | 104 | 0.2026 | 0.078 |
| 510251 | 10095 | 5808.680597 | 42 | 0 | 293 | 69 | 0.3586 | 0.093 |
| 510252 | 10839 | 5092.290368 | 53 | 0 | 322 | 81 | 0.562 | 0.1236 |
| 510253 | 9655 | 6858.432486 | 29 | 0 | 142 | 85 | 0.578 | 0.28 |
| 516251 | 11654 | 8123.380582 | 30 | 0 | 263 | 112 | 0.546 | 0.1546 |
| 516252 | 10054 | 5953.360469 | 41 | 0 | 312 | 114 | 0.7024 | 0.155 |
| 516253 | 8249 | 5840.833543 | 29 | 0 | 237 | 171 | 1.56 | 0.1866 |

Average duality gap 38\%

Table 4c: Results from solving the instances by Branch and Bound and representation of fcc for $Z_{f f 4}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 4452 | 1474.197807 | 67 | 0 | 2 | 22 | 0.0778 | 0 |
| 305102 | 5365 | 3146.201088 | 41 | 0 | 82 | 34 | 0.0932 | 0 |
| 305103 | 6265 | 2314.968781 | 63 | 0 | 37 | 25 | 0.0936 | 0.0306 |
| 508251 | 9475 | 6686.772753 | 29 | 0 | 173 | 62 | 0.1402 | 0.3256 |
| 508252 | 8032 | 6026.539993 | 25 | 0 | 135 | 67 | 0.1396 | 0.0616 |
| 508253 | 6328 | 3764.034875 | 41 | 0 | 111 | 62 | 0.1556 | 0.0776 |
| 510251 | 10095 | 5597.761304 | 45 | 0 | 564 | 60 | 0.3422 | 0.0936 |
| 510252 | 10839 | 4616.915084 | 57 | 0 | 362 | 63 | 0.3584 | 0.093 |
| 510253 | 9655 | 6616.727882 | 31 | 0 | 121 | 71 | 0.3276 | 0.093 |
| 516251 | 11654 | 8038.171642 | 31 | 0 | 434 | 94 | 0.4836 | 0.093 |
| 516252 | 10054 | 5350.673335 | 47 | 0 | 803 | 97 | 0.6554 | 0.093 |
| 516253 | 8249 | 5200.970236 | 37 | 0 | 2812 | 80 | 3.7602 | 0.093 |

Average duality gap 43\%

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

Table 4d: Results from solving the instances by Branch and Bound and representation of fcc for $Z_{f f 5}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 8484 | 6094.9532 | 28 | 0 | 87 | 53 | 0.1098 | 0.016 |
| 305102 | 8844.8253 | 7633.3905 | 14 | 0 | 140 | 51 | 0.1558 | 0.0476 |
| 305103 | 7543 | 5006.1540 | 34 | 0 | 95 | 40 | 0.1712 | 0.032 |
| 508251 | 15228.71481 | 13637.5375 | 10 | 0 | 521 | 104 | 0.5148 | 0.048 |
| 508252 | 13442.31765 | 11187.13885 | 17 | 0 | 448 | 80 | 0.6236 | 0.0786 |
| 508253 | 7931.66667 | 6361.0554 | 20 | 0 | 295 | 121 | 0.5924 | 0.0946 |
| 510251 | 14412.19798 | 12491.4331 | 13 | 0 | 558 | 128 | 0.9198 | 0.1106 |
| 510252 | 14493.58876 | 12320.41284 | 15 | 0 | 390 | 143 | 1.0446 | 0.11 |
| 510253 | 17764.3354 | 15334.62087 | 14 | 0 | 596 | 112 | 1.2162 | 0.126 |
| 516251 | 20652.15877 | 18268.53508 | 12 | 0 | 334 | 111 | 1.4964 | 0.1576 |
| 516252 | 15888.78125 | 13860.49256 | 13 | 0 | 697 | 159 | 1.7774 | 0.1736 |
| 516253 | 12174.5000 | 10448.2797 | 14 | 0 | 770 | 153 | 1.9954 | 0.2046 |

