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Alternative formulations for the Two Stage Capacitated Facility (Warehouse or 

Plants) Location Problem (TSCFLP) are compared and shown to be equivalent. The 
comparison, with main emphasis on strengthening the (linear programming) LP-
relaxations is based on some theoretical and computational results. The theoretical 
aspect compares some relations among the subsets of some constraints of the problem 
sets. On the other hand, the computational aspect compares the relaxations in terms of 
the quality of the lower bounds which the original formulations produce when the flow 
conservation constraints (fcc) are properly represented. Where feasible, these LP based 
bounds are further strengthened by adding valid inequalities and the problems solved 
directly on some small and medium size test problems having various characteristics.  
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1.0    Introduction 

The facility location problem (FLP) can be classified into different categories depending on the restrictions assumed. In 
the uncapacitated or simple plant location problem (SPLP), each facility is assumed to have no limits on its capacity. When 
each facility has a limited capacity the problem is called the capacitated PLP (CPLP). Other sub categories of these problems 
include the capacitated/uncapacitated PLP with: single source constraints, (CPLPSS), customer’s facility preference, P-
median problems, aggregate constraints, maximum covering location problems (MCLP) and so on. These are classified as the 
single stage/level location problems with two decisions to be made. One is the choice of the subset of facilities or plants to 
open while the second decision is which customers should be assigned to the chosen subset of plants. 

When a distribution system consists of facilities on several hierarchically layered levels, where those on higher level can 
be determined independently of the chosen locations on a lower level, then these type of location problem are called multi 
stage models, see for example [1]. 

The TSCFLP is a multi stage model with two stages or levels but practically more than three decision levels. The first or 
upper most stage is the production plants, where the decision to be made is the choice of which plants to open. The second 
stage is the distribution depots and the decision to be made in this case is which subset of depots to open. The third stage is 
the customers and the decision here is to decide which customer should be assigned to which open depots i.e. the open plants 
to satisfy their demand requirement. Included in this last stage is the decision of the flow of product from the plants to the 
depots. The problem of choosing the location of facilities in order to serve a set of customers at minimum cost can be 
encountered in the public sector; (Libraries, health facilities, water treatment plants, the military etc) private sector (factories, 
telecommunications, Banks, agriculture etc) and managing the environment (waste disposal in chemical industries, tannery, 
breeding farms etc); Agar and Salhi [2] provided many applications of PLP’s across all sectors of societies, while [1] 
provided various model classifications of PLP and TSCFLP and the methods of solving them. 

This paper is concerned with modeling and solving directly the class of mixed integer programming (MIP) problems 
known as the two stage/level capacitated facility (plants or warehouse) location problem (TSCFLP). The modeling is done by 
strengthening the linear programming (LP) relaxation of the facility location problem. The model involves choosing the best  
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locations for facilities in order to satisfy Customer’s demands for certain commodities/products. Given a set of potential 
locations for facilities and a set of customers, the plant location problem (PLP) is to locate facilities in such a way that the 
total cost for assigning customers to facilities and satisfying the demand required by customers is minimized. The cost 
considered is the sum of the fixed costs of opening facilities and the costs for assigning customers to specific facilities. 

 The paper is organized as follows: section 1.1 gives some notations, definitions and briefly outlines some related works 
on strengthening the LP relaxation of TSCFLP, section 2 outlines alternative (MIP) formulations for the TSCFLP, section 3 
presents the results of the study.  Section 4 analyzes the quality of the lower bounds that can be obtained for this problem by 
LP relaxation and strengthening them. Finally, in section 5, we summarize and conclude our findings. 

1.1. Notation, Definitions and some related work 
Notation: The following notation is used conventionally except where otherwise stated.  
���, … … … ���           =    the set of equality or inequality constraints.  
����, … … … ���  = the feasible region defined by the constraints���, … … … ���.  	
�����, … … … ���  =    the convex hull 

of the corresponding region.                          
      ��
� = the value for the objective function of problem P.                                                         

},...,1{ mI = , the set of plants.  

                             },...,1{ nJ = , the set of customers. 

                            },....,1{ pK =  , the set of depots;                        

=ckj
 Total cost of transportation from depot k to serve customer j, KkJj ∈∀∈∀ ,

  

g
k

= fixed cost associated with depot k, Kk ∈∀        

=f
i

 fixed cost associated with plant i Ii ∈∀      

=bik
 unit cost of transportation from plant i to depot k, KkIi ∈∀∈∀ ,  

=d j
 demand of customer j, Jj ∈∀  

=sk
 capacity of depot k, Kk ∈∀  

=ai
 capacity of plant i Ii ∈∀  

The decision variables are define as 

=xkj
 fraction of the demand of customer j supplied from depot k, KkJj ∈∀∈∀ ,  









=
1

0
y

i
 ; 0 if plant i is closed, and 1 if plant i is open, Ii ∈∀  

=wik
units of demand transported from plant i to depot k, KkIi ∈∀∈∀ ,  









=
1

0
zk

 ; 0 if depot k is closed, and 1 if depot k is open, Kk ∈∀  

=q
ikj

 Cost of servicing customer � from depot � through plant �, � � � �, � � �, � � �. 

=wikj
fraction of the demand of customer � shipped from plant � through depot �. 

Definition 1: A linear programming (LP) relaxation is the relaxation of the original (LP) problem formed by removing 
or dropping the integrality restrictions on the concerned variables. Formally, a relaxation of a minimization problem is 
defined as follows. 

Definition 2: Abdullahi and Sani [3]; Problem ����: min ����,  �|�,  � "# is a relaxation of problem 
���: $���%��,  �|�,  � &#, with the same decision variables, iff 

i. ����� contains ���� i.e ����� ' ���� 
ii. Over ����, the objective function of ���� dominates (i.e is better than) that of ��� i.e ��,  � &, ���,  � (

%��,  �, where & ) ". 
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iii. It clearly follows that the optimal value of �� is less than or equal to the optimal value of � i.e,  *+�. � (

*�. �, (in case Table 3: Sensitivity analysis of minimization) since �� has more feasible solutions than �; where *�. � 
is the optimal integer objective value, while *+�. � is the optimal objective value of the relaxed problem. 

