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                       Abstract 

 
Using the method of successive over-relaxation the electric field computation is 

presented. We have restricted our result to the electric field in the vacuum where the 
solution of Laplace’s equation is obtained. The numerical solution of Laplace’s 
equation with a boundary values, specified, were used on a finite element with 
successive over-relaxation. The main program used was one in which the semi-
separation distances of flanges d and the tube radius r were replaced by the 
dimensionless interger m and n in KAP9. In the program mmax and nmax were chosen to 
be sufficiently large enough from the start. The w is specified in such away that one 
obtains the fastest possible convergence. The short computation time was achieved by 
setting m = n = 5, ϕϕϕϕ0 = 1000V and w =1.0, 1.2, 1.4, 1.6, 1.8, 1.9, and 1.99. 

 
 
 
1.0    Introduction 

The equations of motion for charged particles in electromagnetic fields can be solved by method of successive over-
relaxation[1]. In this way one can, for example, study the focusing properties of guide fields in particle accelerators or the 
imaging properties of lenses in electron optics. The assumption here is that the electromagnetic fields are known, and this 
brings us to the next problem, namely, the boundary problem in partial differential equations. In what follows it will now be 
shown how one can, by means of the computer, enlarge the repertoire of examples with well known field patterns. 
1.1 Theory 

Using electric fields in the vacuum[2-7], i.e. we study solutions of Laplace's equations, 
0=∆Φ          (1) 

 As boundary condition we specify the potential on the boundary of the region in which the equation is to be solved is 
specified.As an example a simple electrostatic lens which, with slight modifications, is still used in electron optics. A 
cylindrical metal tube with radius r0 is interrupted by flanges F1, F2, as shown in Fig. 1. 
 
   
 
 
 
 
 
 
 
 
 

Fig. 1. Simple electrostatic lens containing a two pieces of tube R1, R2 and flanges F1, F2. 
 

The flanges form a plate condenser with the two annular plates F1, f2,at a separation 2d, to which the two pieces of tube 
R1, R2,are attached. Let the right-hand flange be charged to a potential of 1000 V, and the left to a potential of -1000V(In 
electron optics higher voltages are usually employed). To avoid field emission the corners of the tube/flange transitions  have 
to be rounded off'; this is true even at 1000 V for very small values of d. In our calculation we shall not take account of this  
 
 
Corresponding author: Fatima Salmanu Koki,  E-mail: skfatima@yahoo.com, Tel.: +2348064120841 

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 109 – 114           

2r0 
 

2d 

+1000

V 

-1000V 

R0 

F2 F1 

R1 



110 

 

Computation of Electric Fields by the Method of…      Koki,  Auwalu  and  Yahaya    J of  NAMP 
 

founding off of the corners. One seeks the form of the potential Φ (x,y,z)in the region between theplated and in the tubes. If 
the potential is known as a function of the position coordinates, then one obtains the electric field from 

E = -gradΦ .          (2) 
The solution of Lapace's equation (1) is uniquely determined in a closed volume, when the potential is specified over the 

surface of the volume. Up to now the volume in which we wish to compute the potential function is still open. Using a little 
physical intuition, however, we can close it. If we go far enough along the tube, then the potential in each tube is scarcely 

going to change any more. This means that, to the far right and the far left of the flanges we shall find V10001 +=Φ and 

V100012 −=Φ−=Φ , respectively, in the tubes. In other words, the potential field will not be changed if we close the 

tubes far to the right and far to the left of the flanges with metal lids. Between the plates the potential field will be more and 
more similar to that of an ordinary plate condenser, the further we are from the axis of the tubes. This means that here also we 
can close the volume, only this time not with a metal plate but with an insulator or simply with an imaginary surface. On this 
surface the potential varies linearly with distance from the plates, from +1000V on the right-hand plate to -1000V on the left-
hand plate. The potential is thereby specified on the surface of closed volume, and we can now consider how to solve 
Laplace's equation. 

