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Abstract

The quantum Monte Carlo (QMC), CASINO code was run calculate the
ground state energy for the helium atom. The vaiatal Monte Carlo (VMC)
technique was used, employing the unrestricted HeetFock (UHF) method, instead
of the restricted Hartree-Fock (RHF) method.

By altering the VMC steps in the input parameterktbe CASINO code, the best
ground state energy for the helium atom was obtaine be (-2.90369+0.000013976)
a.u. differing by 0.00003a.u. from the best expeental value.

1.0 Introduction

From the early days of quantum mechanics, the gtatate ionization energy of the helium atom waeachmark for
approximation methods of solving the nonrelatieciSchrodinger equation for a few-body system.

The ground state energy of the helium atom has hemrbject of interest for a very long time, andttwes to attract
the attention of many researchers. The ground stadegies of the helium and helium-like atoms alewated by using
wavefunctions constructed from the conventionalitatlproduct, times a correlation function depengdion the inter-
electronic distance. These wavefunctions involmegéneral, a number of adjustable parameters wdniehconstrained to
satisfy some kind of variational principle to giaa improved value for the ground state energy @je of the earliest
variational calculations was performed in 1929 bpllétaas [2]. In 1957, Kinoshita [3] obtained aukswith higher-order
corrections, which was confirmed to be in very gagdeement with the best experimental value [4].

However, with the development of computer powerranesearchers have tried to calculate the grotatd energy of
the helium atom by employing various methods ohmégues. Martin [5] employed the Green’s functiaragtum Monte
Carlo (GFQMC) method; Koki [6] employed the Hyllagalgorithm technique; Doma and El-Gamal [7] emypibthe
variational method, while Suleiman and Ewa [8] emgpld the path integral Monte Carlo (PIMC) methodthie Born-
Oppenheimer (BO) approximation.

The QMC is a large class of computer algorithm giatulates quantum systems with the idea of soltfregquantum
many-body problem. They use in one way or the dtieMonte Carlo method to handle the many-dimeradimtegrals that
arise. QMC allows a direct representation of maaghybeffects in the wave function, at the cost afistical uncertainty that
can be reduced with more simulation time.

In principle, any physical system can be descriipethe many-body Schrodinger equation;

ih%—(f =Hop (1.1)
as long as the constituent particles are not mottowfast’, that is, they are not moving near #peed of light. This

covers a wide range of electronic problems in cordd matter physics. So, if we can solve the Sahged equation for a
given system, we could predict its behavior.

Traditionally, theorists have approximated the mbogy wave function as an anti-symmetric functidnoae-body
orbital. This kind of formulation either limits thpossible wave functions, as in the case of thetrelswock (HF)
approximation, or converges slowly, as in the aunfation interaction. One of the reasons for tlificdity with a HF initial
estimate (ground state seed, also known as Slaterrmdinant) is that it is very difficult to moddilet electronic and nuclear
cusps in the wave function. However, one does aneally model at this point of the approximation.
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QMC is a way around these problems because it alletssto model a many-body wave function of our chdalirectly.
Specifically, we can use a HF approximation as starting point, but then multiplying it by any synatric function of
which Jastrow functions are typical, designed tmee the cusp condition.

20  Method
2.1The CASINO Code

The CASINO code is a computer program packagerailyi developed in Cambridge in the group of Nesad Towler
[9,10]. Its purpose is to perform quantum Montel@alectronic structure calculation for finite apdriodic systems. Its
development was inspired by a Fortran 77 developroede written in the early 1990s in Cambridge [ITMHis was later
extended by other authors and various versionshisf pirogram were able to treat FCC solids, singtema and the
homogenous electron gas (HEG).

By late 1990s, it was clear that a modern and gérevde capable of treating arbitrary systems dastl atoms,
molecules, polymers, slabs, crystals and electimesgs) was required. So beginning in 1999, a nesrafo90 code-
CASINO was gradually developed. Some routines fthenold code were retained, translated and reudwsel.philosophy
behind this new code were generality, speed, piitjalease-of-use and transferability over a widage of computational
hard ware. Generality in this sense, means thabagét to be able to create a trial wave functomaiy system, expanded
in any of a variety of different basis sets anditiss input to a CASINO QMC calculation [12].

The most important current capabilities of CASIN@ as follows:

i. It can do VMC calculations (including wave functieptimization through minimization of the varianoe the
energy) and DMC calculations.
ii. It may be applied to finite system such as atomranbbcules and also to system with periodic boundanditions
in one, two or three dimensions (polymers, slabfdsas, crystalline solids) with arbitrary crysséducture.
iii. Both ground and excited state energies may be cttpu
iv. The code can compute expectation values of quastidther than the energy such as density, spintgespin
density matrix, pair-correlation function, localiian tenor, structure factors and electric dipolement etc.