Definition 3: Magnanti and Wong [4]: A polyhedron P) -.
/ 0 1.

2; where � 3 �� 0 �� 0 �� 0 ��, $ 3 �� 0 �� is a 
formulation for a set 456789, if 456789 3 :;�-.

/ 0 1.
2�. This definition indicates the existence of many formulations for a 

set 4. and this raises the questions about “good” and ‘not so good” formulations. 
Definition 4: Magnanti and Wong [4]: Given a set 4 ) -/ and two formulations P1 and P2 for 4, we say that P1 is better 

than P2, if :� ) :<. A formulation P is called ideal if : ) 	
���4�. 
Definition 5. Magnanti and Wong [4]: Problem : is said to dominate (or is a stronger formulation than) problem = if 

��:� > ��=� for all � ? , with a strict inequality for at least one point  � ? .. 
Definition 6. Magnanti and Wong [4]: Problem formulations P and Q are said to be equivalent MIP representation of the 

same problem if  ��:�� , *� 3 ��=�� , *�%
@ ABB  C�D , *��E . i.e. The two models have the same integer variables and may 
have different continuous variables and constraints , but always give the same objective function values for any feasible 
assignment of the integer variables. 

We discuss the LP relaxations of various alternative formulations of the TSCFLP strengthened by: (i). Representing the 
flow conservation constraints (fcc) correctly [5]. (ii).The valid inequalities based on Davis and Ray (D&R) [3]. (iii).The valid 
inequalities based on Ro and Tha (R&T) [6]. Analogous work on strengthening the LP relaxation of the TSCFLP based on 
Knapsack cover, flow cover and fixed charge path inequalities are presented in [7].  

The main purpose of LP relaxation in solving MIP is to provide an optimal value which in turn provides a lower bound 
(in case of minimization) on the optimal value of the corresponding MIP. While other relaxations such as those based on 
lagrangian duality, semi definite programming and decomposition techniques are undoubtedly useful in special situations. LP 
relaxation generally gives reasonably tight bounds, and the methodology for solving LPs is very efficient and reliable [8]. 
Works on strengthening the LP relaxations of CFLP and hence the TSCFLP are reported in the literature. Most of the reports 
are centered on CFLP, but as usual the TSCFLP is an extension of CFLP and most of the results found for CFLP are valid for 
TSCFLP [7 and 9].  

Studies on LP relaxations of alternative formulations of TSCFLP where the same feasible set is represented by different 
sets of constraints (which may provide different lower bounds) in the context of LP relaxation is not reported in the literature 
as far as we know. In [10], for example, work on single-client CFLP was considered and they gave extended flow cover 
inequalities with uniform capacities and their algorithm is an approximation with integrality gap = 1. In [5], adapted flow 
cover inequalities for a general CFLP was considered. They used this cutting plane to tighten the formulation, thereby 
providing a better lower bound with integrality gap of less than one percent. Theirs is not an approximation algorithm like the 
former case. In [11], an approximation algorithm based on covering inequalities for a single client CFLP with integrality 
gap ( 2 was considered. In our case, the flow conservation constraint (fcc) [5], with the valid inequalities of Davis and Ray, 
(D&R) [3], are appended to various alternative flow formulations of the TSCFLP, while the valid inequalities due to Ro and 
Tcha (R&T) [6], were incorporated to the multicommodity formulation of TSCFLP. The effect of all these is discussed in 
sections 3 and 4. 

On the comparison of alternative formulations of TSCFLP; in [12], an optimization problem over the set of lagrangian 
relaxations of two alternative formulations of TSCFLP with the objective of finding the relaxation that produces the best dual 
bound was considered. Also in [6], two alternative mathematical model formulations for the two-level distribution and waste 
disposal problem with capacity constraints (which is a special case of TSCFLP) are analyzed. They have shown that both 
formulations are equivalent. Also, comparison of alternative formulation can be seen in [13] but, in the context of comparing 
several lagrangian relaxations of the formulations of two-stage uncapacitated facility location problem. In the seminal work 
presented in [4], two general alternative formulations of MIP problem were considered but, with the objective of theoretically 
outlining model formulation selection criterion in the context of accelerating Benders’s Decomposition. In this paper we 
considered seven flow formulations of alternative mathematical models, and one multicommodity formulation of TSCFLP, 
with the objective of analyzing their LP relaxations. 

2. Model Formulations 
Modeling the two Level/stage problems is slightly less straightforward than the one stage problem. There are two 

obvious ways of formulating the problem: “flow formulation” and the “multi commodity formulation”. In the flow 
formulation we consider the flow at each level, and require conservation of flow between levels. It can be proved [5], that the 
LP relaxation of the multicommodity formulation is at least as strong as the LP relaxation of the flow formulation. A draw 
back with the multicommodity formulation is, however, that it grows rapidly as the size of the problem instance grows, see 
table 2 for example (cf. Table 1).  

FLOW FORMULATION: TSCFLP can be stated as follows: A single product is produced at some facilities, plants or 
warehouses in order to satisfy customer demands. The product is transported from these plants (or major plants) to some 
depots (or minor plants) and then to the customers. The capacities of plants and depots are limited. The problem formulation 
for TSCFLP, as presented in [14] can be stated as follows: 
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   �GG�= min








∈+++∑ ∑∑∑∑∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,   (1-1) 

where  

   {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� :   

  Jj
Kk

kjx ∈∀=∑
∈

1             (1-2) 

           Kkd zsx kk
Jj

kjj ∈∀≤∑
∈

           (1-3) 

  KkJjzx kkj
∈∀∈∀≤− ,0            (1-4) 

  Iiyaw ii
Kk

ik
∈∀≤∑

∈

             (1-5) 

  Kkd xw kj
Jj

j
Ii

ik
∈∀=∑∑

∈∈

           (1-6) 

  KkIiwik
∈∀∈∀≥ ,0            (1-7) 

  KkIiegerzy ki
∈∀∈∀ ,int,           (1-8) 

  }jkizyx kikj
,,,10,10,10 ∀≤≤≤≤≤≤         (1-9) 