## Average duality gap 17\%

Table 4e: Results from solving the instances by Branch and Bound and representation of fcc for $Z_{f f 7}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 4452 | 1474.1978 | 67 | 0 | 0 | 22 | 0.0782 | 0 |
| 305102 | 5365 | 3146.2011 | 41 | 0 | 38 | 34 | 0.0786 | 0.015 |
| 305103 | 6265 | 2314.9688 | 63 | 0 | 3 | 25 | 0.135 | 0.0466 |
| 508251 | 9475 | 6686.7728 | 29 | 0 | 130 | 62 | 0.1412 | 0.0616 |
| 508252 | 8032 | 6026.5399 | 25 | 0 | 106 | 67 | 0.235 | 0.218 |
| 508253 | 6328 | 3764.0349 | 41 | 0 | 116 | 62 | 0.2042 | 0.062 |
| 510251 | 10095 | 5597.7613 | 45 | 0 | 496 | 60 | 0.329 | 0.062 |
| 510252 | 10839 | 4616.9151 | 57 | 0 | 441 | 61 | 0.4226 | 0.062 |
| 510253 | 9655 | 6616.7279 | 31 | 0 | 131 | 71 | 0.3912 | 0.062 |
| 516251 | 11654 | 8038.1716 | 31 | 0 | 473 | 94 | 0.5632 | 0.077 |
| 516252 | 10054 | 5350.6733 | 47 | 0 | 764 | 96 | 0.9062 | 0.077 |
| 516253 | 8249 | 5200.9702 | 37 | 0 | 404 | 80 | 0.7348 | 0.077 |

## Average duality gap 43\%

Table 5: Results from solving the instances by Branch and Bound only for $Z_{m c f}$

| problem | $z()$. | $\bar{z}()$. | $\xi_{\text {bound }}$ | \# B\&B | \# MIP <br> Iterations | \# dual simplex <br> iterations | Time <br> MIP | Time <br> LP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 305101 | 55152.8619 | 50989.75976 | 7.5 | 0 | 71 | 61 | 0.3116 | 0.015 |
| 305102 | 67061.31787 | 65703.9948 | 2.0 | 0 | 52 | 40 | 0.2178 | 0.046 |
| 305103 | 36575.5455 | 36077.40661 | 1.4 | 0 | 29 | 21 | 0.312 | 0.0625 |
| 508251 | 63392.8448 | 60436.17996 | 4.7 | 0 | 316 | 88 | 0.5622 | 0.0786 |
| 508252 | 53793.94231 | 52077.31623 | 3.2 | 0 | 124 | 96 | 0.515 | 0.0926 |
| 508253 | 22503.2 | 21547.18779 | 4.2 | 0 | 84 | 72 | 0.5614 | 0.1086 |
| 510251 | 62129.54196 | 59718.91831 | 3.9 | 0 | 318 | 135 | 0.8574 | 0.1552 |
| 510252 | 43234.99827 | 41043.9269 | 5.1 | 0 | 208 | 105 | 0.9664 | 0.1706 |
| 510253 | 109651.0481 | 107150.7403 | 2.3 | 0 | 300 | 192 | 0.9974 | 0.2016 |
| 516251 | 135244.858 | 134032 | 0. | 0 | 186 | 151 | 1.544 | 0.2482 |
| 516252 | 77216.70671 | 72350.31579 | 6.3 | 0 | 354 | 173 | 1.6226 | 0.263 |
| 516253 | 28860.38889 | 24287.14113 | 1.6 | 0 | 210 | 147 | 1.7948 | 0.3112 |

[^1]Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192


Figure 1. Graph of MIP CPU time for all flow formulations


Figure 2. Graph of LP CPU time for all flow formulations

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192


Figure 3.Graph of MIP CPU time, fcc for all flow formulations


Figure 4. graph of LP CPU time, fcc for all flow formulations
Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192


Figure 5. Graph of optimal integer objective costs for all flow formulations
——ff1=ff6
---- ff3 $=\mathrm{ff} 4$
---- ff4

- -ff5
- $\begin{aligned} & \mathrm{ff6} \\ & -\mathrm{ff} 7\end{aligned}$


Figure 6. Graph of optimal LP objective costs for all flow formulations

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192


Figure 7. Graph of optimal integer objective costs for B\&B and fcc


Figure 8. Graph of LP optimal objective costs for B\&B and fcc

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

## 5. Conclusion

In this paper we study alternative formulations of two stage capacitated facility location (TSCFL) problem. We have shown that the two obvious ways of formulating this problem, i.e. the flow and multi commodity formulations are equivalent. From computational point of view we conclude among others that:

* The flow conservation constraints when expressed correctly tighten the formulation and yield a better lower bound as well as the optimal integer objective value than when left otherwise (see Figures 5, 6, 7 and 8 ).
* Adding the valid inequalities as well as expressing the flow conservation constraint correctly tightens the formulation, but unfortunately this introduces higher duality gap in the solutions.
* The LP-relaxation of the multi commodity formulation appeared to be better than that of the flow formulation of TSCFL problem, when the instances were solved by branch-and-bound only.
* Among the equivalent formulations, the graphs of various parameters, such as CPU time for MIP and LP-relaxation, optimal integer as well as continuous costs of the objective function further highlight the dominant relationship that exists among the formulations in terms of computing resources.
* From computational point of view, from the tables and graphs we can conclude further that $\mathrm{Z}_{\mathrm{ff} 7}$ perform better than the rest, when the instances were solved by branch and bound only. While $\mathrm{Z}_{\mathrm{ff5}}, \mathrm{Z}_{\mathrm{ff} 7}$ and $\mathrm{Z}_{\mathrm{ff} 4}$ performs better when the instances were solved by branch and bound and expressing correctly the flow conservation constraints.
* The main objective of any mathematical programming problem is to optimize (i.e. maximize or minimize) an objective function subject to certain constraints. Computationally Figures 5, 6, 7, and 8 suggest that we recommend models formulation $\mathrm{Z}_{\mathrm{ff5}}$ and $\mathrm{Z}_{\mathrm{ff} 7}$, for TSCFLP due to their respective minimum objective costs.


## Acknowledgements

The authors wish to thank the library service of Massey University Palmerston North, New Zealand for making the test problems available to us. We are also grateful to IBM Academic initiative program for granting us academic license for CPLEX Optimization studio for Academic Research 12.5.0. We are also grateful to AMPL Optimization for granting us AMPL for course license.

## References

[1] K. Klose, and A. Drexl, "Facility location models for distribution system design", European Journal of Operational Research 162 (2005) 4-29.
[2] M.C. Agar, and S. Salhi,"Lagrangean heuristics applied to a variety of large Capacitated Plant location Problems", Journal of the operational research society 49 (1998) 1072-1084.
[3] N. Abdullahi, and B. Sani, "LP-Relaxation of a single stage capacitated warehouse location problem: A study in formulation efficiency II", The Journal of the Nigerian association of mathematical physics, vol. 22 (Nov. 2012) 273-280.
[4] T.L. Magnanti, and R.T. Wong, "Accelerating Benders decomposition: Algorithmic enhancements and model selection criteria", Operation Research 29 (3) (1981) 464-484.
[5] K. Aardal, "Reformulation of capacitated Facility Location Problems: How redundant information can help", Annal of Operations Research 82 (1998a) 289-308.
[6] J.M. Bloemhof-Ruwaard, M. Solomon, and L.N. Van Wassenhove, "The Capacitated Distribution and waste Disposal Problem", European Journal of Operational Research 88 (3) (1996) 490-503.
[7] K. Aardal, "Capacitated Facility Location: Separation algorithms and Computational experience", Mathematical Programming 81 (1998b) 149-175.
[8] E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh, "Progress in Lp-based algorithms for Integer Programming: An exposition", INFORMS Journal on computing 12 (2000) 1-22.
[9] K. Aardal, Y. Pochet, and L.A. Wolsey, "Capacitated Facility Location: Valid inequalities and Facets", Mathematics of Operations Research 20 (3) (1995) 562-582.

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 173-192

## Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani J of NAMP

[10] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, "Valid linear inequalities for fixed charge problems", Operations Research 33, (1985) 842-861.
[11] R. Carr, L. Fleischer, V. Leung, and C. Philips, "Strengthening integrality gaps for Capacitated network design and covering problems" In proceedings of the $11^{\text {th }}$ annual ACM-SIAM symposium on discrete algorithms. (2000), Page 106-115.
[12] I. Litvinchev, M. Mata, and S. Rangel, "Calculating the best dual bound for problems with multiple lagrangean relaxations", Journal of Computer and systems sciences International", 49(6) (2010) 915-922.
[13] A. Marín, "Lower bounds for the two-stage uncapacitated facility location problem" European Journal of Operational Research 179 (2007) 1126-1142.
[14] B.L. Wildbone, "Theoretical and computational analysis of the two stage capacitated plant location problem", (2008) ,PhD Thesis Massey University, New Zealand.
[15] P.S. Davis, and T.L. Ray, "A branch and bound algorithm for the Capacitated warehouse location problem", Naval Research Logistics Quarterly 16 (1969) 331-344.
[16] N. Christofides, and J.E. Beasley, "Extensions to a lagrangean relaxation approach for the Capacitated warehouse location problem", European Journal of Operational Research 12 (1998) 19-28.
[17] M. Guignard, and K. Opaswongkarn, "Lagrangean Dual Ascent Algorithms for Computing Bounds in Capacitated Plant Location Problems", European Journal of Operational Research 46 (1990) 73-83.
[18] R. Fourer, D. Gay, and B.W. Kernighan," AMPL: A modeling language for mathematical programming" $2^{\text {nd }}$ Eds (2003) brookes/Cole.


[^0]:    Average duality gap 5.7\%

[^1]:    Average duality gap 4.78\%

