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Abstract

The all-electron, full potential FHI-aims DFT codevas used to predict the stable
structure and the theoretical lattice constant ofliSon. These were compared with the
frozen-core, pseudopotential results [1] and knowrperimental structure and lattice
constant of Silicon. Results obtained showed tHa¢ most stable structure of Silicon is
the diamond structure which is in complete agreemevith experiment. The calculated
lattice constant of the stable structure is 5.42 vbhich is 99.998% of the 5.43 A
experimental value. The calculated ground statealognergy of the stable structure is -
7874.1127 eV per atom.
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1.0 Introduction

One of the most profound scientific advances ofttientieth century was the development of quantuechanics and
the repeated experimental observations that coeflirthat this theory of matter describes, with dstong accuracy, the
universe in which we live [2]. Density Functionahdory, DFT [3,4], is a phenomenally successful apph to finding
solutions to the fundamental equation that dessribe quantum behavior of atoms and moleculesStheodinger equation,
in settings of practical value. This approach lesdly grown from being a specialized art practibgda small number of
physicists and chemists at the cutting edge of uamechanical theory to a tool that is used retyutay large numbers of
researchers in chemistry, physics, materials seiestemical engineering, geology, and other diswpl

In this research work, the DFT code FHI-aims wasdut predict the stable structure and then comfhédattice
constant and ground state total energy of Silicon.

2.0  Theoretical Analysis

The formalism of DFT was introduced by Hohenberd &ohn in 1964 [5]. In 1965, Kohn and Sham [6] erged a
scheme to treat approximately the interacting edecsystem within this formalism. It is currentlyet most popular and
successful method for studying the ground statetreleic structures. Although far from a panaceaaflbphysical problems
in this domain, very accurate calculations can é&dopmed with reasonable computational costs. Witk formulation, the
many-body problem is mapped onto an effective simgirticle problem. Kohn and Sham thus establishatifor any real
(interacting) system with ground-state density tifgre always exists a non-interacting system trighsame ground state
density n(r). This leads to the famous Kohn-Shama#qgn,

(‘%Vz + Veff) Y; = gy 1)
wherey; and ¢; are the single particle wavefunction and eigenvataspectively. The density of the non-interacting
system
n(r) = T ()2 2)
will reproduce the exact density of the fully irgeting system. Moreover the energy of the non-augng system
reproduces the exact ground state energy of teeaicting system. The existence of such a potastfakcinating but the
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utility of DFT is dependent on one finding a decapproximation for ¥ that can be used in practical simulations [4].
Typically, Ve is separated into an electron-nucleag(V classical (Hartree) electron-electron inte@tt(Vy) and the
remaining exchange-correlation potentialdy

Veff = Ven + VH + ch (3)
where,

V() = [ 200 g (4)

|7 =71

The Kohn-Sham approach is in principle exact! Thpraximation only enters when we have to decidaorexplicit
form for the unknown functional for the exchangeretation energy g and its corresponding potentialVThe central goal
of modern DFT is therefore to find better and breditgproximations to these two quantities.

A great variety of different approximations tg.\have been developed. For many years the localtgepproximation
(LDA) has been used. In the LDA the exchange catfi@l energy density at a point in space is takebe that of the
homogeneous electron gas with the local electratsitle €,.(n). Thus the total exchange correlation energy foneti is
approximated as,

Ep* = [ n(F) gxc(n(®))d? S)
from which the potential is obtained as,
5 XC
Ve = == (6)

The LDA has proven to be a remarkably fruitful appmation. Properties such as structure, vibratidrexjuencies,
elastic moduli and phase stability (of similar stures) are described very reliably for many systeiowever, in
computing energy differences between rather diffestructures the LDA can have significant errdfer instance, the
binding energy of many systems is overestimatedegraigy barriers in diffusion or chemical reactiomsy be too small or
absent. Currently, effective potentials that depbaoth on the local density and the magnitude ofdtsal gradient — so
called, generalized gradient functionals (GGA'sire widely used [7]. The GGA approach in its vasidorms goes some
way to correcting the problems seen in LDA caldal&. There are many GGA versions.

