Application of Orthogonality of the Trigonometric System to Fourier Series

George N. Emenogu

Department of mathematics
Michael Okpara University of Agriculture Umudike
Abia State,Nigeria.

Abstract

Abstract

The key to the Euler formulas is the orthogonality of the trigonometric system, which is a concept of basic importance. In this paper, we shall be looking at the derivation of these Euler formulas using the orthogonality of the trigonometric system. This concept avoided all those lengthy integral techniques that are usually encountered with series of functions; to produce a short and concise result.

1.0 Introduction

A function $f(x)$ is called a periodic function if $f(x)$ is defined for all real x and if there is some positive number p, called a period of $f(x)$ such that;
$f(x+p)=f(x), \quad$ for all x
Previous works has been carried out on how the various functions $f(x)$ of period 2π can be represented in terms of the simple functions.

$$
\begin{equation*}
1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots \tag{2}
\end{equation*}
$$

All these functions have the period 2π and they constitute the so called trigonometric system.
The series to be obtained will be a trigonometric series given by

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{3}
\end{equation*}
$$

Equation (3) is called the Fourier series of $f(x)$ where the coefficient are called the Fourier coefficients of $f(x)$ given by the Euler formula

$$
\begin{array}{ll}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{dx} \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=1,2, \ldots \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots \tag{4c}
\end{array}
$$

Basic examples

Before we derive the Euler formulas (4), let us become familiar with the application of (3) and (4) in the case of an important example.
Periodic rectangular wave
(i) Find the Fourier coefficient of the periodic function $f(x)$

Where;

$$
f(x)=\left\{\begin{array}{cl}
-k & \text { if }-\pi<x<0 \\
k & \text { if } 0<x<\pi
\end{array}\right.
$$

And $f(x+2 \pi)=f(x)$

Corresponding author: George N. Emenogu, E-mail: gnemenogu@hotmail.com, Tel.: +2348125838312

Solution

From (4a) we obtain $a_{0}=0$. this can also be seen without integration, since the area under the curve of $f(x)$ between $-\pi$ and π is zero.
From (4b)

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}(-k) \cos n x d x+\int_{0}^{\pi} k \cos n x d x\right] \\
=\frac{1}{\pi}\left[-\left.k \frac{\sin n \pi}{n}\right|_{-\pi} ^{0}+\left.k \frac{\sin n x}{n}\right|_{0} ^{\pi}\right]=0
\end{gathered}
$$

Because $\sin n x=0$ at $-\pi, 0$ and π for all $n=1,2, \ldots$
Similarly, from (4c), we obtain

$$
\begin{gathered}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x,=\frac{1}{n}\left[\int_{-\pi}^{0}(-k) \sin n x d x+\int_{0}^{\pi} k \sin n x d x\right] \\
=\frac{1}{\pi}\left[\left.k \frac{\cos n x}{n}\right|_{-\pi} ^{0}+\left.k \frac{\cos n x}{n}\right|_{0} ^{\pi}\right]
\end{gathered}
$$

Since $\cos (-\propto)=\cos \propto$ and $\cos 0=1$, this yields

$$
b_{n}=\frac{k}{n \pi}[\cos 0-\cos (-n \pi)-\cos n \pi+\cos 0]=\frac{2 k}{n \pi}(1-\cos n \pi)
$$

Now, $\cos \pi=-1, \cos 2 \pi=1, \cos 3 \pi=-1$, etc;

$$
\cos n \pi=\left\{\begin{array}{cc}
-1 & \text { for odd } n \\
1 & \text { for even } n
\end{array}\right.
$$

And thus, $1-\cos n \pi= \begin{cases}2 & \text { for odd } n \\ 0 & \text { for even } n\end{cases}$
Hence, the Fourier coefficients b_{n} of our function are;

$$
b_{1}=\frac{4 k}{\pi}, \quad b_{2}=0, \quad b_{3}=\frac{4 k}{3 \pi}, \quad b_{4}=0, \quad b_{5}=\frac{4 k}{5 \pi}
$$

Since the a_{n} are zero, the Fourier's series of $f(x)$ is

$$
\frac{4 k}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\cdots\right)
$$

The partial sums are

$$
S_{1}=\frac{4 k}{\pi} \sin x, S_{2}=\frac{4 k}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x\right), \text { etc }
$$

Furthermore, assuming that $f(x)$ is the sum of the series and setting $x=\frac{\pi}{2}$, we have;

$$
f\left(\frac{\pi}{2}\right)=k=\frac{4 k}{\pi}\left(1-\frac{1}{3}+\frac{1}{5}+\ldots\right)
$$

Thus

$$
1-1 / 3+1 / 5-1 / 7+\ldots=\frac{\pi}{4}
$$

(ii) Find the Fourier series expansion of the periodic function of period 2π.

$$
f(x)=x^{2}, \quad-\pi \leq x \leq \pi
$$

Hence, find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$
Solution

$$
f(x)=x^{2}, \quad-\pi \leq x \leq \pi
$$

This is an even function. $\therefore b_{n}=0$

$$
\begin{gathered}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi}=\frac{2 \pi^{2}}{3} \\
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x \\
=\frac{2}{\pi}\left[x^{2}\left(\frac{\sin n x}{n}\right)-(2 x)\left(\frac{-\cos n x}{n^{2}}\right)+(2)\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
=\frac{2}{\pi}\left[\left(\frac{\pi^{2} \sin n x}{n}\right)+\left(\frac{2 \pi \cos n x}{n^{2}}\right)-\left(\frac{2 \sin n \pi}{n^{3}}\right)\right]=\frac{(-1)^{n}}{n^{2}}
\end{gathered}
$$

