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Abstract

Alternative formulations for the Two Stage Capacitated Facility (Warehouse or
Plants) Location Problem (TSCFLP) are compared and shown to be equivalent. The
comparison, with main emphasis on strengthening the (linear programming) LP-
relaxations is based on some theoretical and computational results. The theoretical
aspect compares some relations among the subsets of some constraints of the problem
sets. On the other hand, the computational aspect compares the relaxationsin terms of
the quality of the lower bounds which the original formulations produce when the flow
conservation constraints (fcc) are properly represented. Where feasible, these LP based
bounds are further strengthened by adding valid inequalities and the problems solved
directly on some small and medium size test problems having various characteristics.

Keywords: Mixed integer programming, Facility (WarehousePtant) Location problem, valid inequalities, LP-
relaxation.

1.0 Introduction

The facility location problem (FLP) can be clagsifiinto different categories depending on the im&ns assumed. In
the uncapacitated or simple plant location prob{&mLP), each facility is assumed to have no limitsts capacity. When
each facility has a limited capacity the problensasied the capacitated PLP (CPLP). Other sub ocaitegjof these problems
include the capacitated/uncapacitated PLP withglsirsource constraints, (CPLPSS), customer’s facireference, P-
median problems, aggregate constraints, maximuraroay location problems (MCLP) and so on. Theseckassified as the
single stage/level location problems with two diecis to be made. One is the choice of the subsitadities or plants to
open while the second decision is which customeosilsl be assigned to the chosen subset of plants.

When a distribution system consists of facilitiesseveral hierarchically layered levels, where ¢hos higher level can
be determined independently of the chosen locationa lower level, then these type of location pepbare called multi
stage models, see for example [1].

The TSCFLP is a multi stage model with two stagelewels but practically more than three decisewels. The first or
upper most stage is the production plants, whexedttision to be made is the choice of which plémispen. The second
stage is the distribution depots and the decisiopet made in this case is which subset of depotpém. The third stage is
the customers and the decision here is to decidehvdustomer should be assigned to which open damotthe open plants
to satisfy their demand requirement. Included is thst stage is the decision of the flow of praduem the plants to the
depots. The problem of choosing the location oflifas in order to serve a set of customers atiminm cost can be
encountered in the public sector; (Libraries, letdtilities, water treatment plants, the militatg) private sector (factories,
telecommunications, Banks, agriculture etc) andagamg the environment (waste disposal in chemiwdlistries, tannery,
breeding farms etc); Agar and Salhi [2] providedngnapplications of PLP’s across all sectors of etes, while [1]
provided various model classifications of PLP a8CFLP and the methods of solving them.

This paper is concerned with modeling and solviirgally the class of mixed integer programming (Mtoblems
known as the two stage/level capacitated facifitgrfts or warehouse) location problem (TSCFLP). oeleling is done by
strengthening the linear programming (LP) relaxatbthe facility location problem. The model inves choosing the best
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locations for facilities in order to satisfy Custeris demands for certain commodities/products. Gigeset of potential
locations for facilities and a set of customerg, piant location problem (PLP) is to locate faighktin such a way that the
total cost for assigning customers to facilities aatisfying the demand required by customers isimized. The cost
considered is the sum of the fixed costs of opefaniities and the costs for assigning customespiecific facilities.

The paper is organized as follows: section 1.2gBsome notations, definitions and briefly outliseme related works
on strengthening the LP relaxation of TSCFLP, sec# outlines alternative (MIP) formulations foet@MSCFLP, section 3
presents the results of the study. Section 4 aealthe quality of the lower bounds that can baiobtl for this problem by
LP relaxation and strengthening them. Finally,ént®n 5, we summarize and conclude our findings.

1.1.  Notation, Definitions and some related work

Notation: The following notation is used conventionally excejpere otherwise stated.

(YT Sk) = the set of equality or inequalipnstraints.

F(S1, i ne e S,) =the feasible region defined by the constr@s.. ... ... S;). conv(Sy, .........5;) = the convex hull
of the corresponding region.

v(p) = the value for the objective function of probl®&n

I ={1,...,m}, the set of plants.
J ={1,...,n}, the set of customers.
K ={1,....,p} ., the set of depots;

Ci~ Total cost of transportation from depot k to sezustomer j,[Jj [0 J, Ok O K

gk = fixed cost associated with depotkk (1K

fi
b.
d,

S, = capacity of depot kL k J K

fixed cost associated with plantdi (I

unit cost of transportation from plant i to deppti O 1,0k O K

demand of customer []j I J

a, = capacity of plant i [11
The decision variables are define as
X = fraction of the demand of customer j supplied frdepot k,[Jj (1 J, Ok O K

y = : 0if plant i is closed, and 1 if plant i is opddi [ |

1

W, = units of demand transported from plant i to depdtlk[J I, 0k 0 K

0
Z. = ; 0 if depot k is closed, and 1 if depot k is opeik [ K

1

q,k, = Cost of servicing customgrfrom depotk through plani,vi e l,j € ],k € K.
ikj

Vvikj = fraction of the demand of customyeshipped from plant through depok.

Definition 1: A linear programming (LP) relaxation is the relaaatof the original (LP) problem formed by removing
or dropping the integrality restrictions on the cemed variables. Formally, a relaxation of a mimation problem is
defined as follows.