The objective function (1-1) minimizes the sums of the fixed costs of opening both plants and depots, and the 
transportation costs of shipping demand from plants to depots and from depots to customers. The constraint (1-2) ensures that 
each customer’s demand is fully met by the depots. Constraint (1-3) ensures that open depots do not supply more than their 
capacity, i.e, for each depot the sum of the demand of the customers it is supplying is less than or equal to its capacity. 
Constraint (1-4) ensures that customers are only served from open depots. Constraint (1-5) guarantees that open plants do not 
supply more than their capacities, i.e, for each plant the sum of the demand leaving it is less than or equal to the capacity it 
can hold. Constraint (1-6) indicates conservation of flow constraints for the depots. That is, for each depot the amount of 
demand entering the depot from the plants is equal to the demand leaving the depot to be transported to the customers. 
Constraint (1-7) consists of non negativity constraints on the amount of demand transported from plants to depots. Constraint 
(1-8) consists of integrality constraints on both plants and depots. Constraints (1-9) are non negativity and simple upper 
bound constraints restricting the fractional values of customers demand. 

Surrogate constraints (1-10) and (1-11) can be added as follows: 

∑∑ ∑
∈ ∈ ∈

≤
Ii Kk

i
Ii

iik yaw        (1-10) 

∑∑
∈∈

≥
Jj

jk
Kk

k
dzs        (1-11) 

(1-10) is derived by summing (1-5) over all � plants and states that the total capacity of the plants is at least as large as the 
total demand being transported from them to the depots. (1-11) is derived by summing (1-3) over all � depots and using the 
equalities (1-2) and ensures that the total capacities of the depots is at least as large as the total demand being transported 
from them to the customers. These two constraints are redundant in the original formulation but strengthen some of the 
relaxations. The second formulation of the TSCFLP with the surrogate constraints added is: 

   �GG< 3min









∈+++∑ ∑∑∑∑∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(:  (2-1) 

 

 where  

   {=X
TSCFL �H, �,  , *� � -.

C0� 0 -.
�0I 0 1.

C 0 1.
� : �1 K 2� L
 �1 K 9� 
BNO 

�1 K 10�, �1 K 11�#. Adding these surrogate constraints will not change/or better the optimal objective values of both the 
MIP and its relaxation, rendering them redundant in this case, but they are useful in strengthening other relaxations like 
lagrangean relaxation [3].  
In the work of [12], two formulations of TSCFLP were presented, the first one contained the valid inequalities of Davis and 
Ray [15]; and is given as follows: 
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   �GGQ 3min








∈+++ ∑ ∑∑∑∑ ∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,   (3-1) 

where  

   {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� :  

  Ii
Kk

iik aw ∈∀≤∑
∈

      (3-2) 

  Kk
Ii

kik sw ∈∀≤∑
∈

     (3-3) 

                             Jjdx j
Kk

kj
∈∀≥∑

∈

     (3-4) 

                             Kk
Ii Jj

kjik xw ∈∀≥∑ ∑
∈ ∈

     (3-5) 

 ,, KkIiymw iikik
∈∀∈∀≤    (3-6) 

 JjKkzlx kkjkj
∈∀∈∀≤ ,    (3-7) 

 KkJjIixw kjik
∈∀∈∀∈∀≥ ,,0,                                 (3-8) 

 { } },1,0, KkIizy ki
∈∀∈∀∈    (3-9) 

Where, { } { } KkJjIiand dslsam jkkjkiik
∈∀∈∀∈∀== ,,,min,min  are upper 

bounds for the respective flows [12]. Valid inequalities (3-6) and (3-7) are based on [15]. Thus constraints (3-6,3-7) ensures 
that total flow between plant � and customer � can never exceed the minimum of customer �RO demand and the capacity at 
plant �, and total product flow between plant � and depot � can never be larger than the minimum of the capacity at depot �, 
and the maximum production generated at plant � respectively. Constraints (3-4) and (3-5) are fulfilled as equalities for an 
optimal solution of (3-1)-(3-9). The second formulation of TSCFLP presented in [12] arises when the valid inequalities of 
[15], (constraints (3-6) and (3-7)) are written in a more concise form yielding an equivalent formulation of the TSCFLP, 
given as follows: 

    �GGS 3min








∈+++∑ ∑∑∑∑∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,   (4-1) 

where  

    {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� :  

   

         Jjdx j
Kk

kj
∈∀≥∑

∈

     (4-2) 

 Kk
Ii Jj

kjik xw ∈∀≥∑ ∑
∈ ∈

    (4-3) 

 Iiyaw i
Kk

iik
∈∀≤∑

∈

    (4-4) 

 Kkzsw k
Ii

kik
∈∀≤∑

∈

    (4-5) 

 KkJjIixw kjik
∈∀∈∀∈∀≥ ,,0,   (4-6) 

      { } },1,0, KkIizy ki
∈∀∈∀∈   (4-7) 

A tight formulation of the TSCFLP was given in [5]. This formulation differs from the previous formulations on the way 
the flow conservation constraint (5-4) below is presented, which differs from constraints (1-6), (3-5) and (4-3). 
Mathematically the flow conservation constraints { (1-6),(3-5), (4-3)} and (5-4) are equivalent, but computationally (5-4) as 
it is written, tightens the formulation and yields a better lower bound than those formulations ( Zff1, Zff2, Zff3 and Zff4) above. 
The software CPLEX, XPRESS and MINTO, [5], recognizes the path structure when the constraint is presented in the correct 
form. The Aardal formulation is as follows: 
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   �GGT 3 min








∈+++ ∑ ∑∑∑∑∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,    (5-1) 

where  

    {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� :  

 Iiyaw i
Kk

iik
∈∀≤∑

∈

         (5-2) 

   Kkzsw k
Ii

kik
∈∀≤∑

∈

         (5-3) 

 Kk
Ii Jj

kjik xw ∈∀=−∑ ∑
∈ ∈

0           (5-4) 

   Jj
Kk

kjx ∈∀=∑
∈

1    (5-5) 

                                      Kk
Jj

kkkj zsx ∈∀≤∑
∈

  (5-6) 

