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                       Abstract 

 
The quantum Monte Carlo (QMC), CASINO code was run to calculate the 

ground state energy for the helium atom. The variational Monte Carlo (VMC) 
technique was used, employing the unrestricted Hartree-Fock (UHF) method, instead 
of the restricted Hartree-Fock (RHF) method. 

By altering the VMC steps in the input parameters of the CASINO code, the best 
ground state energy for the helium atom was obtained to be (-2.90369±0.000013976) 
a.u. differing by 0.00003a.u. from the best experimental value. 

 
 
1.0    Introduction 

From the early days of quantum mechanics, the ground state ionization energy of the helium atom was a benchmark for 
approximation methods of solving the nonrelativistic Schrodinger equation for a few-body system.  

The ground state energy of the helium atom has been a subject of interest for a very long time, and continues to attract 
the attention of many researchers. The ground state energies of the helium and helium-like atoms are calculated by using 
wavefunctions constructed from the conventional orbital product, times a correlation function depending on the inter-
electronic distance. These wavefunctions involve, in general, a number of adjustable parameters which are constrained to 
satisfy some kind of variational principle to give an improved value for the ground state energy [1]. One of the earliest 
variational calculations was performed in 1929 by Hylleraas [2]. In 1957, Kinoshita [3] obtained a result with higher-order 
corrections, which was confirmed to be in very good agreement with the best experimental value [4]. 

However, with the development of computer power, more researchers have tried to calculate the ground state energy of 
the helium atom by employing various methods or techniques. Martin [5] employed the Green’s function quantum Monte 
Carlo (GFQMC) method; Koki [6] employed the Hylleraas algorithm technique; Doma and El-Gamal [7] employed the 
variational method, while Suleiman and Ewa [8] employed the path integral Monte Carlo (PIMC) method in the Born-
Oppenheimer (BO) approximation. 

The QMC is a large class of computer algorithm that simulates quantum systems with the idea of solving the quantum 
many-body problem. They use in one way or the other the Monte Carlo method to handle the many-dimensional integrals that 
arise. QMC allows a direct representation of many-body effects in the wave function, at the cost of statistical uncertainty that 
can be reduced with more simulation time. 

In principle, any physical system can be described by the many-body Schrodinger equation; 

�� ��
�� � ��                                                                                       	1.1� 

as long as the constituent particles are not moving ‘too fast’, that is, they are not moving near the speed of light. This 
covers a wide range of electronic problems in condensed matter physics. So, if we can solve the Schrodinger equation for a 
given system, we could predict its behavior.  

Traditionally, theorists have approximated the many-body wave function as an anti-symmetric function of one-body 
orbital. This kind of formulation either limits the possible wave functions, as in the case of the Hartree-Fock (HF) 
approximation, or converges slowly, as in the configuration interaction. One of the reasons for the difficulty with a HF initial 
estimate (ground state seed, also known as Slater determinant) is that it is very difficult to model the electronic and nuclear 
cusps in the wave function. However, one does not generally model at this point of the approximation. 
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QMC is a way around these problems because it allows us to model a many-body wave function of our choice directly. 
Specifically, we can use a HF approximation as our starting point, but then multiplying it by any symmetric function of 
which Jastrow functions are typical, designed to enforce the cusp condition. 
 
2.0 Method 
2.1 The CASINO Code 

The CASINO code is a computer program package originally developed in Cambridge in the group of Needs and Towler 
[9,10]. Its purpose is to perform quantum Monte Carlo electronic structure calculation for finite and periodic systems. Its 
development was inspired by a Fortran 77 development code written in the early 1990s in Cambridge [11]. This was later 
extended by other authors and various versions of this program were able to treat FCC solids, single atoms and the 
homogenous electron gas (HEG). 

By late 1990s, it was clear that a modern and general code capable of treating arbitrary systems (at least atoms, 
molecules, polymers, slabs, crystals and electron phases) was required. So beginning in 1999, a new Fortran 90 code-
CASINO was gradually developed. Some routines from the old code were retained, translated and reused. The philosophy 
behind this new code were generality, speed, portability, ease-of-use and transferability over a wide range of computational 
hard ware. Generality in this sense, means that one ought to be able to create a trial wave function for any system, expanded 
in any of a variety of different basis sets and use it as input to a CASINO QMC calculation [12]. 

The most important current capabilities of CASINO are as follows: 
i. It can do VMC calculations (including wave function optimization through minimization of the variance or the 

energy) and DMC calculations. 
ii.  It may be applied to finite system such as atom and molecules and also to system with periodic boundary conditions 

in one, two or three dimensions (polymers, slabs/surfaces, crystalline solids) with arbitrary crystal structure. 
iii.  Both ground and excited state energies may be computed. 
iv. The code can compute expectation values of quantities other than the energy such as density, spin density, spin 

density matrix, pair-correlation function, localization tenor, structure factors and electric dipole moment etc. 
 
