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Our focus in this paper is the proposition of six – step, hybrid linear multistep 

method with three off – step points for the numerical solution of initial value problems 
of first order ordinary differential equations.  The technique of interpolation and 
collocation was used to derive a continuous scheme, from where the main method and 
additional schemes were obtained. The schemes were then applied in block form as 
simultaneous integrators over non – overlapping intervals on initial value problems of 
first order ordinary differential equations. The basic properties of the method were 
analyzed and the results showed that the method is consistent, zero – stable, 
convergence and accurate. 
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1.0    Introduction 

Ordinary differential equations often arise from many processes in the fields of sciences, Management and Engineering 
where the rates of change of one or more quantities with respect to one independent variable occur. Wide varieties of natural 
phenomena in the aforementioned fields are modeled by ordinary differential equations of the general form:   

  ( ) [ ],,,),,( 00 baxyxyyxfy ∈==′     (1) 

Where y′
indicates the derivative of dependent variable y with respect to x and function f satisfies the Lipschitz 

condition of the existence and uniqueness of solution to the ordinary differential equation. 

We seek a solution to (1) in the range of: [ ]bxa ≤≤  where a and b are finite and the problem has a unique 

continuously differentiable solution. We consider a sequence of points:  
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parameter h which is a constant is the step length. It should be noted that the majority of computational methods for the 
solution of (1) is of property called discretization, meaning that we seek an approximate solution to the problem, not on 

continuous interval[ ]bxa ≤≤ , but on the discrete point set{ }nx . 

The K – step Linear Multistep method (LMM) for the solution of (1) is generally written as: 
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Which has 2k+1 unknown s'α and s'β and therefore can be of order 2k. Dalquist [1] postulated that the order of the 

Linear Multistep Method (2) cannot exceed k+1 or k+2 when k is odd or even, respectively, for the method to be stable. To 
overcome this postulated barrier, many early researchers in Numerical computing of ordinary differential equations such as 
[2], [3], and [4] proposed the modified forms of (2). Their works lead to what is christened generally as hybrid methods 
usually obtained by incorporating off – step points to (2) leading to: 
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Where v which is usually in the interval [ ]1,0 is called hybrid points. [5] observed that deriving this kind of methods is     
more tedious due to the occurrence of the fractional off – step points which increases the number of predictors needed to 
implement the methods. To over step this barrier, block method of implementation of Linear Multistep Methods which is 
usually self starting is now being commonly adopted by researchers. The works of [6] - [8] for the solution of (1), attest to the 
fact that proposition of hybrid continuous collocation methods is now commonly in vogue for the numerical solution of 
ordinary differential equations, apparently because they are efficient, accurate and adequate.  

The solution of (1) has been equally discussed extensively by various researchers [9 – 15]. 
Collocation methods for generating computational methods of the form (1) or its modified form (2) has its origin dated 

back as far as 1965 when Lanczos [16] introduced the standard collocation method with some selected points for the 
numerical integration of ordinary differential equations. However, it should be noted that earlier researchers that proposed 
collocation methods for solving ODEs developed discrete schemes; it was Ortiz [18] that improved on earlier works in this 
area and showed that traditional multistep methods including the hybrid ones can be made continuous through the idea of 
multistep collocation scheme against the discrete schemes, since global error estimates can be attained in addition to better 
approximation at all interior points. Therefore, the major advantage of this aforementioned innovation is that the introduction 
of continuous collocation methods has bridged the gap between the discrete collocation method and the conventional 
multistep method.  

Consequently, in this paper, we propose six – step hybrid linear multistep method with three off – step points by 
employing multistep collocation approach which produces a class of nine schemes of order of accuracy eleven for the 
numerical integration of initial value problems of first order ordinary differential equations. 
 
2.0 Derivation of the Method. 
We assume an approximate solution to equation (1) to be a continuous solution of the form: 
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Such that [ ],,bax ∈ where ja  are unknown coefficients of the polynomial basis function of degree 1−+ qp , where the 

number of interpolation points p and the number of collocation points q are respectively chosen to satisfy kp ≤≤1 and 

.0fq  Note that the step number of the method is represented by .1fk   

We seek a K – step multistep collocation method of the form:  
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Where jα  and jβ  are coefficients and { }4
23,2

11,4
21=v  are hybrid points.  

We construct a k – step continuous hybrid multistep method with 6,10,1,10,...,1,0, ==== kqpjx j by imposing the 

above condition, we have: 
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Where n  in (6) and (7) above is the grid index. 

From equations (6) and (7) we obtain a system of qp +  equations which is solved to obtain the coefficients ja ’s by 

Gaussian elimination method. By putting the values of these coefficients 

 ja ’s so obtained into equation (4), we obtain the six – step continuous hybrid method. On evaluating the continuous scheme 

at points:
  { }6,,,,,,,,,

4
23

2
11

4
2154321 ++++++++=

nnnnnnnnn xxxxxxxxxx , we obtain the following nine discrete schemes: 
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These nine discrete schemes (8) – (16) will be arranged in block form as simultaneous integrator of test problems of initial 
value first order ordinary differential equations. 
 