Definition 2: Abdullahi and Sani [3]; Problem(RZ): min{g(x,y)|x,y € W} is a relaxation of problem
(Z): min{f (x,y)|x,y € V}, with the same decision variables, iff

i. F(RZ) containsF(Z)i.eF(RZ) 2 F(Z)
ii. OverF(Z), the objective function afRZ) dominates (i.e is better than) that(@) i.evx,y € V,g(x,y) <
f(x,y), whereV € W.
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iii. It clearly follows that the optimal value &Z is less than or equal to the optimal valueZdfe, z(.) <
z(.), (in caseTable 3: Sensitivity analysis of minimization) sinc&RZ has more feasible solutions thanwherez(.)
is the optimal integer objective value, whilg) is the optimal objective value of the relaxed peoh

Definition 3: Magnanti and Wond4]: A polyhedron = R} X ZT'; wheren = (i X k) X (kX j),m = (i X k) is a
formulation for a sek™S¢FL if XTSCFL = PN(R® x Z7T). This definition indicates the existence of maaynfulations for a
setX. and this raises the questions about “good” antdsnayood” formulations.

Definition 4: Magnanti and Wong [4]: Given a sétc R™ and two formulations fand B for X, we say that Pis better
than B, if P, € P,. A formulation P is called ideal F € conv(X).

Definition 5. Magnanti and Wong [4]: Proble® is said to dominate (or is a stronger formulatiban) problemQ if
v(P) = v(Q) for all e Y , with a strict inequality for at least one pgne Y ..

Definition 6. Magnanti and Wong [4]: Problem formulations P gnhdre said to be equivalent MIP representatiomef t
same problem ifv(P)(y,z) = v(Q)(y,z)for all y;c;, Zxek - i-€. The two models have the same integer vi@sadind may
have different continuous variables and constrairtst always give the same objective function galfior any feasible
assignment of the integer variables.

We discuss the LP relaxations of various altereatbormulations of the TSCFLP strengthened by:Rpresenting the
flow conservation constraintfc€) correctly [5]. (ii). The valid inequalities based Bavis and Rayl¥&R) [3]. (iii).The valid
inequalities based on Ro and TH&(T) [6]. Analogous work on strengthening the LP rakion of the TSCFLP based on
Knapsack cover, flow cover and fixed charge paduiralities are presented in [7].

The main purpose of LP relaxation in solving MIRdsprovide an optimal value which in turn providetower bound
(in case of minimization) on the optimal value bétcorresponding MIP. While other relaxations sashthose based on
lagrangian duality, semi definite programming aedamposition techniques are undoubtedly usefupétigl situations. LP
relaxation generally gives reasonably tight bouraag] the methodology for solving LPs is very effiti and reliable [8].
Works on strengthening the LP relaxations of CFhB hence the TSCFLP are reported in the literatdiest of the reports
are centered on CFLP, but as usual the TSCFLP éxt@msion of CFLP and most of the results foundCiBLP are valid for
TSCFLP [7 and 9].

Studies on LP relaxations of alternative formulasiof TSCFLP where the same feasible set is repiesddy different
sets of constraints (which may provide differentdo bounds) in the context of LP relaxation is regtorted in the literature
as far as we know. In [10], for example, work ong#-client CFLP was considered and they gave eetgrflow cover
inequalities with uniform capacities and their alfon is an approximation with integrality gap =Ib.[5], adapted flow
cover inequalities for a general CFLP was consilefihey used this cutting plane to tighten the faation, thereby
providing a better lower bound with integrality gafless than one percent. Theirs is not an appratton algorithm like the
former case. In [11], an approximation algorithnsdxh on covering inequalities for a single client_Fwith integrality
gap< 2 was considered. In our case, the flow conservatiwrstraint {cc) [5], with the valid inequalities of Davis and Ray
(D&R) [3], are appended to various alternative flow folations of the TSCFLP, while the valid inequalitéise to Ro and
Tcha R&T) [6], were incorporated to the multicommodity fardation of TSCFLP. The effect of all these is dssed in
sections 3 and 4.

On the comparison of alternative formulations ofCF&P; in [12], an optimization problem over the sélagrangian
relaxations of two alternative formulations of TSEFwith the objective of finding the relaxation thmmoduces the best dual
bound was considered. Also in [6], two alternativathematical model formulations for the two-levistidbution and waste
disposal problem with capacity constraints (whishaispecial case of TSCFLP) are analyzed. They slase/n that both
formulations are equivalent. Also, comparison ¢éralative formulation can be seen in [13] but,hie tontext of comparing
several lagrangian relaxations of the formulatioh$wo-stage uncapacitated facility location probldn the seminal work
presented in [4], two general alternative formulasi of MIP problem were considered but, with thigzotive of theoretically
outlining model formulation selection criterion the context of accelerating Benders’'s Decompositionthis paper we
considered seven flow formulations of alternativatimematical models, and one multicommodity formoarabf TSCFLP,
with the objective of analyzing their LP relaxation

2. Model Formulations

Modeling the two Level/stage problems is slighthsd straightforward than the one stage problemreThee two
obvious ways of formulating the problem: “flow fouhation” and the “multi commodity formulation”. Ithe flow
formulation we consider the flow at each level, aggluire conservation of flow between levels. i b& proved [5], that the
LP relaxation of the multicommaodity formulationas least as strong as the LP relaxation of the fianmulation. A draw
back with the multicommodity formulation is, howeyéhat it grows rapidly as the size of the problestance grows, see
table 2 for example (cf. Table 1).