2.2 The VMC Technique 

The VMC technique was used in running the CASINO code in the calculation of the ground state energy for the helium 
atom, by employing the UHF method over the RHF method.  

The RHF method involves where the atoms or molecules is a closed-shell system with all orbitals (atomic or molecular) 
doubly occupied. It is a variant of Hartree-Fock theory for open shell molecules. It uses doubly occupied molecular orbitals 
as far as possible and then singly occupied orbitals for the unpaired electrons. The foundation of the RHF method were first 
formulated by Roothaan [13] and then extended by other authors [14,15]. The RHF method for closed shell molecules, leads 
to Roothaan equations written in the form of a generalized eigen value problem. 

    FC = SC∈         (2.1)  
Where F is the Fock matrix (which is a function of C), C is a matrix of coefficient, S is the overlap matrix of the basis 

functions and ∈ is the matrix of orbital energies. 
The UHF method is the most common molecular orbital method for open shell molecules where the numbers of electrons 

of each spin are not equal. It uses different molecular orbitals for the α and β electron. This has been called a different 
orbitals for different spin (DODS) method. The result is a pair of coupled Roothaan equation known as the Pople-Nesbert-
Berthier equation [16, 17]. 

FαCα = SCα∈α         (2.2) 
FβCβ = SCβ∈β         (2.3) 

Where Fα and Fβ are the Fock matrices for the α and β orbitals, Cα and Cβ are the matrices of coefficients for the α and β 
orbitals, S is the overlap matrix of the basis function, ∈α and ∈β are the diagonal matrices of orbital energies for the α and β 
orbitals. The pair of equations is coupled because the Fock matrix elements of one spin contain coefficients of both spin as 
the orbital has to be optimized in the average field of all other electrons. The final result is a set molecular orbitals and orbital 
energies for the α spin electrons and a set of molecular orbitals and orbital energies for the β electrons. 

The UHF has one setback. A single Slater determinant of different orbitals for different spins is not a satisfactory eigen 
function of the total spin operators, S2. The ground state is contaminated by excited states. If there is one more electron of α 

spin than β spin, the ground state is a doublet. The average value of S2 i.e. 
��� � �
� ��

� � 1� � 0.75, but will actually be 

rather more than this value as the doublet state is contaminated by a quadruplet state. A triplet state with two excess α 
electrons should have  
��� � 1	1 � 1� � 2, but it will be larger as the triplet is contaminated by a quintuplet state. 
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When carrying out UHF calculations, it is always necessary to check this contamination. For example, with a doublet 

state, if 
��� � 0.8 or less, it is probably satisfactory. If it is 1.0 or so, it is certainly not satisfactory and the calculation 
should be rejected, then a different approach taken.  

Despite this setback, the UHF method is used frequently and in preference to the RHF method because UHF is simple to 
code, easier to develop post HF methods with and returns unique function unlike RHF where different Fock operators can 
give the same final wave function [18]. 

The VMC employs the variational method in which case we must guess an appropriate many-electron wave function 
which is then used to calculate the energy as the expectation value of the Hamiltonian operator. In general, this wave function 
will depend on a set of parameters {α} which can be varied to optimize the function and minimize either the energy or the 
statistical variance. The energy thus obtained is an upper bound to the true ground state energy. 


��	������ ���	�����

��	����|��	����"� � #	����≥ #$                                                                        	2.4� 

 The expectation value of Hamiltonian �  with respect to the trial wave function �� can be written as 


� � � & #'	(����	(�)(
& ���	(�)( ,                                                                                              	2.5� 

Where R is a 3N dimensional vector giving the coordinates (r1, r2, . . ., rN) of the N particles in the system, and 

#'	(� � � 	(���	(�
��	(�                                                                                               	2.6� 

is known as the local energy. 
For VMC however, it is clear that the choice of the trial wave function is particularly important as it directly determines 

the accuracy of the calculation. The answer will approach the true energy as we use better and better wave function. As the 
trial wave function approaches an exact eigen state, the local energy � �/� approaches a constant, E, everywhere in 
configuration space and hence the variance approaches zero (zero variance principle). Through its direct influence on the 
variance of the energy, the accuracy of the trial wave function then determines the amount of computation required to achieve 
a specified accuracy. When optimizing wave function, one can therefore choose to use energy or variance as the objective 
function to be minimized. 

