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Abstract

One of the difficulties involved in solving partial differential equations by
transform methods is finding a general transform that applies over the entire special
domain. The Wiener-Hopf technique avoids this problem by defining the transforms
over certain regions and uses complex analysis to piece together the complete solution.
An important aspect of this technique is the process of factorization of several
functions into sums, product and quotients of two parts, one part is analytic in some
lower half plane while the other isanalytic in some upper half plane.
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1.0 Introduction

Solutions of boundary value problems by transforathuds has been carried out by many researchetfssipaper, we give

a detailed step on the derivation of the closethfseolution of boundary value problem using the Widdopf technique. We

consider the stress fields in an elastic homogesmtiopic material occupying the region expredsqublar coordinates
(r,0,2z), —0 < z <o,x =71cosf,y = rsiné, —”/2 <6< ”/2 (1.2

with a rigid line in-homogeneity embedded in thetenial in the regiory = 0 and 0 < x < a. The material is subjected to

anti-plane shear loading by a pair of concentrdtels” and Q applied at distancedandh from the origin. The

mathematical model of the problem is a boundarye/gdroblem and it is solved using Mellin transfoamd the Wiener-

Hopf technique.

Under the given special loading condition, the goirg field equations of linear elasticity reducethe following Laplace

equation

Wyp + Wy + = Weg = 0,7 = 0,-T/, <0 <7/, (1.2)
W@,0)=00<r<a 1.3)
The non-vanishing polar stresses are
7] 7]
Op; = %% (r,0)anda,, = ,u% (r,0) (1. 4)

2.0  Basic Equations and their Transformation
The boundary conditions are
™ T
Oz (r,;) =To(r—1), oy, (r, _5) =Qaoa(r—h) (2.1)
Hereo is the Dirac’s delta function.
The asymptotic behaviors of the stresses are

0r);0< 1< Zlasr -0 (2.2)
Opz; 0rz =3 0(r Vasr » « (2.3)
0(r — a) zasr - aandf - © (2.4)
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The continuity conditions are

W, 0t)=wW(@r,07)=0 0<r<a (2.5)
W, 0H)=wW(@,0)=0 r>a (2.6)
095(r,07) = 09,(r,07) =0 r=a 2.7)

Using Mellin transform defined by
W(s,0) = f(;DW(r, Orsldr (2.8)

By transforming equation (1.2) and the boundaryd#@mms in (2.1) we have

f 2w, )rs™ 1dr+f GW)rs= 1dr+f Weers™ldr =0

Integrating by parts and making use of (2.2) an8)(&e obtain

dW

ozt s?W=0 forA—1<Res<0: -T/,<6<"/, (2.9
Transforming the boundary conditions, gives

waW(r, Ors~ldr = anW(r, Ors~ldr + waW(r, rs~ldr (2.10)
The first term on the RHS of (2.10) is zero
Let

r=ar, dr = adt
When

r=a, 7=1and as r » 0,7 > .
Hence

f W(r,0)rs—tdr =f W(ar,0)ar* tadr = as‘laf W (ar,0)t5 dr
0 1 1

So that we have,
W(s,0) = a’V(s)

where
V(s) = [ W(ar,0)r5dr (2.11)
and
! 0
umez—ag(h ) .
f Wy (r,)rs~dr = —f (rrog,)rstdr
o 0 Ko
This gives
dw (s /2) f To(r — Drsdr
and
"’—W s, — 7T/Z) = —f Qo(r — R)rédr = —th (2. 13)
[dW(s 09~ 256,09 =7 [ [o0:r, 0900, 0l "ar
a0 uly
=+ [ 160:0.0=00,,0 0+ L0500, 0"
0 a
1 a
= [ 106:, 0=, 070l
HJg
Let
T = art, dr = adt
When

r=0 17=0 andwhenr—a =1
[d (s,0%) ——(s 0~ )] = ng(ar 01)—ag,(at,07)]a’tSadr

=a’ % a fol [ag,(at, 0%)—0y,(at,07)]c* dr
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We have

|55 (5,01 =55 (5,00)] = Za*a(s) (2.14)
where

a(s) = afol[agz(ar,O+)—ng(ar,0‘)]rsd‘r (2.15)
We have the transformed equation and the boundagitions as

d2w —~

d—:z/+SZW =A0; A=1<Res<0: -T/, <0</, @1

W(s,0) =a’V(s) (2.17)

aw 1,5

20 S,n/z) = ;Tl (218)

aw 1,5

= (s _n/z) = ;Qh (2.19)

aw

aw 1
_ +y = = _ 457}
20 (5,07) 70 (5,07) Pl a(s)
We consider the solution of (2.16) of the form
A;(s)cosBs + B, (s)sins 0<6<7/,

wis,6) = { A3(s)cosfs + By(s)sinfs =/, <6 <0
where
A;(5),B1(s), A;(s)andB,(s)

are to be determined from the boundary conditibltsy using

W(s,0%) = W(s,07) = a*v(s)