                                     Kkzdx kjkj
∈∀≤     (5-7) 

            KkIi zy ki
∈∀≤∈∀≤ 1,1           (5-8) 

                             },,0, KkJjIixw kjik
∈∀∈∀∈∀≥            (5-9) 

For instance, it is important to write constraints (5-4) as ∑ ∑
∈ ∈

=−
Ii Jj

kjik xw 0 , and not as ∑∑
∈∈

=−
Ii

ik
Jj

kj wx 0 , since the 

sign of a variable indicates whether or not it represents inflow or outflow. 
Another alternative formulation was presented in [1] and it is as follows: 

    �GGU 3 min








∈+++ ∑ ∑∑∑∑ ∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,    (6-1) 

where  

            {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� : 

 Jj
Kk

kjx ∈∀=∑
∈

1                    (6-2) 

 Kk
Jj

kkkjj zsxd ∈∀≤∑
∈

         (6-3) 

 KkJjzx kkj
∈∀∈∀≤− ,0           (6-4) 

 Iiyaw i
Kk

iik
∈∀≤∑

∈

          (6-5) 

 Kkd xw kj
Jj

j
Ii

ik
∈∀= ∑∑

∈∈

          (6-6) 

 { } KkIiysaw ikiik
∈∀∈∀≤− ,0,min         (6-7) 

 JjKk
Jj

j
Kk

kk dzs ∈∀∈∀≥ ∑∑
∈∈

,         (6-8) 

 JjIi
Jj

ji
Ii

i dya ∈∀∈∀≥ ∑∑
∈∈

,         (6-9) 

                          KkJjIixw kjik
∈∀∈∀∈∀≥ ,,0,                    (6-10) 

 { } },1,0, KkIizy ki
∈∀∈∀∈                   (6-11)  

We contemplate the following equivalent formulation by dropping some unbinding constraints, and restructuring some which 
are redundant in the context of LP relaxation: 
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     �GGV 3 min








∈+++ ∑ ∑∑∑∑ ∑
∈ ∈∈∈∈ ∈ Kk Kk

TSCFL

kki
Ii

ikj
Jj

kjik
Ii Kk

ik Xzgyxcwb zyxwf ),,,(: ,   (7-1) 

where  

    {=X
TSCFL

�H, �,  , *� � -.
C0� 0 -.

�0I 0 1.
C 0 1.

� :  

  Jj
Kk

kjx ∈∀=∑
∈

1         (7-2) 

 Kk
Jj

kkkj zsx ∈∀≤∑
∈

         (7-3) 

 Kkd xw kj
Jj

j
Ii

ik
∈∀=∑∑

∈∈

         (7-4) 

 Iiyaw i
Kk

iik
∈∀≤∑

∈

         (7-5) 

                          KkJjIixw kjik
∈∀∈∀∈∀≥ ,,0,                   (7-6) 

   }{ 1,0, ∈zy ki
, KkJjIi ∈∀∈∀∈∀ ,, }        (7-7) 

MULTI COMMODITY FORMULATION: In the multi commodity formulation we consider the flow on the path 

��, �, �� where,  �, is a major plant , � is a minor (depot) plant and � is the customer, we let wikj  denote the fraction of 
demand WI being routed via path � X � X �, and defines the cost at demand point � � � ��A 
ALY � X � X � as 

cdbq kjjikjikj
+=

. This formulation allows us to model situations where cost depends on both the major plant, �, through 
minor plant � (or depot) and demand point �. Such cases occur in practice if for instance flow rates from source � to depot � 
are less than the sum of flow rates from � L
 � 
BNO � L
 �. Apparently, flow formulation (ff), has more advantages to multi 
commodity formulation (mcf)  if the cost ZC�I can be split in to two parts [C�I  A�W 	�I because ff has far fewer decision 
variables (cf. Table 2), while the LP relaxation of both models are equivalent. 

     Klose and Drexl [1] and Aardal [5] proved that the LP relaxation of the multi commodity formulation is at least as 
strong as the LP relaxation of the flow formulation, and for many instances the difference can be quite large. An equivalent 
formulation of the TSCFLP based on path variables HC�I can be given as follows: 

     �2\G 3 min  )18(),,,(: −∈++ ∑∑∑∑∑
∈∈∈ ∈ ∈

Xzgywq TSCFL

k
Kk

ki
Ii

i
Ii Kk Jj

ikjikj
zyxwf  

where  

    {=X
TSCFL

�H, �,  , *� � -.
C0�0I 0 1.

C 0 1.
� : 

             )28(1 −∈∀=∑∑
∈ ∈

Jj
Ii Kk

ikjw
)38( −∈∀≤∑∑

∈ ∈
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 Kkzswd kkikj
Ii Jj
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For more on this see [1] and [6]. The objective function (8-1) gives the total cost consisting of the cost of assigning 
customers to facilities plus the cost of establishing facilities and cost of opening depots. Constraints (8-2) ensure that demand 
is satisfied completely. Constraints (8-3), (8-4) take care of scarce capacities of facilities on both levels. Aggregate capacity 
constraints (8-7) and (8-8) are redundant but probably useful in order to tighten some relaxations such as lagrangean 
relaxation other than LP relaxation. Constraints (8-5) and (8-6) are valid inequalities that also strengthen LP relaxation.  

3. Computational Results 
The problem instances are from [14]. In Table 1 and Table 2 we present the problem characteristics for both the 

instances used for the flow and multi commodity formulations of TSCFLP respectively. We considered small and medium 
size problems of the type, A 0 [ 0 	, where A, [ A�W 	 denotes the number of major Facilities (Plants), number of minor 
Facilities (Depots) and number of Clients (Customers) respectively.  