The fact that arbitrary wave functions can be used is one of the defining characteristics of QMC. We do not need to be 
able to interpret the wave function analytically as is done for instance in quantum chemistry methods with Gaussian basis 
function. We just need to be able to evaluate it at a point in the configuration space, i.e. if the electron and nuclei have certain 
fixed position in space, what is the value of the wave function? This being the case, we can use correlated wave functions 
which depend explicitly on the distances between the particles. 

The most commonly used functional forms is known as the Slater-Jastrow wave function [19]. This consists of a single 
Slater determinant (or sometimes a linear combination of a small number of them) multiplied by a positive-definite Jastrow 
correlation function which is symmetric in the electron coordinates and depends on the inter-particle distances. The Jastrow 
factor allows efficient inclusion of both long and short range correlation effects. 

The basic functional form of the Slater-Jastrow function is 

�	,� � -.	/� 0 1232
2

	,�                                                                                        	2.7� 

Where X = (x1, x2 . . ., xN) and xi = {ri, σi} denotes the space-spin coordinates of electron i, eJ(x) is the Jastrow factor, cn 
are coefficients, and Dn(X) are Slater determinants of single particles orbitals, 

 
The orbitals in the determinants are often obtained from self-consistent density functional theory (DFT) or HF 

calculations and are assumed to be products of spatial and spin factors, 
�4	5� � �4	6�78,89         (2.9) 
Where 78,89 � 1 if σ = σα and zero otherwise. 
The full Jastrow function that is typically used in CASINO, contained one and two electron terms and may be 

inhomogenous, i.e. depend on the distances of the electrons from the nuclei. 
The CASINO code allows optimization of the coefficients of the determinants of multi-determinant wave function, 

various parameters in specialized wave functions used e.g. in electron-hole phases, and even the orbitals in the Slater 
determinant themselves. 
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Although VMC can be quite powerful when applied to the right problem, the necessity of guessing the functional form 

of the trial function limits its accuracy and there is no known way to systematically improve it all the way to the exact non-
relativistic limit. In practice therefore, the main use of VMC is in providing the optimized trial wave function required as an 
important sampling function by the much more powerful DMC technique. 

 
2.3 General Computational Requirements 
The CASINO code works in a system that has; 

� A LINUX based operating system or environment like the UBUNTU, which was used in this work 
� A working Fortran 90 compiler 

In this work, various runs were carried out for different values of VMC step, in order to determine the true ground state 
energy for the helium atom. This VMC step is an input parameter corresponding to the total number of particle configurations 
for which the energy is calculated. 
 
3.0 Results and Discussion of Results 

Every VMC step generates a new configuration of electrons and nuclei, and because of the difference in inter-particle 
separation, each of these will have a different energy. The correct expectation value of the energy is the average energy of 
thousands of these configurations. 

The more VMC steps we do, the smaller the error bar, which is always associated with the energy and the more likely the 
energy calculated will be closer to the exact value. However, it got to a point where, as the numbers of VMC steps were 
increased further; energy convergence was obtained, corresponding to (-2.90369±0.000013976) a.u. This is illustrated in the 
graph of Energy against VMC steps in Fig 3.1. 
 
This value is close agreement with the work of other researchers as presented in Table 3.1. 
 

 
Fig 3.1 Graph of Energy against VMC Steps 
 

 
 
 
 
 
 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 103 – 108           



107 

 

Numerical Calculation of the Ground State Energy of…   Ebomwonyi  and Enukpere    J of  NAMP 
 

 
               

 Fig 3.2 Graph of Error against Energy 
 
 
  
 
Table 3.1: Comparative analysis of the ground state energies for the helium atom by different researchers 
 
S/N 

 
Author/Reference 

 
Technique/Method  

 
GSE (a.u.) 

1 Kinoshita [3] Variational -2.90370 
2 Perkeris [4] Experimental -2.90372 
3 Martin [5]  GFQMC -2.90210 
4 Koki [6] Hylleraas Algorithm -2.90420 
5 Doma and El-Gamal [7] Variational -2.89810 
6 Suleiman and Ewa [8] PIMC (BO) -2.90230 

7 This work CASINO code -2.90369 

GSE=Ground State Energy 
1 a.u. = 27.2eV 
 
Conclusion 

The ground state energy for the helium atom was numerically calculated by running the QMC CASINO code, employing 
the VMC technique.  

The higher the VMC steps that was run, the more the values of the energies get closer to the exact value. Convergence 
was however reached at the point where the energy was (-2.90369±0.000013976) a.u. This is taken as the value of the ground 
state energy for the helium atom using the CASINO code.  
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