We have,

dW  (—sA.(s)sinfs + sB;(s)cosfs 0<6< ”/2

Fr —5A,(s)sins + sBy(s)cosfs =T/, <6 < 0

dw dw

- H_ 2 -) = _

(5,07 = 52 (5,07) = S[B,(5) ~ By(s)]

= %asﬁ(s) (2.20)
But

—sA1(s)sin™ /5 s + sBy(s)cos T /5 s = iTlS; 0<6<7/y (2.21)

sAz(s)sin™/y s + sBy(s)cos™ /s = ith -T/y<6<0 (2.22)
This gives

B, (s) = Tls+usa5ﬁ7(:)sin”/zs

uscos /25 293
B ( ) __ QhS+usa’d(s)sin™/,s (2.23)
2\8) = uscos™/,s
Hence
_ _ |1 +usa®o(s)sin™/,s _ QS +usa’v(s)sin™/,s
S[B () = By(o)] = [Pty [ (2.24)
NS b

1 5o _a T(E) _Q(E) 2usa’v(s)sin™/,s

I‘—a V(S) - u [ COS”/ZS + cos”/zs (225)
Hence

1\° h
B T (E) -Q (E) 2usa’v(s)sin ”/2 s
T + T
cos /2 s cos /2 s

3.0  On the Fundamental Strip
We establish a common strip within which the WieHeipf functions are analytic.
Let the subscript “+” denote a function that islgitia in the right half plan&kes > 1 — 1 and subscript “-“denote a function
that is analytic in the left half plaries < 0.
From (2.2) and (2.14) we see that the half knowrction ii(s) is analytic in the right half plandkes > 1 — 1. Hence we
denote it byii, (s) and from (2.3) and (2.11) it is seen thas) is analytic in the left planBes < 0. We therefore denote it
by 7_(s).
Thus
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o, (s) = T(é)S—Q(%)S " 2usa’v(s)sin™/ys
Uspls) = cos™/,s cos™/,s
[ T 1\5 Q(h\S
oy zussinys | 3ia) ~24la)
u+(s) - cos™/,s U_(S)+ scos™/,s
[ T (1\5 Q(h\®
N _2ussin™/ys | ﬁ(E) _E(E)
u+(s) - cos™/,s 17_(5‘) + scos™/,(s—1)
Consequently, we have
N _ 2ussin™/ps | E(s)
Uy (S) - cos™/,s _17_ (S) + scos”/z(s—l)]
where
T /I\N°  Q /h\®
2ila) ~2(e) =F©
4.0  Solution of the Wiener-Hopf equation

4.1 Decomposition of the functions

Jof NAMP

(3.1)

(3.2)

(3.3)

(3.4)

To achieve the decomposition of the trigonometunitction, we introduce the infinite product theorgh

sings =§s [-q [1 — (i)z]

2n

Therefore

2ussin™/,s  4ussin®T/ys

cos™/,s sinms

Which leads to

4ussin®T/,s  N_(s)

sinms - N4(s)
Substituting into (3.4) we have
~ _N_(9) |~ E(s)
U, (s) = ol ke () + scos"/z(s—l)]

We obtain

N_(s)E(s)
scos™/y(s=1)

. (s)N,(s) = N_(s)D_(s) +

The mixed term in (4.5) is decomposed into sumgittie Mittag-leffler’s theorem [2]
R = M)+ M(S)

s scos™/,(s—1)
From the relationship between gamma function afidife product [3],

s 35 Thica 1 - (%)”
s [15-q [1 B (Zs_n> ]

4pssin® /s s

sinms
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[Mia(a-5)]
N_ = Ll XS 4.7
(s) §—1(1—;) e 4.7)

and

N+ (s) — Hr;—1(1+;28 _ (48)