                     Table 1  problem characteristics for the flow formulation 
Probl

em  
Size Number of 

variables 
Number of 
Constraints 

Number of 
nonzeros 

A 3x5x10 73 73 288 
B 5x8x25 253 246 1093 
C 5x10x25 315 300 1365 
D 5x16x25 501 462 2181 

 
   Table 2  problem characteristics for the multi commodity formulation 

Problem  Size Number of 
variables 

Number of 
Constraints 

Number of 
nonzeros 

MC1 3x5x10 158 100 847 
MC2 5x8x25 1013 365 5351 
MC3 5x10x25 1265 417 6655 
MC4 5x16x25 2021 573 10567 

 
In Table 2, the same group of instances as in Table 1 is formulated using variables HC�I denoting the flow on the path 

��, �, ��, and variables HC� , ��I ,  C , *� as in the flow formulation, for the multi commodity formulation. In Table 3, we show 
the results from solving the instances by pure Branch and Bound only, and in Table 4, we show the results from solving the 
instances by representing the flow conservation constraint (fcc) correctly. We use the notation abbccd for the instances, 
where A denotes the number of plants, [[ the number of depots, 		 the number of customers and  W the number of the 
instances in the set having the same size, we also use  *�. � and *+�. � denoting the optimum  integer and continuous (LP 

relaxed) solutions of the problems respectively.  ]^_`/a 3 b�.�cb+�.�

b�.�
d 100% is the measure of the relative quality of the 

bounds, often referred in the literature as duality gap (%) (or % duality gap), [16, 17]. For the computation we coded the 
formulations according to the syntax of AMPL [18] and use IBM-CPLEX 12.5.0 solver, implemented on a HP corei3 
processor 2.27 GHz 4 GB RAM PC. 

 
The following implication of definitions (5) and (6) above stands. 
Theorem 1.  Magnanti and Wong [4] Suppose P and Q are equivalents formulation of a MIP. P dominates (is superior to) 

Q iff ��:� > ��=�  %
@ ABB   C , *� � 	
��� 0 *� with a strict inequality for at least one  C , *� � 	
��� 0 *�. 
Proof: f Suppose �:� > ��=� , %
@ ABB   C , *� � 	
��� 0 *� , then Q does not have any valid inequality w.r.t. P. but 

there exists at least  g, *g � 	
��� , *� such that ��:�� g , *g� h ��=�� g, *g� implies that P has a valid inequality that is not 
equal to any valid inequality in P. 

i Now if P dominates (is superior) Q, then Q, by definition of dominance does not have any valid inequality that is 
equal to any inequality w.r.t.  Q, this implies that ��:� > ��=�  %
@ ABB   C , *� � 	
��� 0 *�, and there exist a  g, *g �
	
��� , *� such that ��:�� g, *g� h ��=�� g, *g� . 
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The computational results are given in Table(s) 3 to Table(s) 5. For example in Table 3b and 3c, Zff3 and Zff4 have the 

same optimal integer objective values for the flow formulation, in the same vain Zff`1 and Zff6 have the same optimal integer 
objective values. Similarly in Table 4b , 4c and 4e, Zff3, Zff4 and Zff7 have the same optimal integer objective values 
respectively. In order to highlight further the relationship that exists between the various formulations, Figures 1 to 6 are 
graphs of some selected parameters of the computations. For example, Figures 1 and 2 are graphs of MIP and LP CPU time 
for the problems size for all the flow formulations respectively. From these graphs we can conclude that Zff1 has higher CPU 
time for both MIP and LP-relaxations. Among the formulations, for example, Figure 5 and Figure 6 shows that Zff3 & Zff4 
have higher optimal integer objective function costs, followed by Zff1 & Zff6, wile, Zff7 and Zff5 have the least costs 
respectively. Also Zff1 has higher number of MIP and dual simplex iterations than Zff6. Analogous interpretations can be 
given to the rest of the Tables and Figures. 

 
4.  Results Analysis 
Here we compare the relative quality of the optimal integer values of the formulations �GG A�W �2\G and their LP-

relaxations. For this comparison we introduce the following additional notations. When formulation �GG A�W �2\G were 
solve by B&B only, the values for the optimal integer objective and LP-relaxations will be denoted by *GG

j �. �, *2\G
j �. � and 

*+GG
j �. �, *+2\G

j �. � respectively. And when they are solved by B&B with correct representation of the flow conservation 
constraint, the values for the optimal integer objective and LP-relaxations will be denoted by *GG

k �. �, *2\G
k �. � and 

*+GG
k �. �, *+2\G

k �. �  respectively. From Table(s) 3 to Table 5 we have the following results: 
Lemma 1  �GG 3 �2\G, that is, both the flow and the multi commodity formulation of the TSCFLP are equivalent. 
Proof: The following equivalence relations hold by definition [6]: 

(a) wdx ikj
Kk

jkj ∑
∈

=  

(b) wdw ikj
Jj

jik ∑
∈

=  

(c) 1==∑
∈

dx j
Kk

kj
 

(d) qdbc ikjjikkj
=+  

Given these equivalence relations we prove that *GG��. � is equivalent to *2\G�. �. 

i. The objectives (1-1) and (8-1) in both formulations are equivalent: 
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Demand constraints (1-2) and (8-2) are equivalent. Since for each j = 1, …, n 

then from (c), 
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ii.  Flow conservation constraints (1-6) is satisfied in MCF  
Kkd xw kj

Jj
j

Ii
ik

∈∀= ∑∑
∈∈

 for each k = 1,…, p  

xkj
Jj

jd∑
∈

 is the demand for customer � %@
$ Wl

L �, and by definition, this must come from plant �. From (b) 

above, 

              ww ikj
Jj

jik
d∑

∈

=  , taking the sum over k, we have ww ikj
Jj

j
KkKk

ik
d∑∑∑

∈∈∈

=  then from (a)         

   and   (8-3) Iiya ii
∈∀≤⇒  

iii.  Plant capacity constraints (1-5) and (8-3) are equivalent. 

yaw ii
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�� � �      yawd ii
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ikj
Jj

j
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∈ ∈
�� � �  , the right hand sides of the two inequalities are 

equivalent, we show that the left hand sides are also equivalent. From (b) 
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Depot capacity constraint (1-3) and (8-4) are equivalent. 

,Kkzsxd kkkj
Jj

j
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    Kkzswd kkikj
Ii Jj
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∈ ∈

,
 

Similarly the right hand sides of the two inequalities are equivalent. We show the left hand sides also are equivalent. 

