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                       Abstract 

 
In this research work, we provide a differential transform solution of the convective 

heat transfer over vertical plate with exponential heat generation. The coupled partial 
differential equations are transformed into nonlinear system of ordinary differential 
equation using similarity transform. This nonlinear system is solved using the 
differential transform method. The values of the skin friction for various thermo 
physical parameters are also computed and compared with that obtained from the 
Runge Kutta shooting method, the results obtained shows a good agreement between the 
two methods. 
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1.0    Introduction 

Many problems in applied mathematics, theoretical physics and engineering are often nonlinear ordinary or partial 
differential equations. Most of which are difficult to solve and defy analytical solutions. In recent years, differential transform 
method which was first introduced by Zhou[1] in 1986 to solve initial value problems arising in electric circuit analysis has 
been used to solve several forms of linear and nonlinear differential equations. The differential transform method is used to 
construct analytic solutions in the form of Taylor series polynomial, unlike the traditional higher order Taylor method, the 
differential transform method reduces the the size of the computational algorithm and can easily be applied to a wide range of 
linear and nonlinear differential equations. Several applications of the differential transform method to convective heat 
transfer include the work of Rashidi et’al[2] who applied the multi-step differential transform method to the flow of second 
grade fluid over a stretching or shrinking sheet, Islam et’al[3] solve the axisymmetrical squeezing fluid flow between two 
parallel infinite plates in a porous channel, Rashidi and Keimanesh[4] presented a differential transform method –Pade 
approximant to the MHD flow in laminar Liquid film from a horizontal strctching surface and the paper of Peker et’al[5] who 
also solved the Blasius equation using a combined differential transform method-Pade approximant. 

 Several results have been published on heat transfer through porous surfaces and channels due to its importance in many 
geophysical, scientific and industrial applications. Examples of such studies includes the work of  Igham and Pop[6], Cheng 
and Minkowycz[7] who studied the steady free convection about a vertical plate embedded in a porous media using the 
boundary layer assumptions and  Darcy model by the similarity method. Islam etal[3] studied the axisymmetrical squeezing 
fluid flow between the two infinite parallel plates in a porous medium channel using the differential transform method. Ali[8] 
studied the effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded 
in a saturated porous medium with internal heat generation  using the fourth order Runge kutta techniques. 

Also Okedayo etal[9] carried out an analysis of viscous dissipation effect on the mixed convection MHD Flow towards a 
stagnation point with convective Boundary condition in a porous media using the similarity transformation together with the 
Runge-Kutta shooting method. In this paper we apply the differential transform method to obtain a semi analytic result for 
heat transfer over a vertical plate embedded in a porous medium with exponential internal heat generation. The results 
obtained for the skin friction coefficient are compared with numerical result. 

The advantage of the method is that it reduces computational complexities and is easy to implement on a computer 
program. 
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2.0 Mathematical formulations 
Consider the laminar two-dimensional flow of a viscous incompressible fluid over a vertical plate embedded in a 

homogeneous porous media. The basic governing boundary layer equations using the Darcy and Boussinesq approximations 
are Ali [3]  
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Subject to the following boundary conditions 
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The u and v  are the velocity components in x and y directions  respectively, T is the temperature,  g is the acceleration 

due to gravity, β is the thermal expansion coefficient,  α is the thermal diffusivity, γ  is the kinematic viscosity, and rq  is the  

internal heat rate, mAxTT += ∞ω  is  wall surface temperature, ∞T  is the free stream temperature, while, wu and eu are 

the surface and free stream velocity respectively , σ electrical conductivity, ρ is the density of  the fluid, k is the permeability 
of the porous media  and (x, y) are the Cartesian coordinates along the surface  normal to it. 

In order to reduce the set of equations (1)-(4) to a system of ordinary  differential equations we introduce the following 
dimensionless variables. 
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Substituting the above into the governing equations (1) - (4) we have  
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Applying (6) in (7)-(8) we have 
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3.0 The Differential Transform Method 

If f(x) is a given function, it can be expanded in a Taylor series form about a point x0 as 
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Table 1: differential transform of functions 
Function Transformed function 
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Differential Transform Method of our problem 
 
Recall equation (9) and (10) 
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The differential transform is  given by 
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4.0 Results and Discussion 
The nonlinear equation (13) and (14) were solved using a computer program written in maple. We have the first seven 

terms for 2/1−=WF   as follows because of space 
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In order to determine the value of 
!2

)0(f ′′
 we substitute the first 12 terms 0f the series into the boundary condition at 

infinity, the resulting expression is then evaluated for a at various values of m. 
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The computed values of 
!2

)0(f ′′
  for various values of the exponent m and suction parameter WF  are tabulated in 

Table.2. Since exact solutions are not available in literature, we compare our results with numerical solution obtained from 
the Runge Kutta shooting method. 

Table 2: Computed Values of 
!2

)0(f ′′
 

WF  M Runge-Kutta Differential Transform method 

-1/2 -1/3 0.135445399 0.1506156239 
5 1/3 -1.543331892 -1.534125716 
-1/2 -1 Not converging 0.5470885884 
½ 1 -0.4226027161 -0.4225141461 
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4.1 Results and Discussion 
Table.2 shows a numerical comparison of the differential transform method with the classical fourth order Runge-Kutta 

shooting method. Various values of the skin friction coefficient were computed for different suction parameter and the 
exponent m. It observed that the two values are closely related, it is also observed that the differential transform method 
converges for all values tested while the Runge-Kutta shooting methods does not. In Fig.1-4 the dimensionless velocity 
profile for various values of the suction parameter is also depicted. It is discovered that the profile follows the usual boundary 
layer profile, which shows that the differential transform method is an efficient method of solving the boundary layer 
equations. 
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5.0 Conclusion 
In this paper, we applied the differential transform method to solve the boundary layer  heat transfer over a vertical plate 

with internal heat generation, The results obtained by the application of differential transform method is very reliable. The  
method is simple and easy to implement. It requires no restrictions of large and small parameters. It avoids massive 
computational complexity encountered in other numerical techniques such linearization, discretization and perturbation. 
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