FLOW FORMULATION: TSCFLP can be stated as follows: A single prodsigiroduced at some facilities, plants or
warehouses in order to satisfy customer demands.pfoduct is transported from these plants (or mgiants) to some
depots (or minor plants) and then to the custonTdrs.capacities of plants and depots are limitdek froblem formulation
for TSCFLP, as presented in [14] can be stated|bsnfs:
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Zp= min{ZZb.k Wit 22 CoXg * 2 i Y+ 2.0, Z - W %20 XTSC“} CEY

idl kK kOK jOJ idl
where

TSCFL . o
X :{ (w,x,y,2) € R x R x 74, x Zk:

X =1 Ood (1-2)
kOK

2.4 X< S Z OkOK (1-3)
03

X~ Z.<0 [0j0J,0kOK (2-4)
ZVVikSaiyiDiDI (1-5)
kOK

DWW, =2y, OkOK (1-6)
i j

W, 20 Oi 01,0k 0K (1-7)
yi , Z integer OidlOkOK (1-8)
O<x,<l 0sys<l 0sgz<l] Oik,j } (1-9)

The objective function (1-1) minimizes the sumstbé fixed costs of opening both plants and depats] the
transportation costs of shipping demand from plémtdepots and from depots to customers. The ains{1-2) ensures that
each customer’s demand is fully met by the depg@dsistraint (1-3) ensures that open depots do muylgunore than their
capacity, i.e, for each depot the sum of the denwnithe customers it is supplying is less than quad to its capacity.
Constraint (1-4) ensures that customers are omxeddrom open depots. Constraint (1-5) guarantessopen plants do not
supply more than their capacities, i.e, for ea@npthe sum of the demand leaving it is less thaggaal to the capacity it
can hold. Constraint (1-6) indicates conservatibflow constraints for the depots. That is, for leatepot the amount of
demand entering the depot from the plants is etudhe demand leaving the depot to be transpodeithé customers.
Constraint (1-7) consists of non negativity coristeaon the amount of demand transported from plemtiepots. Constraint
(1-8) consists of integrality constraints on bothnts and depots. Constraints (1-9) are non ndgatwnd simple upper
bound constraints restricting the fractional valaésustomers demand.

Surrogate constraints (1-10) and (1-11) can bedcédddollows:

L2WesXay, (1-10)

idl kK idl
2.SZ.22. 4, (1-12)
KOK i

(1-10) is derived by summing (1-5) over alplants and states that the total capacity of thatp is at least as large as the
total demand being transported from them to theotdef§1-11) is derived by summing (1-3) overfallepots and using the
equalities (1-2) and ensures that the total cajpacdf the depots is at least as large as the detaland being transported
from them to the customers. These two constrairesr@edundant in the original formulation but strémem some of the
relaxations. The second formulation of the TSCFL# the surrogate constraints added is:

Zf2 :mi”{ZZbk Wi * kZZCkJ Xgt 2 f Y+ kz g,z Wxy2)0 XTSCFL} (2-1)
0K jod i0l 0K

i0l kK

where

X " ={ w,x,y,2) € REF x RYY x 74 x Z%: (1 — 2) to (1 — 9) plus
(1 -10),(1 —11)}. Adding these surrogate constraints will not cledagbetter the optimal objective values of boté th
MIP and its relaxation, rendering them redundanthis case, but they are useful in strengthenirtgrotelaxations like
lagrangean relaxation [3].
In the work of [12], two formulations of TSCFLP weepresented, the first one contained the validuagties of Davis and
Ray [15]; and is given as follows:
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Zsfs —mm{Z > b Wi * Z Z Cy X * Z fiy + Z .,z :w,xy2)0X TSCFL}' (3-1)

idl kOK
where

TSCFL . S
X :{ (w,x,y,2) € R x R¥ x 74, x Zk:

dW.<a Oigdl (3-2)

kOK

YW <S Ok OK (3-3)

idl

2 Xy=d, 0joJ (3-4)

Z W 2 Z Xy Ok O K (3-5)
Wi S M, Y, 0iol,0k0K, (3-6)
ijslijk OkOK,O0j0OJ (3-7)
Wi X 20 0i01,0)0J,0k0K (3-8)
Y.z 0{o, 1 Oi 01,0k 0K} (3-9)

Where, m, = min{ai ’S<} and | = min{s{ .d j} Oi0l1,0)0J,0k0K are upper

bounds for the respective flows [12]. Valid inedtie$ (3-6) and (3-7) are based on [15]. Thus cansfs (3-6,3-7) ensures
that total flow between plaritand customej can never exceed the minimum of custoflerdemand and the capacity at
planti, and total product flow between plantnd depok can never be larger than the minimum of the capatidepotk,
and the maximum production generated at plamspectively. Constraints (3-4) and (3-5) areilfatf as equalities for an
optimal solution of (3-1)-(3-9). The second forntida of TSCFLP presented in [12] arises when thiddviaequalities of
[15], (constraints (3-6) and (3-7)) are writtenarmmore concise form yielding an equivalent formolatof the TSCFLP,
given as follows:

fo4—m|n{22bkwk ZZCkJXkJ Zf y Zg Z: (w, X, MZ)DXTSCFL}, (4-1)

i0l kK kOK jOJ
where

TSCFL
X = wxy,2) € R x RO x 7 x ZK:

2 Xz d, 0joJ (4-2)
kOK
ZWKZ& Dk DK (4-3)
ial
Zwrayi ool (4-4)
kOK
2 Wi €S Z Ok OK (4-5)
i0l
Wi+ X, =0 0i01,0§ 03,0k 0K (4-6)
y.zo{o g 0i 01,0k 0K} 4-7)

A tight formulation of the TSCFLP was given in [9]his formulation differs from the previous formtitms on the way
the flow conservation constraint (5-4) below is gemeted, which differs from constraints (1-6), (3-&hd (4-3).
Mathematically the flow conservation constraintgl{6),(3-5), (4-3)} and (5-4) are equivalent, bontputationally (5-4) as
it is written, tightens the formulation and yielddetter lower bound than those formulations( Zs,, Zsz and Z;,) above.
The software CPLEX, XPRESS and MINTO, [5], recogsithe path structure when the constraint is pteden the correct
form. The Aardal formulation is as follows:
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Zyys = m'n{ZZb.kw.k 2 2.CiXg* L f Y+ 20,z W xya)0 XTSCFL} (5-1)

idl kOK kOK jOJ
where

TSCFL
X { W, x,7,2) € R x R x 7 x 7k:

wisay, Oi0| (5-2)
kOK
> WSS Z Ok OK (5-3)
idl
2 Wi~ Zxk =0 [OkOK (5-4)
il
> X = 0jod (5-5)
kOK