  3.0 Analysis of the Basic Properties of the Method. 
  3.1 Order of accuracy and Error Constant. 
In line with [17], the local truncation error associated with K – step linear multistep method (2), is taken to be linear 
difference operator: 
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Equation (17) can be expanded as a Taylor’s series about the point x if ( )xy  is sufficiently differentiable to obtain the 

expression: 
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where ,qC  ,...,1,0=q are the constant coefficients given as: 
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According to (18), in line with [17], we say that the hybrid k – step, linear multistep method (5) has order p if 

pp CCCC ==== −110 ... and 01 ≠+pC . Thus 1+pC is the error constant of the method. From our calculation, subjecting 

our schemes to equations (18)-(21), it is established that our hybrid linear multistep schemes have high order of accuracy 

( )TP 111111111111111111=  and relatively small error constants.  

3.2 Consistency 
A linear multistep method (5) is said to be consistent if: 
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Where ρ  and σ  are the first and second characteristic polynomials of equation (5), the general form of our method. On 

applying these aforelisted definitions to our schemes (8-16), they were found to be consistent. 
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 3.3 Zero Stability of the method. 

A linear multistep method of the form (5) is said to be Zero stable if no roots of the first characteristic polynomial ( )rρ  has 

modulus greater than one, and if every root of the modulus one is simple [17]. In the same way, by applying this definition to 
our schemes (8-16), they were found to be Zero stable. 
 
4.0 Implementation of the method. 
Our derived schemes are implemented by combining (8)-(16) together as simultaneous integrator for the initial value 
problems of first order ordinary differential equations without requiring starting values and predictors. In doing this, we 

proceed by explicitly obtaining initial conditions at ,6,...,6,0,6 −=+ Nnxn  using the computed values: ( ) 66 ++ = nn yxy  

over sub intervals [ ] [ ].,,...,, 660 NN xxxx −  specifically, we use equations (8-16) by setting n = 0, .0=µ we obtain 
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  over the sub interval,[ ]60 ,xx , since 0y is known from the 

initial  value problem (1).  
 In the same way, by setting n = 6, 1=µ , we obtain simultaneously:  
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  Over the sub interval:[ ]126 ,xx  as 6y  is known from the previous block, T 

being the transpose. We then continue this process until we wish to stop the iterations. Hence, the sub – interval do not 
overlap, thus, the solution obtained from here are more accurate than those obtain in the conventional fashion.  However, 
linear problems are solved from the start with Gaussian elimination method using partial pivoting, while we apply modified 
Newton - Raphson method for nonlinear problems. 
 
4.1 Numerical Results. 
Using some test problems, we illustrate the numerical schemes (8-16) to test the suitability and performance of the method. 
All calculations and computer program are carried out with the aid of MATLAB software. The results are presented in 
tabular form in table 1 and 2 shown below. 
Test Problem 1. 
We consider an initial value problem: 

 xxyy cossin2020 ++−=′   ( ) 10 =y  with h = 0.01 

Whose exact solution is ( ) xexy x sin20 += −
 

The results are as shown in Table 1. 

Table 1.  Results for Problem 1. 
  x      Exact Solution           Numerical Solution           Error. 
 0          1.000000000000              1.000000000000         1.0000 
0.1          0.235146948000              0.235146947998         2.0624 1210−×  
0.2          0.216984969683              0.216984969672         1.1206 1110−×  
0.3          0.297998958838              0.297998958826         1.2421 1110−×  
0.4          0.389753804936              0.389753804913         2.2462 1110−×  
0.5          0.479470938533              0.479470938511         2.1026 1110−×  
0.6          0.564648617607              0.564648617606         1.2262 1110−×  
0.7          0.644218517832              0.644218517811         2.1610 1110−×  
0.8          0.717356203290              0.717356203270         2.0416 1110−×  
0.9          0.841470986866              0.841470986834         3.2267 1110−×  

 
Test Problem 2. 
We consider the initial value problem given by: 

( ) 18 +−=′ yxy ,    ( ) 01.0,20 == hwithy  

Whose exact solution is given by xexxy 82)( −+=  
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Our results were compared with that of [6]. The results are as shown in Table 2. 
Table 2.    Results for Problem 2. 
     x      Exact Solution Numerical         Solution    Error.  Error in  [6] 
 0    2.0      2.0  0.0        0.0 
0.1    0.998657928234      0. 998657928226  0.9124 1110−×         1.7 0510−×  
0.2    0.603793035989      0. 603793035967  2.2106 1110−×         1.6 0510−×  
0.3   0.481435906578    0. 481435906574   0.3921 1110−×         9.3 0610−×  
0.4   0.481524407956    0. 481524407924   3.1242 1110−×         4.6 0610−×  
0.5   0.536631277777    0. 536631277724   5.2046 1110−×         1.8 0610−×  
0.6   0.616459494098    0. 616459494074   2.3262 1110−×         4.2 0710−×  
0.7   0.707395727432    0. 707395727421   1.1310 1110−×         1.8 0610−×  
0.8   0.803323114546    0. 803323114523   2.2616 1110−×         2.3 0610−×  
0.9   0.901493171616    0. 901493171601   1.5367 1110−×         3.8 0710−×  
 
5.0 Conclusion. 
From the results of the numerical implementation of the method when adopted to solve initial value problems of first order 
ordinary differential equations, the method proposed in this paper are consistent, convergent and can compete favourably 
with existing methods. 
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