From (1-6) [ ] Kk
Ii

ikkj
Jj

j wxd ∈∀=∑∑
∈∈

 from (b)  wd ikj
Ii Jj

j∑∑
∈ ∈

=    

iv. Constraints (8-7) ,(8-8) are redundant just like (1-10), (1-11). The rest: that is (1-7, 1-8, &1-9) and (8-9, 8-10, and 8-
11) are the non-negativity and integrality restrictions on the respective variables of the two formulations 
respectively.  

Lemma 2 let �GG�, … … … , �GGV A�W �2\G be formulations for the set 456789 ) -.
/ 0 1.

2; where some �GGCcm; 1 ( 
 o � ; � 3
1, … … … ,7 A�W �2\G are better than some �GG. If we consider the MIP problem �GG 3 �2\G 3 $���q5�: � � 456789# where 
� 3 �H, �,  , *� and denote by *GG�. � 3 $��rq5�: � � �GGs,  *+GG�. � 3 $��rq5�: � � �GG ,  456789 ) -.

/ 0 -.
2s, the values 

of the associated optimal integer and LP-relaxations of problem �GG or �2\G, then the following hold: 

i. *+GGV
j �. � o *+GG�

j �. � ( *+2\G
j �. � ( *+GGU

j �. � ( *+GGS
j �. � ( *+GGQ

j �. � 
ii.  *GG�

j �. � 3 *GGU
j �. � 3 *2\G

j �. � 
iii.  *GGQ

j �. � 3 *GGS
j �. � 

iv. *GGV
j �. � ( �����, �����# dominates *GG�

j �. �, *GGU
j �. �, *2\G

j , *GGQ
j �. � A�W *GGS

j �. � 
v. *+GGS

k �. � 3 *+GGT
k �. � 3 *+GGV

k �. � 
vi. *+GG�

k �. � ( *+GGU
k �. � 

vii.  *GGS
k �. � 3 *GGT

k �. � 3 *GGV
k �. � 

viii.  *GG�
k �. � ( *GGU

k �. � 

Proof: i. constraints (3-5) and (4-3) is a relaxation of constraint (1-6), by definition 1 the first inequality holds; by lemma 1 
the second inequality holds; Zff3 implied Zff4 and by definition 5 and the results on Table 3b and 3c, the 
relationships hold.                       

ii.   Zff1 and Zff6 are both flow formulation, by lemma 1, both are equivalent. 
iii. from Table 3b and 3c, and ii above, the relation hold. 
iv. This follows from definition 4, 5 and theorem 1. And Table 3f shows the values of the optimal objective function  

for the instances solved are at least better than Zff1,  Zff6,  Zff3 and  Zff4.  
v.   from lemma 1, (c) constraint (4-2)  is equivalent to constraints (5-5) and (7-2), which  say all customers’  

demands must be fully met, hence the result. 
vi. This follows from definition 5 and the results for solving the instances in Table 4a and 4d respectively. 
vii. This follows from a direct consequence of (v) above. 
viii. (vi) implies (viii), as in (vii) above. 
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Table 3a: Results from solving the instances by Branch and Bound only for �GG� 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 55152.8619 49815.26011 9.7 0 62 51 0.0938 0.0306 
305102 67061.31787 �4622.98088 3.6 0 52 57 0.1248 0.0466 
305103 36575.5455 33912.30113 7.3 0 51 45 0.1402 0.031 
508251 63392.8448 59633.96184 5.9 0 197 92 0.234 0.0626 
508252 53793.94231 51297.94476 4.6 0 119 85 0.296 0.1092 
508253 22503.2 20344.14025 1.0 0 141 130 0.3736 0.093 
510251 62129.54196 58319.22228 6.1 0 207 142 0.4672 0.109 
510252 43234.99827 39112.08207 9.5 0 157 128 0.4518 0.1556 
510253 109651.0481 106048.1401 3.3 0 181 130 0.654 0.1716 
516251 135244.858 132656.3339 1.9 0 218 198 0.6074 0.2182 
516252 77216.70671 70387.46144 8.8 1 264 143 0.888 0.2492 
516253 28860.38889 23478.0224 1.9 0 310 170 1.0286 0.234 

Average duality gap 7.4%;  Note that �GG< has the same optimal solution with �GG� 

Table 3b: Results from solving the instances by Branch and Bound only for �GGQ 
problem *�. � *+�. � ]^_`/a # B&B # MIP 

Iterations 
# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

 305101 64116 63938.95607 0.28 0 53 46 0.0622 0 
305102 83841 82835.371�4 1.2 0 47 47 0.0932 0 
30�103 49013 48993.04545 0.04 0 43 37 0.0456 0.0306 
508251 132875 131451.6889 1.1 0 202 115 0.3273 0.0466 
508252 104173 103615.8862 0.53 0 112 109 0.2958 0.0616 
508253 39028 38161.45919 2.2 0 117 87 0.3584 0.0776 
510251 123694 123430.125 0.21 0 135 112 0.3898 0.0926 
510252 104612 102067.9776 2.4 0 121 86 0.468 0.1086 
510253 165860 165385.6358 0.3 0 133 97 0.4838 0.1246 
516251 242194 240456.9255 0.72 0 188 139 0.702 0.1406 
516252 139364 137077.3121 1.64 0 171 99 0.7016 0.1566 
516253 82667 81586.36069 1.31 0 186 152 0.7952 0.2032 

Average duality gap 1% 

Table 3c: Results from solving the instances by Branch and Bound only for �GGS 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 64116 59828.44423 6.7 0 42 38 0.0632 0 
305102 83841 80727.63726 3.7 0 44 43 0.0�3 0 
305103 49013 45364.33803 7.4 0 48 30 0.1252 0.0316 
508251 132875 128204.6241 3.5 0 139 77 0.1562 0.0466 
508252 104173 98830.3783 5.1 0 88 81 0.1872 0.0626 
508253 39028 34269.78501 12.2 0 133 59 0.2192 0.047 
510251 123694 120437.5971 2.6 0 136 90 0.3436 0.0786 
510252 104612 94084.80585 10.1 0 108 65 0.3278 0.063 
510253 165860 162150.7091 2.2 0 111 80 0.3432 0.063 
516251 242194 238752.7811 1.4 0 161 107 0.437 0.078 
516252 139364 129452.4162 7.1 0 155 88 0.484 0.1096 
516253 82667 77272.31793 6.5 0 129 80 0.6044 0.1246 

