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Abstract

This paper examines the Gamma Distribution as adygf continuous distribution
and also a method of measuring uncertainties thatcars within intervals. It is
prominent to note that uncertainties are bound teaur as long as man lives. The
gamma distribution becomes a vital tool in measurm especially in measurement
that involves scale and intervals and also in chiaxk the rate of uncertainties in all
human Endeavour’s.

1.0 Introduction

The gamma distribution is a topic under the proligbdistribution which form the basis of this reseh work. A
probability distribution is a correspondence whadsigns probabilities to the values of random Wéeifl].

The gamma distribution is a type of continuousritistion it is a very useful model for measuringntiouous data
especially data that are obtained by comparisth avscale of some kind, for example, length, timeight, mass e.t.c. this
occurs when we measure the speed of a car, thersmbalcohol in a person’s blood, the net weigha package of frozen
food, or the amount of tar in cigarette e.t.c. liguhis will be decimal places even if all recodddata are whole numbers,
decimals could occur by greater precision of messent is one of facilitating stories of technology.

The properties of the gamma distribution will bensidered with proofs as they are stated in thedogm, yet this work
will also reveal two special cases of the gammaibigion and finally areas of application will héghlighted.

2.0  The Gamma Distribution
In discussing the gamma distribution, there is neethlk about the gamma function ,is most impdrtast only in
probability theory but in many areas of Mathematidse function is denoted by the symbadl ““ and it is defined ad" (r) =
f:o x"le ¥ dx forr>0 (2.1)
The gamma function is a generalization of thediat to non integral values. The factorial is teit as (!) with n!

defined as the product
(AX2X3Xeuun.n. xn). The gamma function can also biinéd as the value that is approached by the quiotie

2
2(z+1)(2+2).....(z+n) (22)

As n gets larger and larger it is equivalent talgfinition as a type of infinite sum given by inégral (2.1)

With the aid of the gamma function, we can nowddtrce the gamma probability distribution. Gammarithigtion is a
very important model for measuring data within mgds, it can be regarded as a second approximafibis distribution
depends on two parameters, r andf which r andx are positive.

Let x be a continuous random variable assuming onlynegative valuesy is said to have the gamma distribution with
parameters r and if x has probability density function (pdf) given by

o) = {W(M)r—le—m] x>0 P

0, otherwise
Just as the other distributions have mean andnegiao does the gamma distribution. The mean &ngdy”/,, while
variance is’”/al2 .
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2.1 Properties of Gamma Distribution
The properties of the gamma distribution are statetleorem forms [3]
Theorem1:T'(1) =1
Theorem 2 :T'(r+1) =rC' (r), or>o0
Theorem 3: I'(n) =(n— 1)!
Theorem 4: T'(*/,) =T'(n)

2.2 Moment Generating Function For The Gamma Disttbution
The moment generating function for a gamma distidious derived from the moment generating funciiogf) of a
continuous distribution since gamma distribution iype of continuous distribution.

Supposex has a gamma distribution with parameteand r which implies that if assumed only non negative values,
thenx has a gamma pdf given in (2.3).
Then the mgf ok is given as

M @ :% Jy e (ax)" e dx :% Jy xt e @Dy (2.4)
This integral converges provided> t.
_ _u du _ _ _ — du
If we let @-t)=ux "ao & e b du X(a — t)dx, dx s (2.5)
By substituting (2.5) into (2.4) we have
[ «a LT 0o — —
M. w = (;) o Jo u"le ™ du (2.6)
But fooo u"le ¥ du =T'(r)
— a r
Moo= (E) (2.7)

3.0 Special Cases Of The Gamma Distribution
The gamma distribution has too very important aseéful special cases. These are the exponentiaibdisbn with
parameterr and the chi square distribution with n degreesegdom.

3.1 Exponetial Distribution With Parameter a

The exponential distribution is widely used fordém of life of equipments or parts, in fact it Fetstandard distribution
in area of reliability. A continuous random variabd assuming all non negative value is said to haveexponential
distribution with parametatr wherea > 0 if its pdf is given by

f(x) :{ae‘“" x>0 (3.1)
0, otherwise

The gamma distribution has an interesting conneatiith the exponential distribution is regardedaaspecial case of
the gamma distribution. This is obtained form tteamgna distribution by letting r= 1. This will beubtrated from three
cases, the definition, pgf and mgf of the gamméitistion.

