Journal of the Nigerian Association of Mathematical Physics
Volume 24 (July, 2013), pp 41 — 44
© J. of NAMP

Analysis of FTFS Computational Scheme for the Solution of
First Order Partial Differential Equations

Odio Augustine Onyejiuwa

Department of Mathematics
University of Nigeria, Nsukka

Abstract

We consider a one dimensional first order partial differential equation.

The Equation arises as a simplification of the general transport equation of fluid
flow in boundary layer problem. The equation is obtained by setting the source and
diffusion term to zero. We apply the FTFS or forward in time and forward in space
scheme for the first order partial differential equation. The scheme is expanded by the
Taylor series method and truncated to the first two terms. The discretized equation
satisfied the numerical properties such as consistency, stability and convergence. The
bane of this work is based on the theorem of Lax. Numerical solution gotten here are
expected to converge weakly due to truncation error. Here there exists light perturbation
of solution unlike solution of second order partial differential equation.
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1.0 Introduction

We consider the forward in time and forward in $p@€TFS) scheme given as

u™ =u’ - Bu" -uil,) 1)
Wherep is any constant for the one dimensional wave égpuat
ou du
—+Cc—
ot oX
where, at
t=0 u(x,0)-f(x), xx<1
as

x =0, u(0,t) = g(x), £ 0 (2

6_ is a differential operator in u, which containdyopartial derivatives with respect to the spacerdmate x, X, X3, ..., X
X

and time variables. Equation (2) is a simplificatif the general transport equation and is obtainegutting the diffusion
and the source term to zero in the boundary layerisiem [1]

In general, the unknown u(x,t) = w(...Xp, t) may be either a scalar or vector function. Bbution of (2) is
required in an arbitrary regidnx [0, T] with suitable boundary conditia?ilx[0,T] whereld is normally a closed region in

X1, X, ... X, Spacedl] is the boundary dil, and [0, T] is the time interval [2]. Thﬂin in equation [1] refers to u(x,t) = u,

cAt
nAt), that is value of the variable u at the $pace location, "his the time step anfl = A—,WhereAX andAt are the

increment in space and time, c is the speed of &vé&cheme (1) is explicitly in time and allow rohing forward in time
from given initial conditions [4].
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A formal analysis procedure has been developeleal with the important question on how acteusanumerical solution
is compared to the exact solution of the differ@rgiquation. These analysis has been enacted ethiealence theorem of

Lax.
(Equivalence theorem of Lax [6]):For a well posed linear, initial, value problentiwa consistent discretization stability is
the necessary and sufficient condition for convecgeof the numerical scheme. The three propertiestion must be

studied to satisfy Lax theorem.

2.0 Main Result

2.1 Consistency
Consistence requires that the discretized, equasbould tend to the original differential equasiavhenAt andAx

tend to zero. Consistency is ensured if the truonagrrors goes to zero A andAx tend to zero. We demonstrate this with
an example. Consider the forward in time and fodwarspace scheme

u'™t = ul = AU - uly) 3)
Using Taylor series expansion [E|] and u 41 can be expanded as follows

as

2
= U7 AR + ()] + @

2 3
U, = U+ Ax(u,)! + 2 W +A—t(u )+, ©)

Substituting these in equation (3) and simplifying, get

2 2
u' +Atu” + (A;) us =u’ =B’ -u' -Axu; —%UQX )
2
= o -+ A+ v+ B0
2
STEIN A TR V)
2

u' +Atu +(A;) =u + Axpuy +(AX) Bu,

LA\ AP
Atu,” + > u, =Axpu; + Bu,,

Atu” = AxBu" +O((At),? (AX)?)

AX o .
whereBE is a constant which is equivalent to ¢

It implies that the FTFS or forward in time andviard in space scheme is consistent. The truncati@r on the
right hand side is of the first order in both tiared space and that it varnishes as the limiit@ndAx tending to zero. Thus
the forward in time and forward in space schemisféed the consistency condition.
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2.2 Stability

A numerical solution method is said to be stablié does not amplify the errors (due to roundirf§ truncation
errors, mistakes etc.) that appear in the courgemfmerical solution. For time-dependent problestahility guarantees that
the method produces a bounded solution if the ezakttion itself is bounded. Thus, a condition &ability can be
formulated by the requirement that any ergdrbetween the computed solution u and the exactisolof the difference

equationUshould remain uniformly bounded 4% — o0 at fixed At. If we define the errog as the difference between the
computed solution and the exact solution of therdiized equation

—n

the stability condition can be written as
<K

limig"

at fixed At @)
n - oo

with K being independent of n. Equation (7) does guarantee that the error does not become unaditggarge
for intermediate values of £ n At and a more general definition of stability reggirthat any component of the initial
solution is not amplified without bounds.

2.3 Convergence

A numerical scheme is said to be convergent ifcthputed solution of the discretized equationsgdondhe exact
solution of the differential equation as the gridldime spacing tend to zero. Formally, this cardéfned as follows. The

computed solution,lin should approach the exact solutiaﬁx,t) of the differential equation at any pointxi Ax and t = n
At whenAx andAt tend to zero while allowing;and f constant. It follows that, the error

£" =u" —u(iAx, nAt) ®)
satisfies the following convergence condition:

lim

At,Ax - 0O

g’ | — Oat fixed x = iAx and t, = nAt. 9)

This tell us that, a solution which does not chasmmificantly with further decrease in the griddatime step
spacing, is the correct solution of the differelntiguation.

Conclusion

In this work, we make the diffusion and source t@fithe transport equation in the boundary layeoblem to be
zero in order to obtain the one dimensional firsten partial differential equation. Furthermore, also show that, the
numerical scheme satisfied the consistency, stykifid convergence properties of the work.
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