Zxkjﬁ&zk Ok 0K (5-6)

j0J

ijsdjzk OkOK (5-7)
y <1 001, z,<1 OkOK (5-8)
Wi X, 20 0i01,0j03,0k 0K} (5-9)

For instance, it is important to write constraifis4) asz Wi ~ z Xk =0, and not a§ Xk ZWK 0, since the

il j0J iol
sign of a variable indicates whether or not it esnts inflow or outflow
Another alternative formulation was presented jngid it is as follows:

Zfpe = mln{z z b|k W|k Z Z CkJ XkJ z f y Z g Z - (W, xy,2) U X TSCFL} ' (6-1)

i K ko
where
X T ={ wxy,2) € R x R Xz x 7k
kDZ;,Xk,- = 0joJd (6-2)
jZD:deijSSka Ok O K (6-3)
ij—zkso Op0J,0k0OK (6-4)
wisay, 0ol (6-5)
_kZZ:IKWik = ZD:J d; x, UOkOK (6-6)
—mir:{a_ sy <0 Oi01,0kOK (6-7)
ZSka >.d, OkOK,0jOJd (6-8)
gaiyizgdj oign,ojo0d (6-9)
Wikl?lxkao " oo L0j0J,0k0K (6-10)
Y. Z 0{o, 1 Oi0l,0k 0K} (6-11)

We contemplate the following equivalent formulatimndropping some unbinding constraints, and resiring some which
are redundant in the context of LP relaxation:
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Zm—m'n{ZZb.kw.k 2 2CuXy* 2 Y ¥ 20,z W x v x} (7-2)

idl kOK
where

TSCFL
X { W, x,y,2) € R x R x 7 x 7k:

2 X =1 0jod (7-2)

kOK

2. XSS Z kDK (7-3)
03

ZVVik:zdiij Ok OK (7-4)
iol j0d

D> W.<a Yy Oio| (7-5)

kOK

Wi X, 20 0i01,000J,0k0K (7-6)

y.z.0{oy, 0i01,0003,0k0K ) (7-7)

MULTI COMMODITY FORMULATION: In the multi commodity formulation we consider tHew on the path

(i,k,j) where, i, is a major plant k is a minor (depot) plant andis the customer, we Ieyvikj denote the fraction of
demand d; being routed via path —» k — j, and defines the cost at demand pojn¢ J via pathi—k —j as

q'kl b'k’ d Ck’ . This formulation allows us to model situationsend cost depends on both the major plarnthrough
minor plantk (or depot) and demand pointSuch cases occur in practice if for instance ftates from sourcéto depotk
are less than the sum of flow rates frbto k plus k to j. Apparently, flow formulationff), has more advantages to multi
commodity formulation roch) if the costg;,; can be split in to two parts;,; and c,; becausdf has far fewer decision
variables (cf. Table 2), while the LP relaxatiorboth models are equivalent.

Klose and Drexl [1] and Aardal [5] proved thiagé LP relaxation of the multi commodity formutatiis at least as
strong as the LP relaxation of the flow formulatiand for many instances the difference can beedaige. An equivalent
formulation of the TSCFLP based on path variaklgs can be given as follows:

TSCFL

Zmer = MiN %“%qukjwkj Zf y + Zg Z W, y2)0X 6-1)

[ By
where
XTSCFL { w,x,y,2) € RV x 74 x 7k:
%k;wm =1 0joJ 8-2
szK%djWij <ay, Oi gl 8-3)
(8-4)

%:J%:djVVikjS&Zk OkOK
2 Wi Y, ool gjoJd (8-5)
kOK
> Wi < Z OkOK 0joJd (8-6)

idl
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%Skzkz;dj OkOK 0joJd (8-7)
Zaiyizzjdj 0iol 0joJd (8-8)
I\;\l,ikao a Oi0l OkOK OjoJd 6-9)
yofog  oiol 8-10)
z.0{01} Ok OK} @8-11)

For more on this see [1] and [6]. The objectivecfion (8-1) gives the total cost consisting of tiest of assigning
customers to facilities plus the cost of estahtighfacilities and cost of opening depots. Constsa@-2) ensure that demand
is satisfied completely. Constraints (8-3), (8-@e care of scarce capacities of facilities on betels. Aggregate capacity
constraints (8-7) and (8-8) are redundant but pgrlybaseful in order to tighten some relaxationshsas lagrangean
relaxation other than LP relaxation. Constraint§)&nd (8-6) are valid inequalities that alsorsgteen LP relaxation.

3. Computational Results

The problem instances are from [14]. In Table 1 dathle 2 we present the problem characteristicsbfith the
instances used for the flow and multi commoditynfatations of TSCFLP respectively. We consideredlisara medium
size problems of the type, X b X ¢, wherea, b and ¢ denotes the number of major Facilities (Plantsmibper of minor
Facilities (Depots) and number of Clients (Cust@jpesespectively.