Average duality gap 5.7% 
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Table 3d: Results from solving the instances by Branch and Bound only for �GGT 
problem *�. � *+�. � ]^_`/a # B&B # MIP 

Iterations 
# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 4452 1474.197807 66.9 0 18 22 0.0306 0.015 
305102 5365 3146.201088 41.4 0 37 31 0.0782 0.0466 
305103 6265 2365.17827 62.3 0 37 22 0.1092 0.0626 
508251 9475 6763.782251 28.6 0 162 63 0.1568 0.0776 
508252 8032 6382.212178 20.5 0 100 66 0.1722 0.0936 
508253 6328 4040.014117 36.2 0 128 94 0.2032 0.1086 
510251 10095 5602.913232 44.5 0 237 63 0.2804 0.093 
510252 10839 4829.453995 55.4 0 182 78 0.4052 0.093 
510253 9655 6734.395924 30.3 0 124 85 0.4054 0.093 
516251 11654 8117.376639 30.4 0 264 84 0.7948 0.1236 
516252 10054 5440.059974 45.9 0 280 89 0.6862 0.1396 
516253 8249 5450.517218 33.9 0 272 101 0.718 0.1556 

Average duality gap 41% 
 
 

Table 3e: Results from solving the instances by Branch and Bound only for �GGU 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 55152.8619 52855.61174 4.2 0 103 49 0.0938 0.0306 
305102 67061.31787 66420.58656 1. 0 35 49 0.0942 0.0466 
305103 36575.5455 36077.40661 1.4 0 46 37 0.0946 0.031 
508251 63392.8448 62834.96705 1.0 0 136 120 0.1262 0.0616 
508252 53793.94231 53396.96705 1.0 0 124 102 0.1266 0.0776 
508253 22503.2 22380.84869 5.4 0 77 94 0.1892 0.0926 
510251 62129.54196 61280.50053 1.4 0 162 126 0.4386 0.1086 
510252 43234.99827 42595.93414 1.5 0 149 113 0.3754 0.1246 
510253 109651.0481 109072.8718 1.0 0 133 131 0.3908 0.124 
516251 135244.858 134626.9252 0.5 0 158 182 0.5006 0.1556 
516252 77216.70671 76883.20928 0.43 0 163 130 0.4848 0.1716 
516253 28860.38889 26794.82175 7.2 0 230 186 0.563 0.1876 

Average duality gap 1.7% 
 
 

Table 3f: Results from solving the instances by Branch and Bound only for �GGV 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 9784 7670.846455 21.6 0 21 30 0.0938 0.016 
305102 49719 47980.98624 3.5 0 25 27 0.1�92 0.031 
305103 31205 27964.32�3 10.4 0 21 26 0.1086 0.0626 
508251 47249.6667 44214.65511 6.4 0 88 70 0.1562 0.047 
508252 41797.2222 38568.68722 7.7 0 101 81 0.1872 0.047 
508253 17602 15514.14131 11.9 0 51 73 0.1866 0.047 
510251 23952 21987.65612 8.2 0 51 75 0.203 0.063 
510252 26752 23554.07376 12.0 0 99 75 0.4994 0.0936 
510253 30641 29607.14141 3.4 0 64 96 0.3118 0.1096 
516251 90652.9412 88832.24385 2.0 0 104 115 0.3584 0.11 
516252 28433 26916.53454 5.3 0 98 107 0.3894 0.1406 
516253 13958 12540.75158 10.2 0 94 128 0.3892 0.1566 

Average duality gap 8.5% 
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Table 4a: Results from solving the instances by Branch and Bound and representation of fcc for �GG� 
 
problem *�. � *+�. � ]^_`/a # B&B # MIP 

Iterations 
# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 7650.04761 5230.304569 32 0 135 51 0.156 0.0316 
305102 8844.82529 6438.293597 27 0 126 55 0.1718 0.0466 
305103 7543 4302.187724 43 0 106 60 0.2588 0.047 
508251 14244.0083 11608.26248 19 0 818 97 0.608 0.0786 
508252 11214.57500 9761.603636 13 0 518 123 0.7804 0.0946 
508253 7931.66667 6050.060965 24 0 491 161 0.827 0.094 
510251 14412.19805 10658.5035 26 0 733 134 1.202 0.1256 
510252 14493.58876 10282.44702 29 0 845 168 1.4044 0.1566 
510253 16972.3169 13050.25395 23 0 809 135 1.6078 0.156 
516251 18353.06312 15412.14717 16 0 540 143 1.8878 0.1876 
516252 15365.67724 11719.90232 24 207 5612 206 2.044 0.2036 
516253 12174.5000 9047.522327 26 39 2812 261 3.7602 0.2196 

Average duality gap 25% 
 
 

Table 4b: Results from solving the instances by Branch and Bound and representation of fcc  for �GGQ 
problem *�. � *+�. � ]^_`/a # B&B # MIP 

Iterations 
# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 4452 1728.853261 61 0 30 28 0.0622 0.0316 
305102 5365 3369.668585 37 0 69 45 0.0932 0.0466 
305103 6265 2577.293478 59 0 68 33 0.1242 0.031 
508251 9475 6930.892982 27 0 152 100 1.091 0.0616 
508252 8032 6395.639842 20 0 99 89 0.1866 0.0776 
508253 6328 4311.268014 32 0 128 104 0.2026 0.078 
510251 10095 5808.680597 42 0 293 69 0.3586 0.093 
510252 10839 5092.290368 53 0 322 81 0.562 0.1236 
510253 9655 6858.432486 29 0 142 85 0.578 0.28 
516251 11654 8123.380582 30 0 263 112 0.546 0.1546 
516252 10054 5953.360469 41 0 312 114 0.7024 0.155 
516253 8249 5840.833543 29 0 237 171 1.56 0.1866 

