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Abstract

Using the method of successive over-relaxation #lectric field computation is
presented. We have restricted our result to thecele field in the vacuum where the
solution of Laplace’s equation is obtained. The nemical solution of Laplace’s
equation with a boundary values, specified, wereedson a finite element with
successive over-relaxation. The main program usedswone in which the semi-
separation distances of flanges d and the tube tedir were replaced by the
dimensionless interger m and n in KAP9. In the pmagn m,,, and n,,, were chosen to
be sufficiently large enough from the start. The & specified in such away that one
obtains the fastest possible convergence. The sbomputation time was achieved by
setting m = n = 5¢ = 1000V and w =1.0, 1.2, 1.4, 1.6, 1.8, 1.9, aripl

1.0 Introduction

The equations of motion for charged particles Ecebmagnetic fields can be solved by method otessive over-
relaxation[1]. In this way one can, for examplaydst the focusing properties of guide fields in é&taccelerators or the
imaging properties of lenses in electron opticse Bssumption here is that the electromagneticsfialé known, and this
brings us to the next problem, namely, the boungaoplem in partial differential equations. In whallows it will now be
shown how one can, by means of the computer, entherepertoire of examples with well known fiphtterns.

1.1 Theory

Usingelectric fields in the vacuum[2-7], i.e. we study solutiaid aplace's equations,
AD =0 (1)

As boundary condition we specify the potentialtbe@ boundary of the region in which the equatiotoi®e solved is
specified.As an example a simple electrostatic hgch, with slight modifications, is still used ielectron optics. A
cylindrical metal tube with radiug is interrupted by flangds;, F,, as shown in Fig. 1.

Fig. 1. Simple electrostatic lens containing a two piegfgsibe R, R, and flanges £ F..

The flanges form a plate condenser with the twaukarrplated=,, f,,at a separatioid, to which the two pieces of tube
R;, Ry,are attached. Let the right-hand flange be chatgeal potential of 1000 V, and the left to a potaintif -1000V(In
electron optics higher voltages are usually empldy€o avoid field emission the corners of the tflaage transitions have
to be rounded off'; this is true even at 1000 Wery small values of d. In our calculation we $hat take account of this
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founding off of the corners. One seeks the forrthefpotential® (x,y,2)in the region between theplated and in the tulfes.
the potential is known as a function of the positt@ordinates, then one obtains the electric fielch
E =-grad® . 2
The solution of Lapace's equation (1) is uniquatedmined in a closed volume, when the potentiapecified over the
surface of the volume. Up to now the volume in vahiee wish to compute the potential function isl sijen. Using a little
physical intuition, however, we can close it. If @e far enough along the tube, then the potentiaaich tube is scarcely

going to change any more. This means that, toagheight and the far left of the flanges we shaitif®, = +1000V and

@, =-®, = -1000V , respectively, in the tubes. In other words, theeptial field will not be changed if we close the

tubes far to the right and far to the left of thenfes with metal lids. Between the plates the matkfield will be more and
more similar to that of an ordinary plate condenges further we are from the axis of the tubeds Tireans that here also we
can close the volume, only this time not with aahetate but with an insulator or simply with anaiginary surface. On this
surface the potential varies linearly with distafroen the plates, from +1000V on the right-hand@ta -1000V on the left-
hand plate. The potential is thereby specified loa gurface of closed volume, and we can now consides to solve
Laplace's equation.

First we make use of the axial symmetry of the igamhtion[8-11]in order to reduce the number of rclimates from 3
to 2. We introduce cylindrical coordinate[12-14heTaxis of the tubes is the z-axis. The coordingtgsare replaced by
plane polar coordinates §, where r denotes the distance from the z-axis @nthe azimuthal angle around the z-axis. In

cylindrical coordinates Laplace's equation can hiden as:

2 2 2
Ap =224 102 a¢++r12{;7f=0, (r > 0) 3)

az2 ' ror or2

Because of the axial symmetry the potenﬂ%ll cannot depend on the azimuthal anfyJand the equation simplifies to.
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Fig. 2 Shows the region in which Laplace’s equatiomibé solve

2 190 92
A¢=(ﬁ+;;+m+)db(z,r)=0. (r>0) )

Moreover, we see that the configuration is symroethiout the plane z = 0. It is therefore sufficiensolve (4) in the
shaded region of Fig. 2. This region is still ofeeiow. However, since the lower edge is identicéhwhe axis of symmetry,
no boundary condition is needed here.

For the numerical solution of (4) with the boundaslues specified, we usea finite element methath wsiiccessive
over-relaxation.

1.2 Numerical Method

For the numerical solution of Laplace's equationsivall approximate® (zr) on a two-dimensional grid of points with
constant mesh width. Instead of the functiofP (zr) we shall therefore consider only a matriP (1, ) of function values
[15]. Let

z;=1h, 1, =kh, @, =P(z;1y,) (5)

Since a very simple shape for the electrode bougglachosen, it becomeseasy to fit these into tige \§/e only have to
chooseh so that the tube radiugand the semi-distance separating the flang® integral multiples of h. More complicated
shapes of electrode have to be represented bygaqal approximation.