Table Iproblem characteristics for the flow formulation

Probl Size Number of Number of Number of
em variables Constraints nonzeros

A 3x5x10 73 73 288

B 5x8x25 253 246 1093

C 5x10x25 315 300 1365

D 5x16x25 501 462 2181

Table 2 problem characteristics for the multi commoditynfmlation

Problem Size Number of Number of Number of
variables Constraints nonzeros

MC1 3x5x10 158 100 847

MC2 5x8x25 1013 365 5351

MC3 5x10x25 1265 417 6655

MC4 5x16x25 2021 573 10567

In Table 2, the same group of instances as in Taleformulated using variables;, ; denoting the flow on the path
(i, k,j), and variablesv;, xx;, y;, zx as in the flow formulation, for the multi commogditormulation. In Table 3, we show
the results from solving the instances by pure Bnaand Bound only, and in Table 4, we show theltg$tom solving the
instances by representing the flow conservatiorsitaimt (fcc) correctly. We use the notation abbéodthe instances,
wherea denotes the number of plantsy the number of depotgc the number of customers and the number of the

instances in the set having the same size, weuslsoz(.) andZ(.) denoting the optimum integer and continuous (LP
relaxed) solutions of the problems respectivel§y,,yna = Z(')Z;j(') * 100% is the measure of the relative quality of the
bounds, often referred in the literature as duady (%) (or % duality gap), [16, 17]. For the cagtion we coded the
formulations according to the syntax of AMPL [1&}dause IBM-CPLEX 12.5.0 solver, implemented on a ¢tiPei3

processor 2.27 GHz 4 GB RAM PC.

The following implication of definitions (5) and)@&bove stands.

Theorem 1. Magnanti and Wong [4] Suppose P and Q are elguitaformulation of a MIP. P dominates (is supetri)
Q iff v(P) = v(Q) for all y;, z, € conv(y X z) with a strict inequality for at least og z;, € conv(y X z).

Proof: & Suppos&P) = v(Q), for all y;, z, € conv(y X z) , then Q does not have any valid inequality wR.tbut
there exists at leagt), z, € conv(y, z) such thav(P)(y,,z,) > v(Q) (v, z,) implies that P has a valid inequality that is not
equal to any valid inequality in P.

= Now if P dominates (is superior) Q, then Q, byimigbn of dominance does not have any valid inditypaahat is
equal to any inequality w.r.t. Q, this implies thaP) = v(Q) for all y;, z, € conv(y X z), and there exist &, z, €
conv(y, z) such thav (P) (v, zo) > v(Q) Vo, 2o) -
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The computational results are given in Table(s) Fdble(s) 5. For example in Table 3b and 3g,ahd %, have the
same optimal integer objective values for the flowmulation, in the same vains£ and Zg have the same optimal integer
objective values. Similarly in Table 4b , 4c and 4g;, Zyu and Z; have the same optimal integer objective values
respectively. In order to highlight further theatibnship that exists between the various formoitestj Figures 1 to 6 are
graphs of some selected parameters of the compugati-or example, Figures 1 and 2 are graphs ofaitPLP CPU time
for the problems size for all the flow formulatiorespectively. From these graphs we can concluatedh has higher CPU
time for both MIP and LP-relaxations. Among thenfiotations, for example, Figure 5 and Figure 6 shthves Zi; & Zgyy
have higher optimal integer objective function spdbllowed by %, & Zg, wile, Zy; and Zs have the least costs
respectively. Also & has higher number of MIP and dual simplex itersithan 4;. Analogous interpretations can be
given to the rest of the Tables and Figures.

4. Results Analysis

Here we compare the relative quality of the optinma¢ger values of the formulatior, and Z,,,.; and their LP-
relaxations. For this comparison we introduce thioWwing additional notations. When formulatidfy; and Z,,., were
solve by B&B only, the values for the optimal integbjective and LP-relaxations will be denotedzjé];(.), zf,‘wf(.) and
Z]ﬁf(. ), z‘f,‘wf(.) respectively. And when they are solved by B&B witbrrect representation of the flow conservation
constraint, the values for the optimal integer otiye and LP-relaxations will be denoted szf(.),z,‘fwf(.) and
Zfr (), Zmes (1) respectively. From Table(s) 3 to Table 5 we hieefollowing results:

Lemmal Z; = Zp, that is, both the flow and the multi commodityrfmulation of the TSCFLP are equivalent.

Proof: The following equivalence relations hold by defom [6]:

@ x, = k;K d; Wi

(b) Wi = Z d jWikj
joJ

(c) Zxkj =dj =1

kOK

@ ¢, +bid;=q,

Given these equivalence relations we prove2hgt(. ) is equivalent ta,,.,(.).

i. The objectives (1-1) and (8-1) in both formulati@me equivalent:

Z zqukj Wi z f, Y+ z g,z then from (d) we have:

ZZZ(buqd ij)d VV|k] Zf y Zg Zk

o kOK I then from (a) and (b) we have
=2 %ck,Zd Wy * 2, Zb.kZd Wyt 2 fi Y *2. 9,2
=2 Y bowit 2 %cijkﬁ%fi y*29.z

Demand constraints (1-2) and (8-2) are equivaleince foreachj=1, ..., n

Z X = Z Z d, i Wi 0703 then from (o),

i0l kOK
dj=ZZdjWikj DjDJ:ZZ W, =1
idl kOK idl kOK
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ZWikzszij Ok O K foreachk=1,...p
Flow conservation constraints (1-6) is satisfiediGgF '~ o9
. Y . is the demand for customgfrom depot k, and by definition, this must come from planErom
dJXkJ'hd df d k, and by definiti hi f lanF b
j0J
above,

W, = Zdj W, - taking the sum over k, we ha\E W, = Z Zdj W, then from (a)

j0J kOK kOK jOd
- < i
and (8-3= _ayi Uil
Plant capacity constraints (1-5) and (8-3) are\ejent.
ZVVik =a y Viel ZZd j \le]. < a y Vi € I , the right hand sides of the two inequalities ar
1 I

KOK kOK j0J
equivalent, we show that the left hand sides a® edjuivalent. From (b)

Z[Zdjwikj}:mz}(\/vik DiD':mZKwksay Oi Ol

kOK | jOd

Depot capacity constraint (1-3) and (8-4) are eajeint.

%djxkj5$zk OkOK, Zm:%:djwkjs$zk ,OkOK

i ionj

Similarly the right hand sides of the two inequesitare equivalent. We show the left hand sidesats equivalent.