Average duality gap 38% 
 
 
Table 4c: Results from solving the instances by Branch and Bound and representation of fcc for �GGS 
 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 4452 1474.197807 67 0 2 22 0.0778 0 
305102 5365 3146.201088 41 0 82 34 0.0932 0 
305103 6265 2314.968781 63 0 37 25 0.0936 0.0306 
508251 9475 6686.772753 29 0 173 62 0.1402 0.3256 
508252 8032 6026.539993 25 0 135 67 0.1396 0.0616 
508253 6328 3764.034875 41 0 111 62 0.1556 0.0776 
510251 10095 5597.761304 45 0 564 60 0.3422 0.0936 
510252 10839 4616.915084 57 0 362 63 0.3584 0.093 
510253 9655 6616.727882 31 0 121 71 0.3276 0.093 
516251 11654 8038.171642 31 0 434 94 0.4836 0.093 
516252 10054 5350.673335 47 0 803 97 0.6554 0.093 
516253 8249 5200.970236 37 0 2812 80 3.7602 0.093 

 
Average duality gap 43% 
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Table 4d: Results from solving the instances by Branch and Bound and representation of fcc for �GGT 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 8484 6094.9532 28 0 87 53 0.1098 0.016 
305102 8844.8253 7633.3905 14 0 140 51 0.1558 0.0476 
305103 7543 5006.1540 34 0 95 40 0.1712 0.032 
508251 15228.71481 13637.5375 10 0 521 104 0.5148 0.048 
508252 13442.31765 11187.13885 17 0 448 80 0.6236 0.0786 
508253 7931.66667 6361.0554 20 0 295 121 0.5924 0.0946 
510251 14412.19798 12491.4331 13 0 558 128 0.9198 0.1106 
510252 14493.58876 12320.41284 15 0 390 143 1.0446 0.11 
510253 17764.3354 15334.62087 14 0 596 112 1.2162 0.126 
516251 20652.15877 18268.53508 12 0 334 111 1.4964 0.1576 
516252 15888.78125 13860.49256 13 0 697 159 1.7774 0.1736 
516253 12174.5000 10448.2797 14 0 770 153 1.9954 0.2046 

Average duality gap 17% 
 
Table 4e: Results from solving the instances by Branch and Bound and representation of fcc for �GGV 

 
problem *�. � *+�. � ]^_`/a # B&B # MIP 

Iterations 
# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 4452 1474.1978 67 0 0 22 0.0782 0 
305102 5365 3146.2011 41 0 38 34 0.0786 0.015 
305103 6265 2314.9688 63 0 3 25 0.135 0.0466 
508251 9475 6686.7728 29 0 130 62 0.1412 0.0616 
508252 8032 6026.5399 25 0 106 67 0.235 0.218 
508253 6328 3764.0349 41 0 116 62 0.2042 0.062 
510251 10095 5597.7613 45 0 496 60 0.329 0.062 
510252 10839 4616.9151 57 0 441 61 0.4226 0.062 
510253 9655 6616.7279 31 0 131 71 0.3912 0.062 
516251 11654 8038.1716 31 0 473 94 0.5632 0.077 
516252 10054 5350.6733 47 0 764 96 0.9062 0.077 
516253 8249 5200.9702 37 0 404 80 0.7348 0.077 

Average duality gap 43% 
 

Table 5: Results from solving the instances by Branch and Bound only for �2\G 
 

problem *�. � *+�. � ]^_`/a # B&B # MIP 
Iterations 

# dual simplex 
iterations 

Time 
MIP 

Time 
LP 

305101 55152.8619 50989.75976 7.5 0 71 61 0.3116 0.015 
305102 67061.31787 65703.9948 2.0 0 52 40 0.2178 0.046 
305103 36575.5455 36077.40661 1.4 0 29 21 0.312 0.0625 
508251 63392.8448 60436.17996 4.7 0 316 88 0.5622 0.0786 
508252 53793.94231 52077.31623 3.2 0 124 96 0.515 0.0926 
508253 22503.2 21547.18779 4.2 0 84 72 0.5614 0.1086 
510251 62129.54196 59718.91831 3.9 0 318 135 0.8574 0.1552 
510252 43234.99827 41043.9269 5.1 0 208 105 0.9664 0.1706 
510253 109651.0481 107150.7403 2.3 0 300 192 0.9974 0.2016 
516251 135244.858 134032 0. 0 186 151 1.544 0.2482 
516252 77216.70671 72350.31579 6.3 0 354 173 1.6226 0.263 
516253 28860.38889 24287.14113 1.6 0 210 147 1.7948 0.3112 

Average duality gap 4.78% 
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5. Conclusion 
In this paper we study alternative formulations of two stage capacitated facility location (TSCFL) problem. We have shown 
that the two obvious ways of formulating this problem, i.e. the flow and multi commodity formulations are equivalent. From 
computational point of view we conclude among others that: 

� The flow conservation constraints when expressed correctly tighten the formulation and yield a better lower bound as 
well as the optimal integer objective value than when left otherwise (see Figures 5, 6, 7 and 8). 

� Adding the valid inequalities as well as expressing the flow conservation constraint correctly tightens the 
formulation, but unfortunately this introduces higher duality gap in the solutions.  

� The LP-relaxation of the multi commodity formulation appeared to be better than that of the flow formulation of 
TSCFL problem, when the instances were solved by branch-and-bound only. 

� Among the equivalent formulations, the graphs of various parameters, such as CPU time for MIP and LP-relaxation, 
optimal integer as well as continuous costs of the objective function further highlight the dominant relationship that 
exists among the formulations in terms of computing resources. 

� From computational point of view, from the tables and graphs we can conclude further that Zff7 perform better than 
the rest, when the instances were solved by branch and bound only. While Zff5, Zff7 and Zff4 performs better when the 
instances were solved by branch and bound and expressing correctly the flow conservation constraints. 

� The main objective of any mathematical programming problem is to optimize (i.e. maximize or minimize) an 
objective function subject to certain constraints. Computationally Figures 5, 6, 7, and 8 suggest that we recommend 
models formulation Zff5 and Zff7, for TSCFLP due to their respective minimum objective costs. 
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