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Abstract

In thisresearch work, we provide a differential transform solution of the convective
heat transfer over vertical plate with exponential heat generation. The coupled partial
differential equations are transformed into nonlinear system of ordinary differential
equation using similarity transform. This nonlinear system is solved using the
differential transform method. The values of the skin friction for various thermo
physical parameters are also computed and compared with that obtained from the
Runge Kutta shooting method, the results obtained shows a good agreement between the
two methods.
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1.0 Introduction

Many problems in applied mathematics, theoretidatsics and engineering are often nonlinear ordir@rypartial
differential equations. Most of which are diffictit solve and defy analytical solutions. In recgrdrs, differential transform
method which was first introduced by Zhou[1] in 8% solve initial value problems arising in eléctircuit analysis has
been used to solve several forms of linear andimeanl differential equations. The differential tséarm method is used to
construct analytic solutions in the form of Taykaries polynomial, unlike the traditional higheder Taylor method, the
differential transform method reduces the the sizthe computational algorithm and can easily bglieg to a wide range of
linear and nonlinear differential equations. Selvaggplications of the differential transform methtw convective heat
transfer include the work of Rashidi et'al[2] whppdied the multi-step differential transform methtodthe flow of second
grade fluid over a stretching or shrinking sheslarh et’al[3] solve the axisymmetrical squeezingdiflow between two
parallel infinite plates in a porous channel, Rdskind Keimanesh[4] presented a differential tramsf method —Pade
approximant to the MHD flow in laminar Liquid filfnom a horizontal strctching surface and the papé&teker et'al[5] who
also solved the Blasius equation using a combiiféerential transform method-Pade approximant.

Several results have been published on heat &natisbugh porous surfaces and channels due ifisrtance in many
geophysical, scientific and industrial applicatioBgamples of such studies includes the work dfailg and Pop[6], Cheng
and Minkowycz[7] who studied the steady free comieecabout a vertical plate embedded in a poroudianasing the
boundary layer assumptions and Darcy model bysitmdarity method. Islam etal[3] studied the axisyetrical squeezing
fluid flow between the two infinite parallel platesa porous medium channel using the differentedsform method. Ali[8]
studied the effect of lateral mass flux on the ratoonvection boundary layers induced by a heagstical plate embedded
in a saturated porous medium with internal heaegaion using the fourth order Runge kutta techesq

Also Okedayo etal[9] carried out an analysis otwiss dissipation effect on the mixed convection MHBw towards a
stagnation point with convective Boundary conditiora porous media using the similarity transfolioratogether with the
Runge-Kutta shooting method. In this paper we apipdydifferential transform method to obtain a samalytic result for
heat transfer over a vertical plate embedded i@ys medium with exponential internal heat gem@natThe results
obtained for the skin friction coefficient are coamed with numerical result.

The advantage of the method is that it reduces otatipnal complexities and is easy to implementaocomputer
program.
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2.0 Mathematical formulations

Consider the laminar two-dimensional flow of a wiss incompressible fluid over a vertical plate eddss in a
homogeneous porous media. The basic governing laoytalyer equations using the Darcy and Boussia@pgoximations
are Ali [3]

continuity

40 ®

=L @

2
uaT VaT_aa12'+i &)
0X oy dy- pC
Subject to the following boundary conditions

v(x,0) =V (x), T(x,0) =T, (X)
u(x,0) =0, T(X,0)=T,_

4)

The u and v are the velocity components in x airgctions respectively, T is the temperatures the acceleration
due to gravity$ is the thermal expansion coefficient,is the thermal diffusivity,) is the kinematic viscosity, ang, is the

internal heat rateT,, =T, + AX™ is wall surface temperaturd,, is the free stream temperature, whilg, and U, are

the surface and free stream velocity respectivelglectrical conductivityp is the density of the fluid, k is the permeaiilit
of the porous media and (x, y) are the Cartestamdinates along the surface normal to it.

In order to reduce the set of equations (1)-(43 &ystem of ordinary differential equations weadtice the following
dimensionless variables.

1 1
n=Ra2f(7), u="Raf'(7), ¢ =aRa2f (7).T =T, + AX"6() ©)
X
- - 1
o) ==, =" =) Raen v =T Ralf(m+3 f +(m-1t
Ty =T, X 2X
Substituting the above into the governing equatidjs (4) we have
fr=4' (6)
6?"+mT+1f6?’—mf'6?+e"7:0 7)
subject to
g0)=1 fO)="*,, f'(o0)=0 (8)
Applying (6) in (7)-(8) we have
fm+m+1ffn_mf12+e—/7:O (9)
subject to
f'(0)=1, f@©)=f,, f'(v)=0 (10)

3.0  The Differential Transform Method
If f(x) is a given function, it can be expandediiiaylor series form about a pointas
Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013)51 — 56

52



Differential Transform Method for...