Case 1l

From (2.3), if we putr =1, we have
f(x) =oe 3.2)
Case ll

From (2.1), and putting r = 1, we have 3B.

r(1) = [e™ dx

Sincex® andl'(1) = 1, (3.3) becomes

r(1) =1 e *dr (3.4)
Case Il

From the moment of generating function, the mghefexponential distribution is given as
M,» = (i) (3.5)

Comparing (3.5) and (2.6), putting r=1, we have
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M, = (ﬁ) (3.6)
From the above illustrations, it is obvious that #ixponential distribution is obtained from the gsandistribution by
letting r = 1 hence it is a special case of the mandistribution. This special connection betweem gamma and the

exponential distribution is very useful in totahtgh of life after replacing each failed unit bpew unit in life testing. [4]

3.2 Chi - Square Distributions with n - degrees ofFreedom

The chi square distribution has many importantiapfibns in statistical reference hence it is tatad for various values of
the parameter n. The chi square distribution istslined asy2. The probability density function for a chi sggaandom
variable is given as

f(x) :%x%(f— 2) e** (3.7)
This is also a probability density function wher f. The chi square distribution is a special agy vmportant case of the
gamma distribution with n degrees of freedom. tibgained from the gamma distribution by letting %2 and f= n where n
is positive integer. A random variable Z havingdd given by

f(Z) == /zr(n) Z"2-1e72  Z>0 (3.8)

is said to have a chi square distribution with grdes of freedom (df). This special case of gamistailoution can also be
verified in a similar manner to that of the expatenwe shall use the pdf and mgf of the gammaitistion by letting
a=%andr/,.
Case 1 ((using the pdf).
If we leta =Y and r =/, in (2 3), we discovered that the gamma distribut®a generalization of the chi-square
)"/ 1

a1ex = LA
fix) = o, X e n/zr(n/z)x 2-1¢ /2 (3.9)

If x=2, (3.9) will be same as (3.8)
Case Il (using mgf)
From (2.6), lettingr = Y2 and r =/,, (2.6) becomes

Mo =1 —2t) 7 (3.10)
If x =z, we haveM » = (1 — 2t) /2 13)
Therefore the mgf of a random variable with chiagudistribution is given, as it is derived frone timgf of the gamma
distribution.
(3.11) is the mgf of a random varialdevith a chi square with n degrees of freedom. Ftieenabove verification, it is
obvious that the gamma distribution is a genertiineof the chi square distribution, hence it ismportant special case of
the gamma distribution.
The mean and variance of the chi square distributén also be evaluated from its mgf by differstimig. The first
derivative evaluated at t = 0 is the mean whitegbcond derivative evaluated at t = 0 is the madaf the distribution.
We now differentiate (3.10), to have

M o =n() (7241 = n (3.12)
Therefore, mean of chi square distribution = n.
If we take the second derivatives of (3.10), weehav

M’ o = - n(2+n)(1-24 7 (3.13)

att=0

M"x(o) =n (2+n) 18)
But variance

o= Y(x)?*- CMX)) =M . «(M ) =n(n+2) —A=2n (3.15)

Therefore the varianag?,, of the chi square distribution is given &%, = 2n.

4.0  Applications of the Gamma Distribution
The gamma distribution as an important techniquenfeasuring uncertainties has a wide range of eqins which are
useful in life and all ramification of human endear. Some of these applications are highlightefibidsys

4.1 Relationship between the CDF of the Gamma antié Poisson Distribution.
There is an interesting relationship between thrutative density function (cdf) of the gamma distition and the Poisson
distribution. For the purpose of application, cdesithe integral
= [y (e?yT/r)dy (4.1)
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Where r is a positive integer and a >0.
Multiplying (4.1) by r! and integrating by part, viave
M=e%a +r fome‘y y' 1 dy 4.2)
The integral in this expression is exactly of theng form as the original integral with r replacgdibl). Thus if we
continue to integrate by part, we have
M=e%a" +ra *+r(r—1a" 2+ ... + 1] 4.3)
Since r >0,

I = e‘a[1+a+j—?+....+i—j] =Yply=k) (4.4)
Where y has a Poisson distribution with parameter

We now consider the cdf of a random variablghose pdf is given in (2.3)

Since r>0, (2.3) can be written as

f)= 55 (@) e x>0 (4.5)
and consequently the cdf afbecomes
fe)= 1- X >x) =1 =5 (as) e ds (4.6)