[MT-a(1+27)]

wherey will be chosen so thaf_(s) andN,(s) have algebraic behavior g —» «©

i =5 M (143) e (4.9)

r(is) =—se® [, (1 + %) en (4.10)
We have

x5
N(s) = el (4.11)
Gl

59 = 16 (())1 . @12

From Mittag-Leffler's theorem
o (D™en-1

sec — (S - 1) = n— lm (413)

we have
T 2N(s)E(s) 1

E(S)N(s)secz(s -1 = Z o fn STEL
where

Eo =21 &uq—2n—2
So that

E(S)N(S)sec—(s -1)= Z( D"IN(S)E(s) = N(§)E(— s‘n)] f

= N(s)E N(=&)E(=&,
— I (e zn (-1 AR (4.14)
_2 _\n N(S)E(S) N(=§2)E(=§n) _ N(S)E(s)

Mo(5) = 25,1 [ s ] (4.15)

and
2 w0 N(=&)E(-&p

M, (s) = 257y (-1 MR (4.19)
We have from the decomposition that

N, ()T, (s) = D_(s)N_(s) + M, (s) + M_(s) (4.17)
Hence by analytic continuation

N,(s)t,(s)—M, (s) =D_(s)N_(s) + M_(s) =C (4.18)
Now

D_(s)N_(s)+M_(s)=C
Considering the behavior of

M_(s); N_(s)andP_(s)ats = 0
We get

N_(s)=0; M_(s) #0
Hence

C =M_(0) (4.19)
We then have

D_(s)N_(s) + M_(s) = M_(0)
This gives

D_(s) = LO-ME) (4.20)

N(s)
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M4 (0)=M4(s)

And 1,(s) = (4.21)
) N4(s)
4.2 TheMellin Transform Formula
We have for
T
0<6< /2
W(S 0) = asfi(S)COS(g—e)S " TISsinds 4.22)
’ cosgs uscosgs '
S . b3
T(—) Sinfs M_(0)-M_(s) Cos[——e]s
zas[ o) 5" +( ) 2_ (4.23)
uscoss N_(s) cos3s
And for”/z < 6 < 0; we have
S T
—~ Q(—) Sinfs M_(0)—M_(s) Cos[—+9]s
— S a 2
W(S' 0) =a [ p.scosgs +( N_(s) ) cosgs (4.24)
The inversion integral gives the displacement sbtahas
W(r,6) = ﬁ [T W (s, 0) r=sds (4.25)
Hencefor0<r<a; 0<6 S%
1 ctio T(é)ssines M_(0)-M_(s) COSE—O]S \S
W(T‘, 9) - mfc—ioo [ y,sCOS%S + ( N_(s) ) cos%s (;) ds (4)26
Andfor 0 <r <aq; —gseso
1 cerin[0(l) sings  mo)-m_(s)) Cos[Z+6]s] 1S
W(T, 6) ~ 2miJe—iw [ p_scos;—ts +( N_(s) ) Cos;—ts (Z) ds (4.27)

For0 > Resand; A —1 < Res <0, 0<)l<%

5.0 The inversion integral

To evaluate the inversion integral (4.26) and (.27

The singularities Otosgs are all simple and are located (2n — 1) for all neN.c is greater than the real part of any of the
singularities. Sinc® < r < qa, by Jordan’s Lemma [4], we have the contour clasethe left half plan®es < 0.

We use the residue theorem [5] to obtain a closed folution of the displacement as

Foro<sr<a0<6<?

W(r,0) = (5.1)
l 1-2n
2 | 1(z) sm-26  mM.(0)-M.(1-20)\ . ry2n-1
#—ﬂ;(—l) (-1 —- +u( ReEm >COS [5—0] (1-2n) (E)

ForOSrSa;—gseso

wr.6) = (5.2)
® (h)l—ZnS. (1 ZTL)B ( ) ( ) s
2 v in(1 - M_(0) — M_(1—2n - -
EZ(—l)n (-1)—2 — + ,u( N_(1—2n) >Cos [E + 9] (1-2n) (E)

6.0  Conclusion

With ingenuity in complex variables, we are abletremsform the problem to a boundary value probdem then use the
Wiener Hopf technique to get the desired solutmthe problem. From here, it is now easy to getstihess field at the in
homogeneity tips and the stress intensity factor.
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