F(x) = Z(X leo)

“d"f
=

XK

K
If f(K)is defined asi(d f j‘xz then
KI{ d .

Okedayo, Ogunmoyela and Amumeji
()

12

J of NAMP

F9 = F(R)(x=%)"

Table 1: differential transform of functions

Function Transformed function

f(X) =u(x) £ v(x) f (k) = u(k) £ v(k)

f (X) = au(x) f (k) = au(k)

(9= 09 = 4D u+n)

f (X )_du_ix) dl;ix) f(k):rZ:;(k—r+1)(r +Du(r +Yu(k —r +1
f(x):u(x)gTzlzJ f (k) :i(k—r +2)(k=r +Du(r)u(k —r +
f (X) = exp(@x) (i) = art

Differential Transform Method of our problem
Recall equation (9) and (10)
m m + 1 " ' -
f"+—=ff"-mf'?+e” =0
2
subject to

f'0)=1, f(0)=f,, f'(®)=0

The differential transform is given by

(k;3) F(k+3)+ Z(k—r+1)(k—r+2)F(r)F(k—r+2)
—mZ(r+1)( —r +2)F(r +1)F(k—r+1)+(_k1!)k =0 a3
F(U)=1 F(0)= FW,Zk( ) F(k)=0F@=a 14
Where a:&
2
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4.0 Results and Discussion
The nonlinear equation (13) and (14) were solvedgua computer program written in maple. We hawefitst seven

terms for R, = —1/2 as follows because of space
160659
FO)=-1/2FQ=1 FQ =—~1—
© R TVT:
()_@+E+mi F @) = m’a LLsma m’ fa 1
12 12 6 6 192 96 96 192 32

ma 43m2 +m3 19ma _ 29m 17m +ma2 23a 1 a2
3840 1920 1920 3840 1920 1920 20 3840 640 60

F®) =

m'a  13wa  m'  127m’a_m®  13n’° 1lm'a® 37ma__m
92160 23040 46080 9216 1280 23040 1440 1536 23040
,ma’ 7% 1 & |

240 10240 9216 288

F(6) =

£"(0

In order to determine the value ef# we substitute the first 12 terms Of the series thie boundary condition at

infinity, the resulting expression is then evaldfier a at various values of m.

For
160659 283409

m=-1/3 wehave F(0)=-1/2,F(1) =1 F(2) = 2951446 FQ) = ~[areoai

@ = 160657 F ) = 4559236179 F ) = 20776255629 F(7)=- 279465965037
7951448 780561648860’ 936679776320’ 168601315957760

F@) = 12737926780316643 F@)= 429074505%793444249 |
308954466812316723Q 500499723505195309%840

F 0 = 8807208768279995371 FaD=- 140054787852825729972737
42899976383302455007200 9264901963599423368390589440

Fa2)=- 9097783568132031908639

2830006418546732956053852774

The computed values o#f—' for various values of the exponent m and suctiarameterl,, are tabulated in

Table.2. Since exact solutions are not availabliténature, we compare our results with numera@ution obtained from
the Runge Kutta shooting method.

"0
Table 2: Computed Values of#
= M Runge-Kutta Differential Transform method
-1/2 -1/3 0.135445399 0.1506156239
5 1/3 -1.543331892 -1.534125716
-1/2 -1 Not converging 0.5470885884
Yo 1 -0.4226027161 -0.4225141461
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4.1 Results and Discussion
Table.2 shows a numerical comparison of the diffeéaé transform method with the classical fourtider Runge-Kutta

shooting method. Various values of the skin frigticoefficient were computed for different suctioargmeter and the
exponent m. It observed that the two values arsetyorelated, it is also observed that the difféegriransform method

converges for all values tested while the Runga&shooting methods does not. In Fig.1-4 the dimoaless velocity

profile for various values of the suction paramételso depicted. It is discovered that the pedfillows the usual boundary
layer profile, which shows that the differentiahnsform method is an efficient method of solving ttoundary layer
equations
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Fig 3 Dimensionless velocity profile Fig4: Dimensiotiless velocity profile
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5.0 Conclusion

In this paper, we applied the differential transfamethod to solve the boundary layer heat trarmfer a vertical plate
with internal heat generation, The results obtaibgdhe application of differential transform methis very reliable. The
method is simple and easy to implement. It requiresrestrictions of large and small parametersavibids massive
computational complexity encountered in other nucaétechniques such linearization, discretization perturbation.
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