Note that s is used because of tha the integrating limit
Putting(as) = u, (4.6) becomes

—1e—u

f(x) = 1.fa°; u;_l)l du >0 4.7)
This integral is precisely of the form considerédee namely I(with a wx) and thus
e~ (ax)k
fG0) = 1- T x>0 (4.8)

Hence the cdf of the gamma distribution may be esged in terms of the tabulated cdf of the Poidésinbution if
only r >0. (4.8) establishes the relationship betwthe cdf of the gamma and the Poisson distribsitio

When we deal with Poisson distribution, we are ®eitiady concerned about the numbers of occurrericgame event
during a fixed time period, and the gamma distion arises when we ask for the distributionhaf time required to
obtained a specific number of occurrences of tteag[5]

Specifically,

Supposer is the number of occurrence of the event A du(thd). Then under suitable conditionshas Poisson
distribution with parametat wherea is the expected number of occurrence of A duringiatime interval.
Let T = time required to observed r occurrence oA have

Hit) = pPT<t)=1-pT >t)=1-px <r) = 1-Yi} ek! (4.9)
Comparing (4.9) with (4.8), it obvious that theseirelationship between the cdf of the gammaibligton and the Poisson
distribution which is established by
re1 e—at(at)k

H(t) =1-212, o , t>0 (4.10)
4.2 Gamma Failure Law

It has earlier been stated that the exponentitiligion is a special case of the gamma distrdutivhich is obtained by
letting r=1 and so the application of the exporatilure law many as well be used as the gamiharédaw [5]

To derive the gamma failure law, we will apply tiedationship that exists between the exponentgtidutions which is
characterized in many ways. For the purpose of idsgarch, we will assumed that the failure rat¢hefexponential is
constant which implies that(Z) = «. An immediate consequence of this assumptionatedtin one of the theorem of
reliability which states that “if T, the time toiliare is a continuous random variable with pdfd énf(0) = O where f is the
cdf of T, then f may be expressed in terms of &flare rate Z. [5]

f(&) = 2()e™ [5Z(s) ds (4.12)
From the above, the pdf associated with the tinfaitare T is given by
f@®) = ae " >0 12)

The assumption of constant failure rate may berjmeted to mean that after the item has been itsgarobability of
failing has not changed. This also means that tisane “wearing” out effect when the exponentialdabis stipulated.

For many types of components, the assumption lgaidirthe exponential failure law is not only iniuitly appealing
but, it is in fact coned by empirical evidence. Fmtance, it is quite reasonable to suppose thdtse is “as good as new”
while it is still functioning i.e. if the fuse hamt melted it is in practically new condition.

From the above discussion of the exponential failaw, we now examine its connection with a Poigamtess so as to
derived the gamma failure law.
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Suppose that failure occurs because of the appssm@dncertain ‘random’ disturbance. These may hesed by either
external forces such as sudden gusts of wind @seaim voltage or by mechanical malfunctioning.t ke be equal to the
number of such disturbance occurring during a tinterval of length t, and suppose thatonstitute a Poisson process
where t >0. That is for any fixed t the random varialsléas a Poisson distribution with parameter

Suppose that failure during (0, t) is caused if anly if (iff) at least one of such disturbance o

Let T be the time to failure which we shall assumbe a continuous random variable. Then

f@&) =p(T<t)=1-p(T>1) (4.13)
T > tiff no disturbance occurs during [0, t],thiappen iff x, = 0.
Hence ft) = 1-pg=0) = 1% (4.14)

is the cdf of an exponential failure law. Thussitclear that the above cause of failure implieegponential failure law.
This may also be generalized as
Suppose again that disturbances appear accomliadPbisson process. In this case we shall asswemhdailure occur
whenever r or more disturbancex(r1) occur during an interval of length t. Therefdr€ is time to failure, we have as stated
in (4.13). In this case % tif (r-1) or fewer disturbances occur. Therefore
f6) =1-x8 <= (4.15)

k!