Hybrid functionals are now available and are widadgd in chemical applications with the B3LYP fumeal being the
most notable. Computed binding energies, geomedngisfrequencies are systematically more reliaiida tthe best GGA
functionals. In addition the description of the igies of non-equilibrium geometries are improvetle Tmplementation of
hybrid functionals requires the calculation of then-local exchange operator and is thus somewlndigmatic within the
plane wave formalism. However, in a local orbitasis set the operator can be evaluated efficiemtiyrect space.

FHI-aims, the “Fritz Haber Institute ab initio moldar simulations”, is an all-electron, full-poteitcomputer program
package for computational materials science basédan quantum-mechanical first principles [8]. Tirain production
method is DFT to compute the total energy and eédriguantities of molecular or solid condensed mattéts electronic
ground state. In addition, FHI-aims allows to ddmeelectronic single-quasiparticle excitationsrialecules using different
self-energy formalisms, and wave-function basedemdar total energy calculation based on HartreekHF) and many-
body perturbation theory (MP2 and MP4).

Preconstructed hierarchical basis sets allow omadee from qualitative tight-binding like accurattymeV-level total
energy convergence with the basis set. For LDA &@A DFT, periodic and cluster-type geometries auppsrted,
including relaxation and ab initio molecular dynamiThe basis sets allow one to access all elerfremtslight to heavy. A
low-communication based algorithms and Scalapaslkedbdinear algebra for all matrix operations gutranefficient
scaling (CPU time and memory) up to massively parabmputer systems with thousands of CPUs [9].

FHI-aims version 071711 _5 (released on July 17120fgrade 5) was used for all computations. Iy evibrks on Unix
[10] or Linux [11,12] operating systems.

FHI-aims is distributed in source code form, thhe first task is to compile an executable progr&or. this, the
following mandatory prerequisites are needed anst ipe installed before compiling FHI-aims:

(i) A working Unix or Unix-based (Linux) operatirgystem (Ubuntu 11.04 in this work).

(i) A working Fortran 95 (or later) compiler. Aogd example for x86 type computers is Intel's ifodmpiler
(Composerxe 2011.5.220 installed for this workhétfree but significantly slower compilers for platforms are gfortran
from the GNU compiler collection and the g95 corepil

(iii) A compiled version of the lapack library, aadibrary providing optimized basic linear algebtdbroutines (BLAS).
Standard libraries such as Intel's mkl or IBM's lepsovide both lapack and BLAS support. Intel's mjmerserxe
2011.5.220 comes with mkl.

Computations can only be carried out after sucofigdbuilding an executable program. FHI-aims regsitwo input
files - control.in (which contains all runtime-sjféc information) and geometry.in (which containsfdrmation directly
related to the atomic structure for a given calooitg. The two input files must be placed in thensadirectory from where
the FHI-aims binary is invoked at the command line.
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3.0  Results and Discussion
Silicon bulk total energies per atom at severgicktconstants were computed for three possibletstres — BCC, FCC and
Diamond. Results obtained were then plotted, uiaglotting softwar@©rigin 5.0.

Table 1: Computed Ground State Total Energy of Silicon

TOTAL ENERGY PER ATOM (eV)

Lattice Constant (A) BCC FCC Diamond

2.80 -7873.2768 -7865.8438 -7805.1694
2.90 -7873.5296 -7868.0302 -7815.0762
3.00 -7873.6441 -7869.6871 -7823.6340
3.10 -7873.6531 -7870.9197 -7831.0478
3.20 -7873.5949 -7871.8269 -7837.4542
3.30 -7873.4751 -7872.4818 -7842.9856
3.50 -7873.1302 -7873.2599 -7851.9168
3.60 -7872.9288 -7873.4629 -7855.4719
3.70 -7872.7190 -7873.5847 -7858.5463
3.80 -7872.5041 -7873.6362 -7861.2038
3.90 -7872.2927 -7873.6295 -7863.4854
4.00 -7872.0816 -7873.5808 -7865.4297
4.10 -7871.8737 -7873.5010 -7867.0818
5.10 -7870.0692 -7872.002 -7873.8916
5.20 -7869.9296 -7871.8374 -7874.0161
5.30 -7869.8067 -7871.6776 -7874.0869
5.40 -7869.6916 -7871.5185 -7874.1123
541 -7869.6801 -7871.5028 -7874.1126
5.42 -7869.6685 -7871.4872 -7874.1127
5.43 -7869.6569 -7871.4715 -7874.1123
5.44 -7869.6454 -7871.4558 -7874.1116
5.45 -7869.6337 -7871.4401 -7874.1106
5.50 -7869.5748 -7871.3613 -7874.1005
5.60 -7869.4553 -7871.2033 -7874.0583
5.70 -7869.3383 -7871.0488 -7873.9918