First we make use of the axial symmetry of the configuration[8-11]in order to reduce the number of coordinates from 3 
to 2. We introduce cylindrical coordinate[12-14]. The axis of the tubes is the z-axis. The coordinates x, y are replaced by 
plane polar coordinates r, ϕ , where r denotes the distance from the z-axis and ϕ  the azimuthal angle around the z-axis. In 

cylindrical coordinates Laplace's equation can be written as: 

  ∆Φ � ���
��� 	 


�
��
�� 	 ���

��� 	 	 

��

���
�φ� � 0,    �� � 0�    (3) 

Because of the axial symmetry the potential Φ  cannot depend on the azimuthal angle ϕ,and the equation simplifies to. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Shows the region in which Laplace’s equation is to be solve  
 

  ∆Φ � � ��
��� 	 


�
�

�� 	 ��
��� 	� Φ�z, r� � 0,    �� � 0�    (4) 

Moreover, we see that the configuration is symmetric about the plane z = 0. It is therefore sufficient to solve (4) in the 
shaded region of Fig. 2. This region is still open below. However, since the lower edge is identical with the axis of symmetry, 
no boundary condition is needed here. 

For the numerical solution of (4) with the boundary values specified, we usea finite element method with successive 
over-relaxation. 
1.2 Numerical Method 

For the numerical solution of Laplace's equation we shall approximate Φ (z,r) on a two-dimensional grid of points with 
constant mesh width h. Instead of the function Φ (z,r) we shall therefore consider only a matrix (Φ 1,k ) of function values 
[15]. Let �� � ��,    �� � ��,    ��,� � �������     (5) 

Since a very simple shape for the electrode boundariesischosen, it becomeseasy to fit these into the grid. We only have to 
choose h so that the tube radius r0and the semi-distance separating the flanges d are integral multiples of h. More complicated 
shapes of electrode have to be represented by a polygonal approximation. 

In order to solve Laplace's equation (4) on this grid, we have first to discretisethe differential operators ∂ / ∂ r ∂ 2/ ∂

r2.The formulae )(0
2

)()(
)( 2/ h

h

hzfhzf
zf +−−+=  and )(0

)(2)()(
)( 2

2
/ h

h

zfhzfhzf
zf +−−−+= is used 

and obtained for r > 0: 
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We now apply the relations (6), neglect the error term O(h2), multiply the equation by h2 and so obtain an approximation 
of Laplace's equation on the grid, for k >0 : 

�Φ),*+
 	 Φ),*,
 	 Φ)+
,* 	 Φ),
,* $ 4Φ),*� 	 

 * #Φ),*+
 $ Φ),*,
& � 0    (7) 

For k = 0, i.e. for the grid points on the axis of symmetry, (7) is not valid. For these points we have to formulate a special 
equation. The equation is most simply obtained by first converting back into Cartesian coordinates x,y,zand using(

)(0
)(2)()(

)( 2
2

/ h
h

zfhzfhzf
zf +−−++=

): 

∆Φ�x, y, z� � 

'� ���/ 	 �, 0, �� 	 ��/ $ �, 0, �� 	 ��/, 0 	 �, �� 	 ��/, 0 $ �, �� 	 ��/, 0, � 	 �� 	 ��/, 0, � $ �� $

6Φ�x, y, z� 	 O�h �          (8) 
We wish to apply this equation at the axis of symmetry and accordingly set x = y = 0. Now we return from the potential 

function Φ (x,y,z) in Cartesian coordinates to the potential function Φ (z,r) in cylindrical coordinates. The first four function 
values on the right-hand side are all equal, namely equal to Φ (z,h). If we again neglect O(h2), multiply throughout by h2 and 
use the relations (5), we obtain the so-called axis formula: 4Φ),
	Φ)+
,4$6Φ),4 � 0         (9) 
1.3 The Method of Successive Over-relaxation 

If one writes down (7) for all interior points of the grid and (9) for all points on the axis of symmetry (with the exception 
of the upper and lower boundary points), then one obtains a system of linear equations, from which in principle the matrix  
( Φ i,k) can be calculated. Since we are to calculate many function valuesΦ i,k, however, this system of equations has a high 
dimension, The usual methods for solving systems of linear equations, such as the Gaussian elimination method, are then no 
longer suitable for the solution of the problem. 