fO=1-5425 S =[5 (as)y e ds (4.16)
(4.16) represent the cdf of a gamma distribution.
Thus the above caused of exponential failure lasisdeo the conclusion that the time to failuredia a gamma failure law.
4.3 Application of The Chi-Square Distribution
Since the chi-square distribution is a special cdidske gamma distribution with n degrees of freadubtained by letting a
= Yandr :n/z, its applications may as well be regarded as tbbtfee gamma distribution. [6]
4.3.1 Test of Goodness of Fit
In testing the goodness of fit, we make use oftthiesquare distribution. In this case, the chi-aqudistribution is denoted

by

¥ = (O—E E)* (4.17)
Where
x2 = test statistics
O = observed frequency and
E = expected frequency
This test usually involves two types of hypothesis
H, = null hypothesis
H, = alternative hypothesis
If the computed value gf? is lesser than the table value, we acégpand reject,. On the other hand, if computed
value y2 is greater than the table value we refégtand acceptH,. Test of goodness of fit helps to determine whethe
sample data are in conformity with the hypothesidedribution. In other words, it determines theseliness between the
observed number (frequency) and the number thatvodd expect from the hypothesized distribution.
For the purpose of indicating the procedure, latarssider the following examples.
Example 4.1
It is believed that the proportion of people withBy O and AB blood types in a population are resipely 0.4, 0.2, 0.3
and 0.1. When 400 randomly picked people were exadhithe observed numbers of each were 148, 96 ahdcs0
At 5% level of significance, we test the hypothdbe this data bear out the stated belief.
Solution:
Let P, = probability that a person has type A blood.
Py = probability that a person has type B blood.
P, = probability that a person has type O blood.
P,z = probability that a person has type AB blood.
ThenH,: P,=0.4,P =0.2,P, =0.3,P45 =0.1
The above information is displayed in table 4.1
Table 4.1:blood type and observed frequency

Blood type Observed frequency (O)
A 148

B 96

0] 106

AB 50

TOTAL 400
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We now compute the expected frequency using E= np.

Table 4.2: observed and expected frequencies oflldlype and computation gf value.

J of NAMP

Blood type 0 E o-E (0-B) (O—I'EE)z
A 148 160 1 142 0.90
B 9% 80 16 256 3.20
o 106 120 14 196 1.63
AB 50 20 10 100 2.50
TOTAL 400 400 0 696 8.23

At 5%, a = 0.05,5%3 905 = 7.815
Since the computed value is larger than the tahligey we reject,. Thus, there is strong evidence that the abovefbel
regarding the distribution of blood is not correct?

4.3.2  Tests of Homogeneity

This has to do with the comparison between propostiof a characteristic in more than two populatidfor instance
one may compare or rather consider three statgf\ea& York, California and Indiana, and wanteddettwhether, in this
three states, the proportion of republicans aresttme. In short, the most important thing is td vésether all these states
are homogeneous with respect to the affiliatiothefr residents. Once again the measure of degafitoim homogeneity is
provided by a test statistj¢ whose value for any sample is given by (4.17).

The computational procedure for the test of homedgrs the same as for the test of independendeablas although
the conclusion to be drawn are of a slightly défar nature. For the purpose of application, letsater the following
example.

Example 4.2

In order to investigate whether the distributiortted blood types in Europe is the same as in titedistate information
was collected on 200 randomly picked people in oparand 300 people in the united states, from #te summarized in
table 4.3 below, is it true that the distributidirbtood types in Europe and the united states igréficantly different? At 5%
of significant level, we test the hypothesis thnm dlistribution of blood types in Europe is the sam in the United States.

Table 4.30bserved frequencies of the distribution of bltyygkes in Europe and the United States.

Blood Type Europe United States Total.
A 95 125 220
B 50 70 120
o] 45 90 135
AB 10 15 25
Total 200 300 500
Solution
Following similarly from section 4.3.1
H,: The distribution of blood types in Europe is Hzeme as in the united state.
H,: The distribution of blood types differ in Europrd in the united state.
Table 4.4: The Expected frequencies And The Computation OfXValue.
Location Blood Type 0 E (O-E) ©o-B (O - EYIE
Europe A 95 88 7 49 0.55
B 50 48 2 4 0.08
®) 45 54 -9 81 1.50
AB 10 10 0 0 0
A 125 132 -7 49 0.37
United State B 70 72 -2 4 0.06
®) 90 81 9 81 1.00
AB 15 15 0 0 0
Total 500 500 0 268 3.56

The chi-square distinction has (4-1) (2-1) = 3dB%t, a = 0.05,¥%305=7.81.
Since the computed value 3.56 < 7.81, we acHg@nd rejecH,. Therefore there is no reason to believe thatisinction
of blood types in Europe is different from the dmttion in the United State.
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4.4 Gamma Fitting
In gamma fitting, we apply the procedure of fittiagy theoretical distribution. Suppose we havesaitlution and we want
to fit the distribution by a gamma curve, the fallog are the necessary procedures: -

0] Evaluate the mean and variance of the distribution.