Figure 1: Silicon Structure and Lattice Constant using Flitsa
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From Figure 1 above, FHI-aims predicts that the trstable structure of Silicon is the diamond stutetwhich is in
complete agreement with experiment. The calculkttite constant of the stable structure is 5.4 #is is 99.998% of the
5.43 A experimental value. On the other hand, Stékov et al [1], using a frozen-core pseudopotdntdde (VASP code)
calculated a value of 5.398 A as the lattice comstd the diamond structure of Silicon. This clgaitlustrates that all-
electron, full potential DFT [13] is more accurétan frozen-core, pseudopotential DFT.

4.0

Conclusion

Using the all electron, full potential FHI-aims @gdhe most stable structure of Silicon was predi¢b be the diamond
structure with a lattice constant of 5.42 A. These in excellent agreement with experiment. A vadfies.398 A was
calculated as the lattice constant of Silicon uding frozen-core, pseudopotential VASP code. Heatleglectron, full
potential DFT calculations appear to be more ateutsan frozen-core, pseudopotential calculatiabhdeast for the study
carried out on silicon.

References

(1]
(2]

(3]
(4]

(5]
(6]

[7]
(8]

9]

Stekolnikov, A.A., Furthmuller, J. and Bechstedt(#002), Phy. RewB, 65, 115318.

Sholl, D. S. and Steckel, J.A. (2009), Density Fiomal Theory: A Practical Introduction, Wiley arg@bns Inc,
Hoboken — New Jersey.

Burke, K. (2007), The ABC of DFT, Available onlinat http://chem.ps.uci.edu/kieron/dft/bookAccessed
17/07/2008.

Parr, R. G. and Yang, W. (1989). Density Functiohiaéory of Atoms and Molecules, Oxford Universitsess,
New York.

Hohenberg, P. and Kohn, W. (1964), Inhomogeneoestiin Gas, Phys. Rel/36, B864-B871.

Kohn, W. and Sham, L.J. (1965), Self-Consistentidfigns Including Exchange and Correlation Effetsys.
Rev.140 A1133-A1138.

Ceder, G. and Marzari, N. (2005), Atomic ModellimigMaterials; Density Functional Practice, Vol pd, 320.
Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, Ren, X., Reuter, K. and Scheffler, M. (2009), Qarer
Physics Communication$80, 2175-2196.

Havu, V., Blum, V., Havu, P. and Scheffler, M. (8)0Journal of Computational Physi@28 8367-8379.

[10] Stonebank, M. (2001), UNIX Tutorial for Beginners. Available at
http://surrey.ac.uk/m.stonebank/unixtut/index.htrtcessed 14/07/2011.

[11] Karunya Linux Club (2011), Tutorial on Linux: BasicAvailable online ahttp://www.karunya.edu/linuxclub
Accessed 14/07/2011.

[12] Garrels, M. (2008), Introduction to Linux: A Hands Guide. Available online dittp:/tille.garrels.be/training/tidp/
Accessed 14/07/2011.

[13] Kiejna, A. (2006), Comparison of the Full-Potentiahd Frozen-Core Approaches to Density Functional

Calculations of Surfaces, Phys. RBy.73, 035404.

Journal of the Nigerian Association of Mathematic&thysics Volume4 (July, 2013) 89 — 92

92


http://tille.garrels.be/training/tldp/
http://www.karunya.edu/linuxclub
http://surrey.ac.uk/m.stonebank/unixtut/index.html
http://chem.ps.uci.edu/kieron/dft/book/