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 37 - 40

Fourier series is

$$
\begin{gathered}
f(x)=\frac{a_{0}}{2}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots a_{n} \cos n x+\cdots \\
x^{2}=\frac{\pi^{2}}{3}-4\left[\frac{\cos x}{1^{2}}-\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}-\frac{\cos 4 x}{4^{2}}+\cdots\right]
\end{gathered}
$$

On setting $\quad x=0$, we have

$$
\begin{aligned}
& 0=\frac{\pi^{2}}{3}-4\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots\right] \\
& \text { or } \quad \frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}} \ldots=\frac{\pi^{2}}{12}
\end{aligned}
$$

This is a famous result obtained by leibniz [1] in 1673 from geometric consideration. It illustrates that the values of various series with constant terms can be obtained by evaluating Fourier series at specific points

2.0 Orthogonality Of The Trignometric System

Theorem 1

The trigometric system (2) is orthogonal on the interval $-\pi \leq x \leq \pi$ (hence also on $0 \leq x \leq 2 \pi$ or any other interval of length 2π because of periodicity): that is, the integral of the product of any two functions of (2) over that interval is 0 , so that for any integers n and m.

$$
\begin{array}{ll}
\int_{-\pi}^{\pi} \cos n x \cos m x d x=0 & (n \neq m) \\
\int_{-\pi}^{\pi} \sin n x \sin m x d x=0 & (n \neq m) \\
\int_{-\pi}^{\pi} \sin n x \cos m x d x=0 & (n \neq m) \text { or } n=m \tag{5c}
\end{array}
$$

Proof

This follows simply by transforming the integrands trigonometrically from product into sum [2], [3] in (5a) and (5b).

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos n x \cos m x d x=\frac{1}{2} \int_{-\pi}^{\pi} \cos (n+m) x d x+\frac{1}{2} \int_{-\pi}^{\pi} \cos (n-m) x d x \\
& \int_{-\pi}^{\pi} \sin n x \sin m x d x=\frac{1}{2} \int_{-\pi}^{\pi} \cos (n-m) x d x-\frac{1}{2} \int_{-\pi}^{\pi} \cos (n+m) x d x
\end{aligned}
$$

Since $m \neq n$, the integrals in the right are all 0
Similarly, in (5c) for all integer

$$
\begin{gathered}
\int_{-\pi}^{\pi} \sin n x \cos m x d x=\frac{1}{2} \int_{-\pi}^{\pi} \sin (n+m) x d x+\frac{1}{2} \int_{-\pi}^{\pi} \sin (n-m) x d x \\
=0+0=0
\end{gathered}
$$

3.0 Derivation of the Euler Formulas

$3.1 \quad$ Application of Theorem 1 to the Fourier Series (3)

We prove (4a)
Integrating on both sides of (3) from $-\pi$ to π, we get

$$
\int_{-\pi}^{\pi} f(x) d x=\int_{-\pi}^{\pi}\left[a_{o}+\sum_{n-1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right] d x\right.
$$

We now assume that term wise integration is allowed

$$
=a_{o} \int_{-\pi}^{\pi} d x+\sum_{n-1}^{\infty}\left(a_{n} \int_{-\pi}^{\pi} \cos n x d x+b_{n} \int_{-\pi}^{\pi} \sin n x d x\right)
$$

The first term on the right equals $2 \pi a_{0}$. Integration shows that all the other integrals are 0 . Hence, division by 2π gives (4 a). We prove (4b), multiplying (3) on both sides by $\cos m x$ with any fixed positive integer m and integrating from $-\pi$ to π, we have

$$
\int_{-\pi}^{\pi} f(x) \cos m x d x=\int_{-\pi}^{\pi}\left[a_{o}+\sum_{n-1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right] \cos m x d x\right.
$$

We now integrate term by term. Then on the right we obtain an integral of
$a_{o} \cos m x$, which is 0 ; an integral of $a_{n} \cos n x \cos m x$, which is $a_{m} \pi$ for $n=m$ and 0 for $n \neq m$ by (5a); and an integral of $b_{n} \sin n x \cos m x$, which is 0 for all n and m by (5c). Hence the right side of (7) equals $a_{m} \pi$. division by π gives (4b) (with m instead n).

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 37 - 40

Application of Orthogonality of the Trigonometric... George N. Emenogu J of NAMP

We finally prove (4c); multiply (3) on both sides by $\sin m x$ with any fixed positive integer m and integrating from $-\pi$ to π, we get

$$
\int_{-\pi}^{\pi} f(x) \sin m x d x=\int_{-\pi}^{\pi}\left[a_{o}+\sum_{n-1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right] \sin m x d x\right.
$$

Integrating term by term, we obtain on the right on integral of $a_{o} \sin m x$, which is 0 ; an integral of $a_{n} \cos n x \sin m x$, which is $b_{m} \pi$ if $n=m$ and 0 if $n \neq m$, by ($5 c$). This implies (4c) (with n denoted by m). This completes the proof of the Euler formulas (4) for the Fourier coefficient.

4.0 Conclusion

The derivation of the coefficients of the Fourier series would have been so rigorous and cumbersome, but with the orthogonality of the trignometric system all these were avoided, making the derivation quite simple and straight forward. This is in line with Leibniz result, that the values of various series with constant terms can be obtained by evaluating Fourier series at specific points [4].

References

[1] James W. Brown, Ruel, V. Churchill: Fourier series and Boundary value problems, international students Edition, McGraw-Hill Book Company Inc. (1941)
[2] Lennart Raide, Berfil Wintergreen: Mathematics Handbook for Science and Engineering. Springer-Verlag, Berlin Heidelberg 2004, page 127.
[3] Erwin Kreyszig: Advanced Engineering mathematics Willy international Edition, 2006.
[4] Lokenath Debnath, Dambaru Bhatta: Integral Transforms and their Applications. Chapman and Hall/CRC, 2006.