In order to solve Laplace's equation (4) on thisl,gve have first to discretisethe differential caters 0 /9, d %0

f(Z+h)2_hf(Z—h) +0(h?) and f'(2) = f(z+h) - flgzz_h)_Zf(Z) +0(h?) s used

r2.The formulaef ' (2) =

and obtained for r > O:
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AD = 62+62+16 ®(z,r1)
“\9zz " ar2 ror i

= %(tp(z,r +h)+@(zr—h)+®(z+hr)+@(z—h71)—4d(z,1))

+%ﬁ(¢(z,r+h)—<D(z,r—h)+0(h2)=O (6)
We now apply the relations (6), neglect the ereomtO(h%), multiply the equation by%and so obtain an approximation
of Laplace's equation on the grid, for0 :
(Pigess + Do + Pryase + Piogpe = 4D3) + = (Dijps = Piyey) = 0 (7)
Fork = 0, i.e. for the grid points on the axis of symme{i) is not valid. For these points we have tarfolate a special
equation. The equation is most simply obtained Mgt fconverting back into Cartesian coordinates,zanyd using(

f(z+h)+ f(z—h)-2f(2)

(@)= = won)
AD(x,y,2) = hiz(cb(x +hy,z)+dx—hyz)+P0,y+hz)+Pxy—hz)+0(x,yz+h)+&(x,y,z—h)—
6®(x,y,z) + 0(h?) (8)

We wish to apply this equation at the axis of synmgnand accordingly set= y = 0. Now we return from the potential
function ® (x,y,2) in Cartesian coordinates to the potential functbr(zr) in cylindrical coordinates. The first four function
values on the right-hand side are all equal, namgbal to® (zh). If we again negled®(h?), multiply throughout by»* and
use the relations (5), we obtain the so-called faxisnula:

4D 1 +Djp10—6P; =0 )

1.3 The Method of Successive Over-relaxation

If one writes down (7) for all interior points dfa grid and (9) for all points on the axis of synmpéwith the exception
of the upper and lower boundary points), then drtaios a system of linear equations, from whichrinciple the matrix
(® ;) can be calculated. Since we are to calculate niamgtion valuesP ;,, however, this system of equations has a high
dimension, The usual methods for solving systemmear equations, such as the Gaussian eliminatiethod, are then no
longer suitable for the solution of the problem.

The system of equations (7), (9), however, haspmmeiliarity: each point is linked only with the elitly neighboring
points. If we represent the Laplace operator asrarmous matrix, this matrix is almost empty: moisthe elements are
zero. For such problems the method of successieemaxation [16] has been developed.

The improved approximate solution at the poini)(iskcalculated by means of the formula

O =@ +wlU - @), 1< w< 2

1
The constant w is chosen so that one obtains the fessible convergence.

2.0 programming
The method of successive over-relaxation can bgrammed with little effort. The main program KAPB/] was used

as the programmed.First of all we replace the smparation distance of the flanges d and the tadaus © by the
dimensionless integen andn,

_d 5
m=— n=—
h ~ h
The assumed wall which closes the end of the tsila¢ & distance.from the plane z=0, and the wall which encloses
the flanges is at a distangg,from the axis of symmetry. Thiis chosen as the unit of length and eliminatedoitnf the
calculation. mgandch,were specified. The solution will then show whethiese values are too small and must be
increased. In this program., andn,were specifiedsufficiently large from the start.
In order to achieve a rather short computation timeeset, m = n = 5p, = 1000V andw = 1.0, 1.2, 1.4, 1.6, 1.8,
1,9and 1.99,

3.0 Result

With w=1.0 (Fig 3) there is slow convergence. The larghsinge of thepotential value griddecreases moiuztiiy
from iteration to iteration. The series of largéstieges is similar to a geometrical series, i.eh wach iteration the largest
change decreases by several percent. Qualitatirelgame behaviour is found with=1.2 (Fig 4) and w =1.4 (Fig 5); of
course, the convergence is now faster. Witls 1.0(Fig 3) one needs 99iterations to achieve rav@gence limitat e
=0.0001V. Withw = 1.2(Fig 4) it is still 67 iterations, and with4{Fig 5) only 40.
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With w = 1.6(Fig 7) the iteration converges still fasteryswnonly 18 steps are needed. The series of largangss,
however, no longer resembles a geometric series.chianges start to jump about. With still largeluga of w the jumps
become stronger, and the convergence is pooreh Wit [.8(Fig 6) one needs 58 iterations, and witk=1.9(Fig 9)one
needs 128. With w = 1.99(Fig 8)the jumps dominaAfeer 500 iterations the changes are. smaller thénThe convergence

limit is reached after 1339 iterations.
For other values ah andn one finds a similar behavior. If one wishes to #yex standard value for w, this should lie

at aboutv= 1.5 or 1.6.
The standard value fo, is 1000 V, The method also converges with othéwesasuch as, for example, wit ;= 0

V, It then costs a few preliminary iterations, treféhe approx-Imation achieves the quality whichatl from the start with
potential®, =1000V. From then on the behavior of the iteratiittie different
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Conclusion

We have seen so far with w = 1.0 there was sloweaence. The largest changeof the potential geicrahses
momentarily from iteration to iteration. Howevernetbehavior was found with w = 1.2 and w = 1.4thetconvergences was
faster. It was observed that with w = 1.0 99itenadi were needed to achieved convergence limita2.6001V. with w = 1.2
it was 67iterations and with 1.4 it is 40iteratioi$ie series of larger changes, however, no longggmbles a geometric
series, with larger values of w, the jumpsbecomenger and convergence become poorer. For otheesaf m and n we
found a similar behavior. The standard value fdied between 1.5 to 1.6 and standard valuabipwas 1000V
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