From (1-6)21(:]1,)(kj :ZIVVikJ Ok OK from (b) :ZZdjV\/ikj

j0J il i0l joo

iv. Constraints (8-7) ,(8-8) are redundant just likel(}, (1-11). The rest: that is (1-7, 1-8, &1-944®B-9, 8-10, and 8-
11) are the non-negativity and integrality restoics on the respective variables of the two forroites
respectively.

Lemmaz2letZry, ... ... ,Zsp7 and Zp; be formulations for the sat™¢F- c R%} x ZT'; where som&s;_,; 1 <p <i;i=

s .7 and Z; are better than sonf,. If we consider the MIP proble@y; = Z,,.; = min{C"x: x € X"5°F'} where

x = (w,x,y,z) and denote by,(.) = min{CTx:x € fo}, Zep() = min{CTx:x € Zss, XTSCFL ¢ R x ]RT}, the values
of the associated optimal integer and LP-relaxatwfiproblemZ; s or Z,,,., then the following hold:

i.
ii.
iii.
iv.
V.
Vi.

Vii.
Viii.

Zfy7 () < 251 () < Zier () < Zfpe() < Zfpa() < Zfps ()

qufl(') = quf6(') = Z#mcf(-)

ZfAfS(-) = quf4(')

zf¢, () < {(@0), (iii)} dominateszfy, (), zfrs (), Zimerr 2fr3 () and zfr, ()
274 () = Zfps () = Zfp ()

Zfr1 () < Zf56()

fozx(-) = ZfoS ()= Zfo7(')

fol ()< Zfo6 @)

Proof: i. constraints (3-5) and (4-3) is a relaxatiorcohstraint (1-6), by definition 1 the first ineqgiyalholds; by lemma 1

the second inequality holds;sZimplied Zy and by definition 5 and the results on Table 3b &ed the
relationships hold.
ii. Zg and Zg are both flow formulation, by lemma 1, both areieaglent.
ii. from Table 3b and 3c, and ii above, the reathold.
iv. This follows from definition 4, 5 and theoremAnd Table 3f shows the values of the optimal ofdye function
for the instances solved are at least better than Zg, Zis and Z..
v. fromlemma 1, (c) constraint (4-2) is equeérdlto constraints (5-5) and (7-2), which saya#itomers’
demands must be fully met, hence the result.
vi. This follows from definition 5 and the resufts solving the instances in Table 4a and 4d respay.
vii. This follows from a direct consequence of &jove.
viii. (vi) implies (viii), as in (vii) above.
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Table 3a:Results from solving the instances by Branch andn@anly forZg,

problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 55152.8619 49815.26011 9.7 0 62 51 0.0p38 0306.
305102 67061.3178Y 114622.98088 3.6 0 52 57 0.1248 0.046¢
305103 36575.5455 33912.30113 7.3 0 51 45 0.1402 0310.
508251 63392.8448 59633.96184 5.9 0 197 92 0.234 0626.
508252 53793.94231 51297.94476 4.6 0 119 85 0.296 .109Q
508253 22503.2 20344.1402 1.0 0 141 130 0.3y36 930.0
510251 62129.5419¢ 58319.22228 6.1 0 207 142 0.46720.109
510252 43234.9982Y 39112.082(07 9.5 0 157 128 0.4518).1556
510253 109651.0481 106048.1401 3.3 0 181 130 0.6540.1716
516251 135244.858 132656.3339 1.9 0 218 198 0.60740.2182
516252 77216.70671 70387.46144 8.8 1 264 143 0.8880.2492
516253 28860.38889 23478.0224 1.9 0 310 170 1.02860.234
Average duality gap 7.4%; Note thatZ;;, has the same optimal solution witfy,
Table 3b: Results from solving the instances by Branch andnBoonly forZ, .5
problem z(.) z(.) Epound # B&B # MIP # dual simple | Time Time
Iterations |iteration: MIP LP
305101 64116 63938.9560]7 0.28 0 53 46 0.0622 0
305102 83841 82835.374 1.2 0 47 47 0.0932 0
300103 49013 48993.04545 0.04 0 43 37 0.0456 0.0306
508251 132875 131451.6889 1.1 0 202 115 0.3273 66.04
508252 104173 103615.8862 0.53 0 112 109 0.2958 616.0
508253 39028 38161.45919 2.2 0 117 87 0.3%84 0.07|76
510251 123694 123430.12% 0.21 0 135 112 0.3898 26.09
510252 104612 102067.977/6 2.4 0 121 86 0.4668 0.10B86
510253 165860 165385.6358 0.3 0 133 97 0.4838 06.124
516251 242194 240456.9255 0.72 0 188 139 0.7102 06.14
516252 139364 137077.312(1 1.64 0 171 99 0.7016 66.15
516253 82667 81586.3606P 1.31 0 186 152 0.7952 30.2(
Average duality gap 1%
Table 3c:Results from solving the instances by Branch angnBoonly forZg(,
problem z(.) Z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 64116 59828.44423 6.7 0 42 38 0.0632 0
305102 83841 80727.63726 3.7 0 44 43 @O0 0
305103 49013 45364.338083 7.4 0 48 30 0.1252 0.03[16
508251 132875 128204.624(1 3.5 0 139 77 0.1562 06.04/6
508252 104173 98830.3783 5.1 0 88 81 0.1872 0.0626
508253 39028 34269.78501 12.2 0 133 59 0.2192 0.047
510251 123694 120437.59711 2.6 0 136 90 0.3436 6.078
510252 104612 94084.80585 10.1 0 108 65 0.3278 30.06
510253 165860 162150.7091 2.2 0 111 80 0.3432 0.063
516251 242194 238752.781]1 1.4 0 161 107 0.437 0.078
516252 139364 129452.4162 7.1 0 155 88 0.484 0.10p6
516253 82667 77272.317983 6.5 0 129 80 0.6044 0.1246