2.2The VMC Technique

The VMC technique was used in running the CASIN@ecm the calculation of the ground state energyttie helium
atom, by employing the UHF method over the RHF méth

The RHF method involves where the atoms or molacisie closed-shell system with all orbitals (ati molecular)
doubly occupied. It is a variant of Hartree-Fockdty for open shell molecules. It uses doubly o@mlipnolecular orbitals
as far as possible and then singly occupied osbital the unpaired electrons. The foundation ofRiv- method were first
formulated by Roothaan [13] and then extended hgroauthors [14,15]. The RHF method for closedlshelecules, leads
to Roothaan equations written in the form of a gelimeed eigen value problem.

FC= sCO (2.1)

Where F is the Fock matrix (which is a function@)f C is a matrix of coefficient, S is the overlagatrix of the basis
functions and] is the matrix of orbital energies.

The UHF method is the most common molecular orlitadhod for open shell molecules where the numiifeetectrons
of each spin are not equal. It uses different md&corbitals for thea and electron. This has been called a different
orbitals for different spin (DODS) method. The réssi a pair of coupled Roothaan equation knowrthasPople-Nesbert-
Berthier equation [16, 17].

FeC?= sCorF (2.2)
FACP = sCPrf (2.3)

WhereF? andF* are the Fock matrices for teandf orbitals,C?and C? are the matrices of coefficients for theand
orbitals, S is the overlap matrix of the basis fiowg 0 andC® are the diagonal matrices of orbital energiegtiern andf
orbitals. The pair of equations is coupled becaheg~ock matrix elements of one spin contain coieffits of both spin as
the orbital has to be optimized in the averagelfadlall other electrons. The final result is amelecular orbitals and orbital
energies for the spin electrons and a set of molecular orbitals@bétal energies for thg electrons.

The UHF has one setback. A single Slater determiofdifferent orbitals for different spins is natsatisfactory eigen

function of the total spin operators’. $he ground state is contaminated by excited stéft¢here is one more electron af

1

spin thanB spin, the ground state is a doublet. The averafigevof $ i.e. (S?) = EG"‘ 1) = 0.75, but will actually be

rather more than this value as the doublet statmigaminated by a quadruplet state. A tripletestaith two excess
electrons should havés?) = 1(1 + 1) = 2, but it will be larger as the triplet is contamieditoy a quintuplet state.

Journal of the Nigerian Association of Mathematic&thysics Volume4 (July, 2013) 103 — 108
104



Numerical Calculation of the Ground State Energy of.. Ebomwonyi and Enukpere J of NAMP

When carrying out UHF calculations, it is alwaysegsary to check this contamination. For exampity & doublet
state, if(S?) = 0.8 or less, it is probably satisfactory. If it is 100 so, it is certainly not satisfactory and thécehation
should be rejected, then a different approach taken

Despite this setback, the UHF method is used frattyuand in preference to the RHF method becausg I3kimple to
code, easier to develop post HF methods with ahdn® unique function unlike RHF where differentckmperators can
give the same final wave function [18].

The VMC employs the variational method in whicheage must guess an appropriate many-electron wavwetion
which is then used to calculate the energy asxheatation value of the Hamiltonian operator. Ingml, this wave function
will depend on a set of parameters} {which can be varied to optimize the function anthimize either the energy or the
statistical variance. The energy thus obtained isgper bound to the true ground state energy.

(¢T({a})|ﬁ|‘ﬂT({a}))

=EQ{a})=E 2.4
Gr(@Dloran) D=k @4
The expectation value of Hamiltonizhwith respect to the trial wave functigry can be written as
— E;,(R)p%(R)dR
(H)=f ¢ 2)‘PT( ) ’ 2.5)
J o?(R)dR
Where R is a 3N dimensional vector giving the camtes (4, ro, . . ., ry) of the N particles in the system, and
HR)¢r(R)
E,(R)=——F— 2.6

is known as the local energy.

For VMC however, it is clear that the choice of thal wave function is particularly important aslirectly determines
the accuracy of the calculation. The answer wiprapch the true energy as we use better and lveditax function. As the
trial wave function approaches an exact eigen sthe local energyp/¢ approaches a constant, E, everywhere
configuration space and hence the variance appesanéro (zero variance principle). Through its direfluence on the
variance of the energy, the accuracy of the trievfunction then determines the amount of comjmutaiequired to achieve
a specified accuracy. When optimizing wave functiome can therefore choose to use energy or variaadhe objective
function to be minimized.