The system of equations (7), (9), however, has one peculiarity: each point is linked only with the directly neighboring 
points. If we represent the Laplace operator as an enormous matrix, this matrix is almost empty: most of the elements are 
zero. For such problems the method of successive over-relaxation [16] has been developed. 

The improved approximate solution at the point (i,k) is calculated by means of the formula 

    , , ,( ),     1 w< 2new old old
i k i k i kw UΦ = Φ + − Φ ≤

 
The constant w is chosen so that one obtains the fates possible convergence. 
 

2.0 programming   
The method of successive over-relaxation can be programmed with little effort. The main program KAP9 [17] was used 

as the programmed.First of all we replace the semi-separation distance of the flanges d and the tube radius r0  by the 
dimensionless integer m and n, 

d
m

h
=

 ,

0rn
h

=
 

The assumed wall which closes the end of the tube is at a distance mmaxfrom the plane z=0, and the wall which encloses 
the flanges is at a distancenmaxfrom the axis of symmetry. Thus,his chosen as the unit of length and eliminated it from the 
calculation. mmaxandnmaxwere specified. The solution will then show whether these values are too small and must be 
increased. In this program mmax andnmaxwere specifiedsufficiently large from the start.  

In order to achieve a rather short computation time we set, m = n = 5, Φ4 � 1000V  and w = 1.0, 1.2, 1.4, 1.6, 1.8, 
1,9and 1.99, 
 
3.0 Result 

With w=1.0 (Fig 3) there is slow convergence. The largest change of thepotential value griddecreases monotonically 
from iteration to iteration. The series of largestchanges is similar to a geometrical series, i.e. with each iteration the largest 
change decreases by several percent. Qualitatively the same behaviour is found with w =1.2 (Fig 4) and w =1.4 (Fig 5); of 
course, the convergence is now faster. With w = 1.0(Fig 3) one needs 99iterations to achieve a convergence limit at e 
=0.0001V. With w = 1.2(Fig 4) it is still 67 iterations, and with 1.4(Fig 5) only 40. 
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With w = 1.6(Fig 7) the iteration converges still faster; now only 18 steps are needed. The series of larger changes, 

however, no longer resembles a geometric series. The changes start to jump about. With still larger values of w the jumps 
become stronger, and the convergence is poorer. With w = l.8(Fig 6) one needs 58 iterations, and with w =1.9(Fig 9)one 
needs 128. With w = 1.99(Fig 8)the jumps dominate. After 500 iterations the changes are. smaller than 1V. The convergence 
limit is reached after 1339 iterations.  

For other values of m and n one finds a similar behavior. If one wishes to specify a standard value for w, this should lie 
at about w = 1.5 or 1.6. 

The standard value for 0Φ  is 1000 V, The method also converges with other values such as, for example, with  0Φ = 0 

V, It then costs a few preliminary iterations, before the approx-Imation achieves the quality which it had from the start with 

potential 0Φ =1000V. From then on the behavior of the iterations little different 

.  
Fig.3       Fig.4 

 
Fig.5       Fig.6 

 

  
   Fig. 7     Fig. 8 
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Fig. 9       Fig. 10 

 
 

 
Fig. 11 

Conclusion 
We have seen so far with w = 1.0 there was slow convergence. The largest changeof the potential grid decreases 

momentarily from iteration to iteration. However, the behavior was found with w = 1.2 and w = 1.4 but the convergences was 
faster. It was observed that with w = 1.0 99iterations were needed to achieved convergence limit at e = 0.0001V. with w = 1.2 
it was 67iterations and with 1.4 it is 40iterations. The series of larger changes, however, no longer resembles a geometric 
series, with larger values of w, the jumpsbecome stronger and convergence become poorer. For other values of m and n we 
found a similar behavior. The standard value for w lied between 1.5 to 1.6 and standard value for Φ0 was 1000V 
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