Average duality gap 5.7%
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Table 3d: Results from solving the instances by Branch andnBoonly forZ .
problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 4452 1474.19780) 66.9 0 18 22 0.0306 0.015
305102 5365 3146.201088 41.4 0 37 31 0.0782 0.0466
305103 6265 2365.17827 62.3 0 37 22 0.1092 0.0626
508251 9475 6763.78225[L 28.6 0 162 63 0.1%68 0.07[76
508252 8032 6382.212178 20.5 0 100 66 0.1722 0.09[36
508253 6328 4040.01411y 36.2 0 128 94 0.2032 0.10B86
510251 10095 5602.91323p 44.5 0 237 63 0.2804 0.093
510252 10839 4829.453996 554 0 182 78 0.4052 0.093
510253 9655 6734.395924 30.3 0 124 85 0.4054 0.093
516251 11654 8117.376639 30.4 0 264 84 0.7948 6.123
516252 10054 5440.059974 45.9 0 280 89 0.6862 6.139
516253 8249 5450.517218 33.9 0 272 101 0.718 0.15p6
Average duality gap 41%
Table 3e:Results from solving the instances by Branch andn8loonly forZ .,
problem z(.) z() Ehound # B&B # MIP # dual simple | Time Time
Iterations |iteration: MIP LP
305101 55152.8619 52855.61174 4.2 0 103 49 0.0P38 .0306
305102 67061.3178Y 66420.5865%6 1. 0 35 49 0.0D42 0466.
305103 36575.5455  36077.40661 1.4 0 46 37 0.0p46 0310.
508251 63392.8448 62834.96705 1.0 0 136 120 0.1262.0616
508252 53793.94231 53396.96705 1.0 0 124 102 0.126@.0776
508253 22503.2 22380.84869 54 0 77 94 0.1892 6.092
510251 62129.54196 61280.500%3 1.4 0 162 126 0.4386.1086
510252 43234.99827 42595.93414 15 0 149 113 0.3754.1246
510253 109651.0481 109072.8718 1.0 0 133 131 0.39080.124
516251 135244.858 134626.9252 0.5 0 158 182 0.50060.1556
516252 77216.70671 76883.20928 0.43 0 163 130 8.484 0.1716
516253 28860.38889 26794.82175 7.2 0 230 186 0.$630.1876
Average duality gap 1.7%
Table 3f: Results from solving the instances by Branch andnBoonly forZy .,
problem z(.) Z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 9784 7670.84645p 21.6 0 21 30 0.0938 0.016
305102 49719 47980.9862¢4 3.5 0 25 27 @2 0.031
305103 31205 27964.33 10.4 0 21 26 0.1086 0.0626
508251 47249.6667  44214.65511 6.4 0 88 70 0.1p62 0470.
508252 41797.2222  38568.68722 7.7 0 101 81 0.1872 .0470
508253 17602 15514.14131 11.9 0 51 73 0.1866 0.047
510251 23952 21987.6561Q 8.2 0 51 75 0.203 0.063
510252 26752 23554.07376 12.0 0 99 75 0.4994 0.0936
510253 30641 29607.14141 34 0 64 96 0.3118 0.10p6
516251 90652.9412  88832.24385 2.0 0 104 115 0.3584 0.11
516252 28433 26916.53454 5.3 0 98 107 0.3894 0.1406
516253 13958 12540.75158 10.2 0 94 128 0.3892 0.156

Average duality gap 8.5%

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013, 173-192

184



Strengthening the LP-Relaxation of Alternative... Abdullahi and Sani Jof NAMP

Table 4a:Results from solving the instances by Branch andnicand representation of fcc %y,

problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP

305101 7650.04761  5230.304569 32 0 135 51 0.156  316.0
305102 8844.82529  6438.293597 27 0 126 55 0.1718 04686.
305103 7543 4302.187724 43 0 106 60 0.2588 0.047
508251 14244.0083 11608.26248 19 0 818 97 0.608 786.0
508252 11214.57500 9761.603636 13 0 518 123 0.7804).0946
508253 7931.66667  6050.060965 24 0 491 161 0.827 0940.
510251 14412.19805  10658.5035 26 0 733 134 1.202 1256.
510252 14493.58876 10282.447(2 29 0 845 168 1.4044).1566
510253 16972.3169 13050.25395 23 0 809 135 1.6078 .1560
516251 18353.06312 15412.14717 16 0 540 143 1.8878).1876
516252 15365.67724 11719.90232 24 207 5612 206 42.04 0.2036
516253 12174.5000 9047.522327 26 39 2817 261 3.1602.2196

Average duality gap 25%

Table 4b: Results from solving the instances by Branch andnBlaand representation of fcc 5

problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP

305101 4452 1728.85326[1 61 0 30 28 0.0622 0.0316
305102 5365 3369.66858p 37 0 69 45 0.0932 0.0466
305103 6265 2577.293478 59 0 68 33 0.1242 0.031

508251 9475 6930.89298p 27 0 152 100 1.0p1 0.0616
508252 8032 6395.63984p 20 0 99 89 0.1866 0.0776
508253 6328 4311.268014 32 0 128 104 0.2026 0.078
510251 10095 5808.68059/7 42 0 293 69 0.3586 0.093
510252 10839 5092.290368 53 0 322 81 0.562 0.1286
510253 9655 6858.43248p 29 0 142 85 0.5)78 0.28

516251 11654 8123.380582 30 0 263 112 0.546 0.1546
516252 10054 5953.360469 41 0 312 114 0.7024 0.155
516253 8249 5840.8335483 29 0 237 171 1.56 0.1866

Average duality gap 38%

Table 4c:Results from solving the instances by Branch andnBlaand representation of fcc @y,

problem z(.) z() Ehound # B&B # MIP # dual simple | Time Time
Iterations |iteration: MIP LP