The fact that arbitrary wave functions can be useshe of the defining characteristics of QMC. Wenibt need to be
able to interpret the wave function analyticallyigglone for instance in quantum chemistry metheitls Gaussian basis
function. We just need to be able to evaluate @ pbint in the configuration space, i.e. if theotlon and nuclei have certain
fixed position in space, what is the value of thevevfunction? This being the case, we can use latetewave functions
which depend explicitly on the distances betweenptrticles.

The most commonly used functional forms is knownh&sSlater-Jastrow wave function [19]. This cotssif a single
Slater determinant (or sometimes a linear comtonatif a small number of them) multiplied by a pesitdefinite Jastrow
correlation function which is symmetric in the é¢tea coordinates and depends on the inter-partisiances. The Jastrow
factor allows efficient inclusion of both long asdort range correlation effects.

The basic functional form of the Slater-Jastrowction is

P00 = D Y 6,0, () @7

Where X = &, X% . . ., Xy) and x = {r;, g} denotes the space-spin coordinates of eledtrelt! is the Jastrow factor, c
are coefficients, and JX) are Slater determinants of single particledtatb,

(2.8)

The orbitals in the determinants are often obtaifren self-consistent density functional theory {DFor HF
calculations and are assumed to be products daspatl spin factors,

a(x) = 9 (1)85,0, (2.9)

Whered, ,, = 1 if 0 =0, and zero otherwise.

The full Jastrow function that is typically used @ASINO, contained one and two electron terms aray foe
inhomogenous, i.e. depend on the distances ofitlistr@ns from the nuclei.

The CASINO code allows optimization of the coefficis of the determinants of multi-determinant wéwection,
various parameters in specialized wave functioredus.g. in electron-hole phases, and even theatghit the Slater
determinant themselves.
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Although VMC can be quite powerful when appliedte right problem, the necessity of guessing tmetfanal form
of the trial function limits its accuracy and théseno known way to systematically improve it détway to the exact non-
relativistic limit. In practice therefore, the maise of VMC is in providing the optimized trial wafunction required as an
important sampling function by the much more poweEfMC technique.

2.3 General Computational Requirements
The CASINO code works in a system that has;
« A LINUX based operating system or environment like UBUNTU, which was used in this work
« A working Fortran 90 compiler
In this work, various runs were carried out forfeliént values of VMC step, in order to determine ttue ground state
energy for the helium atom. This VMC step is aniinparameter corresponding to the total numbeadige configurations

for which the energy is calculated.

3.0 Results and Discussion of Results

Every VMC step generates a new configuration oftedes and nuclei, and because of the differendater-particle
separation, each of these will have a differentgynelhe correct expectation value of the energthésaverage energy of
thousands of these configurations.

The more VMC steps we do, the smaller the errorhich is always associated with the energy ardbre likely the
energy calculated will be closer to the exact valdewever, it got to a point where, as the numlz#r¥MC steps were
increased further; energy convergence was obtagmdgsponding to (-2.90360.000013976) a.u. This is illustrated in the
graph of Energy against VMC steps in Fig 3.1.

This value is close agreement with the work of ptkeearchers as presented in Table 3.1.

Fig 3.1 Graph of Energy against VMC Steps

Journal of the Nigerian Association of Mathematic&thysics Volume4 (July, 2013) 103 — 108
106



Numerical Calculation of the Ground State Energy of.. Ebomwonyi and Enukpere J of NAMP

Fig 3.2 Graph of Error against Energy

Table 3.1: Comparative analysis of the ground statenergies for the helium atom by different researcérs

SIN | Author/Reference Technique/Method GSE (a.u.)
1 Kinoshita [3] Variational -2.90370
2 Perkeris [4] Experimental -2.90372
3 Martin [5] GFQMC -2.90210
4 Koki [6] Hylleraas Algorithm -2.90420
5 Doma and El-Gamal [7] Variational -2.89810
6 Suleiman and Ewa [8] PIMC (BO) -2.90230
7 This work CASINO code -2.90369
GSE=Ground State Energy

1a.u. =27.2eV

Conclusion

The ground state energy for the helium atom wasemiaaly calculated by running the QMC CASINO codmploying
the VMC technique.

The higher the VMC steps that was run, the morevttiees of the energies get closer to the exactevalonvergence
was however reached at the point where the eneagy(32.903620.000013976) a.u. This is taken as the value ogtband
state energy for the helium atom using the CASINGec
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