(i) Estimate the parameters associated with gammabdistm i.e.a and r using point estimate by moment.

(iii) Recall the mean and variance of the gamma disinibaind equate it with the mean and variance earlie
obtained from the distribution i.e. E(x) % and o, = % (4.18)

(iv) Solve the above equations simultaneously to getegabf r ands respectively.

(v) Fix these values into the pdf of the gamma distidtsuto get the probability of occurrence of eablservation.

(vi) To test whether the fix is good enough for theriistion or not, we apply test of goodness of §iilng the test
statisticsy? (Chi — square) distribution.

(vii) If the computed value gf” < table value, then the fit is good enough byf’if> table value the fit is not good
enough. Practically, if given any theoretical digition, one can fit the distribution by the gamauave. An
example will help to illustrate this.

Example 4.3

Of the cars observed on a free way, 160 were GMfd@0) 80 Chrysler, 25 American and 135 foreign amtp, if the
expected frequencies of the observed cars areiratio of 30 : 15 : 10 : 5 : 20 respectivelytfi¢ distribution by a gamma
curve at 5% level of significance.

Solution
E(X) — 160+100+80+25+135 100
O'xz. :(160) +(100)+(80)+ (25)*+(135) = 12170

5
Now we estimate the parameter associated with gadistrébution using point estimate by moment. Letake two
assumptions

W =W andy, = o +p2 (4.19)
Now x the distribution has a pdf given in (2.3). Alsgbjing (2.6), the cumulate function.

k.o =InM_ o =rloga - rlog(a —t) @2
On differentiating (4.20) with respect to t, ancélkesating at t=0 we have

Koo == ==y (4.21)
Similarly, second derivative gives

" _ T _r
kx(t) —m —; (4.22)
-r _ 2 i V2 —

From (4.19)u == =100 ando? + p2 == + (;) = 12170 @.2

This imply that « =0.04 and r = 4 are the two parameters assoartedgamma distribution
Substitutinge and r into the pdf of the gamma distribution giver2.3) we have
Pdf = f() =/ 224 (0.04x)e ~***dx (4.24)

@
Obtaining the probability of each observation fridva pdf of the gamma distribution directly is cumdmeme and so we
obtained the probability from the ratio of the esieel frequencies since they are given in the questi

Let R, IT, =P (4.25)
Where R, = ratio of expected frequency,
T, = Total ratio and

P = Probabilit
Table 4.50bserved ar)lld Expected frequencies, probabilitythedomputational value gf of the cars
Probability 0 E O-E (O -EY (O -EYIE
GM 0.375 160 187.5 -27.5 756.25 4.033
Ford 0.1875 100 93.75 6.25 39.06 0.416
Chrylser 0.125 80 62.5 17.5 306.25 4.9
America 0.0625 25 31.25 -6.25 39.625 1,268
Foreign Import 0.25 135 125 10 100 0.8
Total 500 500 11.417

df = n — k where k is the number of parametersredtd. The chi — square distribution has 5-2 = Silfce we estimated 2
parameters and r at 5% = 0.05
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2 —
X3005 = 7.81
Since the computed value pf = 11.42 > table value 7.82, we concluded thafithe not satisfactory. Therefore the above
distribution could be any other such as normalpfiial or Poisson.

51 Summary and Conclusion

We have examined the Gamma distribution as a typeootinuous distribution and also as a method ehsuring
uncertainties that occur within intervals,. Thisrlwvalso reveals two special cases of the Gammeliditibn; the exponential
distribution with parameterr which is widely used for length of life of equipmnt or parts and the chi-square distribution
with n degrees of freedom.

The chi - square distribution is a very importaase of the Gamma distribution which is obtainedettyng a= 3 and

f = n. The Gamma distribution being an importard aacond approximation to data have a wide rahggmlications,
and some of the areas of applications were higtdiyin this paper.

It is glaring from the above that the use of then@® distribution cannot be over emphasized. Is&ful in all areas of
human endeavors’, hence the knowledge is of grepoitance. Managers need it for decision makinpelps students to
measureskewers of a distribution accurately, business men needadasure uncertainties in their business life @apg in
payment of salaries and even in recruitment.
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