305101 4452 1474.19780[ 67 0 2 22 0.0778 0
305102 5365 3146.20108B 41 0 82 34 0.0932 0
305103 6265 2314.96878[L 63 0 37 25 0.0936 0.0306
508251 9475 6686.772758 29 0 173 62 0.1402 0.3256
508252 8032 6026.53999B 25 0 135 67 0.1396 0.06[6
508253 6328 3764.03487p 41 0 111 62 0.1856 0.0776
510251 10095 5597.761304 45 0 564 60 0.3422 0.0936
510252 10839 4616.915084 57 0 362 63 0.3%84 0.093
510253 9655 6616.72788R 31 0 121 71 0.3276 0.093
516251 11654 8038.17164R 31 0 434 94 0.4836 0.093
516252 10054 5350.6733356 47 0 803 97 0.6%54 0.093
516253 8249 5200.97023p 37 0 2812 80 3.7602 0.093

Average duality gap 43%
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Table 4d: Results from solving the instances by Branch andnBlcand representation of fcc gy

problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 8484 6094.9532 28 0 87 53 0.1098 0.016
305102 8844.8253 7633.3905 14 0 140 51 0.1558 6.047
305103 7543 5006.1540 34 0 95 40 0.1712 0.03p
508251 15228.71481  13637.537p 10 0 521 104 0.5148 .0480
508252 13442.31765 11187.13885 17 0 448 80 0.6236 .0786
508253 7931.66667 6361.0554 20 0 295 121 0.5p24 946.0
510251 14412.19798  12491.4331 13 0 558 128 0.9198 .1106
510252 14493.5887p 12320.41284 15 0 390 143 1.0446 0.11
510253 17764.3354 15334.620$7 14 0 596 112 1.2162 .1260
516251 20652.1587f 18268.53508 12 0 334 111 1.4964).1576
516252 15888.78125 13860.492%6 13 0 697 159 1.7774.1736
516253 12174.5000 10448.279) 14 0 770 153 1.9954 2046.
Average duality gap 17%
Table 4e:Results from solving the instances by Branch andnBicand representation of fcc oy,
problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 4452 1474.1978 67 0 0 22 0.0782 0
305102 5365 3146.2011 41 0 38 34 0.07)86 0.01p
305103 6265 2314.9688 63 0 3 25 0.135 0.0466
508251 9475 6686.7728 29 0 130 62 0.1412 0.0616
508252 8032 6026.5399 25 0 106 67 0.2385 0.218
508253 6328 3764.0349 41 0 116 62 0.2042 0.062
510251 10095 5597.7613 45 0 496 60 0.329 0.062
510252 10839 4616.9151 57 0 441 61 0.4226 0.062
510253 9655 6616.7279 31 0 131 71 0.3912 0.062
516251 11654 8038.1716 31 0 473 94 0.5632 0.077
516252 10054 5350.6733 47 0 764 96 0.9062 0.077
516253 8249 5200.9702 37 0 404 80 0.7348 0.07)7
Average duality gap 43%
Table 5: Results from solving the instances by Branch andn8loonly forZ,,,
problem z(.) z(.) Epound # B&B # MIP # dual simple | Time | Time
Iterations |iteration: MIP LP
305101 55152.8619 50989.75976 7.5 0 71 61 0.3116 0150.
305102 67061.3178Y 65703.9948 2.0 0 52 40 0.21.78 0460.
305103 36575.5455 36077.40661 1.4 0 29 21 0.312 628.0
508251 63392.8448 60436.17996 4.7 0 316 88 0.5622 .0786
508252 53793.94231 52077.31623 3.2 0 124 96 0.515 .0926
508253 22503.2 21547.18779 4.2 0 84 72 0.5614 6.108
510251 62129.54196 59718.91831 3.9 0 318 135 0.8574.1552
510252 43234.9982Y  41043.9269 5.1 0 208 105 0.96640.1706
510253 109651.0481 107150.7403 2.3 0 300 192 0.9974.2016
516251 135244.858 134032 0. 0 186 151 1.544 0.2482
516252 77216.70671 72350.31579 6.3 0 354 173 1.62260.263
516253 28860.38889 24287.14113 1.6 0 210 147 1.7948).3112

Average duality gap 4.78%
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5. Conclusion

In this paper we study alternative formulationdwb stage capacitated facility location (TSCFL) ldesm. We have shown

that the two obvious ways of formulating this pehl i.e. the flow and multi commodity formulatioase equivalent. From

computational point of view we conclude among athbat:
« The flow conservation constraints when expressecbctly tighten the formulation and yield a betwwver bound as
well as the optimal integer objective value tharewkeft otherwise (see Figures 5, 6, 7 and 8).

< Adding the valid inequalities as well as expressithg flow conservation constraint correctly tightethe
formulation, but unfortunately this introduces hégluality gap in the solutions.

« The LP-relaxation of the multi commodity formulati@ppeared to be better than that of the flow fdatian of
TSCFL problem, when the instances were solved bgdir-and-bound only.

« Among the equivalent formulations, the graphs ofotes parameters, such as CPU time for MIP anddl&xation,
optimal integer as well as continuous costs ofdbgctive function further highlight the dominaetationship that
exists among the formulations in terms of computggpurces.

« From computational point of view, from the tables graphs we can conclude further thgt gerform better than
the rest, when the instances were solved by brandtbound only. While £, Zx; and Z, performs better when the
instances were solved by branch and bound and ssipgecorrectly the flow conservation constraints.

< The main objective of any mathematical programmpgrgblem is to optimize (i.e. maximize or minimiza
objective function subject to certain constrai@emputationally Figures 5, 6, 7, and 8 suggest weatecommend
models formulation & and %, for TSCFLP due to their respective minimum objextosts.
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