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                       Abstract 

 
This work investigates control and synchronization of chaos of a new uncertain 

hyperchaotic system using the adaptive control method. By Lyapunov stability theory, 
the adaptive control laws and parameters update laws are derived to ensure stable 
chaos control and chaos synchronization of the two new identical hyperchaotic systems 
evolving from different initial conditions. Adaptive synchronization result is 
computationally demonstrated for secure information transmission. The effectiveness 
of all the results are verified by numerical simulations. 

 
 
1.0    Introduction 

Chaotic phenomenon occurs naturally in many physical, biological, engineering and social systems. Chaotic 
phenomenon could be beneficial in some applications, however, it is undesirable in many engineering and other physical 
applications and should therefore be controlled to improve the system performance.  Chaos control is concerned with 
using some designed control input to modify the characteristics of a parameterized nonlinear system so that the system 
becomes stable at a chosen position or track a desired trajectory. The control could be static feedback, dynamics feedback 
or open-loop feedback [1]. 

Chaos synchronization is an important subject both theoretically and practically for applications requiring; oscillation 
out of chaos; machine and building structural stability analysis; chaos generators design and so on. Chaos synchronization 
first describe by Fujisaka and Yamada [2] in 1983, did not received great attention until 1990 [3]. From then on, chaos 
synchronization has been developed extensively due to its various applications [4-7]. During the last decades, many 
techniques for handling chaos synchronization have been developed, such as Pecora  and Carroll method [3], OGY 
method [5], feedback approach [8], adaptive methods [9-13], time-delay-feedback approach [14], active control [15], 
backstepping design technique [16], impulsive control [17] etc.   

Most of the works mentioned so far deal mainly with low dimension chaotic systems with one positive Lyapunov 
exponent. Hyperchaotic systems possessing at least two positive Lyapunov exponents have more complex behaviour and 
abundant dynamics than chaotic systems and are more suitable for engineering applications such as secure 
communication. Hence, how to realize hyperchaotic systems synchronization is interesting and challenging work. 
Fortunately, some existing methods of synchronizing low dimension chaotic systems like adaptive control, active control, 
active backstepping control, sliding mode control methods can be generalized to synchronize hyperchaotic systems [18-
26]. In practical situations, parameters are probably unknown and may change from time to time. Therefore, how to 
effectively synchronize hyperchaotic systems with fully unknown parameters is an important problem for theoretical 
research and practical applications. Among different methods of synchronizing two hyperchaotic systems, adaptive 
control method is an effective one for achieving synchronization of hyperchaotic systems with fully unknown parameters 
[27]. 

Despite the numerous advantages of adaptive synchronization of chaotic systems its application to synchronization of 
hyperchaotic sytems with application to secure communication has not been adequately explored. In this paper, we 
consider adaptive control and synchronization of a new hyperchaotic system with uncertain parameters with application to 
secure communication. The organization of the paper is as follows. Section 2 deals with the system description, section 3 
and 4 deal with adaptive control and adaptive synchronization respectively. Section 5 deals with secure communication 
while section 6 concludes the paper. 
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2.0 Description of the mathematical model. 
     The mathematical model of interest in this paper is the new hyperchaotic system described by the following four-

dimensional continuous-time autonomous hyperchaotic systems: 
                     �� � ��� � �� 	 
 
                    �� � �� � �� 
                    �� � �� 	 ��                                                                          (1) 
                    
� � ��� 	 �
      
Where a, b, c, and d are constant parameters, x, y, z, u are the state variables with the overdots representing 

differentiation with respect to time. The new hyperchaotic system (1) was constructed in [28] from the three-dimensional 
autonomous chaotic system [29]. 

As reported in [28], system (1) exhibits hyperchaotic dynamics with two positive Lyapunov exponents: ��� �
0.3331, ��� � 0.2301  for parameter values � � 10,  � �

� , � � 16 and � � �0.3 with the hyperchaotic attractors 

shown in Fig.1 

 
Fig.1. Phase portraits of hyperchaotic attractors of (1) with � � 10,  � 8

3
, � � 16, ��� � � �0.3 

3.0    Stabilization of the new hyperchaotic system 
3.1 Design of adaptive controllers for stabilization 
In this section, the hyperchaotic dynamics of system (1) is suppressed to an unstable equilibrium �0 in the presence of 
unknown parameters. The adaptive control theory is applied to achieving this goal. Consider the following controlled 
system as follow 
              �� � ��� � �� 	 
 	 �� 
             �� � �� � �� 	 �� 
             �� � �� 	 �� 	 ��                                                                      (2)      

             
� � ��� 	 �
 	 ��  

Where �, , �, and � are unknown parameters, �1, �2, �3, and �� are the controllers to be designed. According to the 
Lyapunov stability theory, we choose the following Lyapunov function 
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 � 1/2��2 	 �2 	 �2 	 
2 	 �"2 	 #2 	 �̃2 	 �%2�                                          (3) 

In which �" � �& � �, # � & � , �̃ � �' � �, and �% � �' � �, �", #, �̃, �% are the estimate values of these unknown 
parameters. 

The time derivative of    along the trajectory of system (2) is 

 � � ��� 	 ��� 	 ��� 	 

� 	 �"�"� 	 ##� 	 �̃�̃� 	 �%�%�                                                   (4) 

Substituting (2) into (4) we have 

 � � ����� � �� 	 
 	 �1� 	 ���� � �� 	 �2�  

       	���� 	 �� 	 �3� 	 
���� 	 �
 	 �4� 

       	�"�"� 	 ##� 	 �̃�̃� 	 �%�%� 

    � ���&�� � �� 	 
 	 �1� 	 ���'� � �� 	 �2� 

        	���&� 	 �� 	 �3� 	 
���� 	 �'
 	 �4� 

        	�"��&� � �� 	 �2� 	 # (&� 	 �2) 	 �̃��'� � ��� 	 �% (�'� � 
2). 
According to the Lyapunov stability theory, the condition  � * 0 can ensure that the controlled system (2) converges to 
the origin asymptotically. To guarantee the time derivation of the Lyapunov function  �  be negative, choose the 
controllers 
+�, � 1, 2, 3, 4� as follows 
                                               �1 � �&�� � �� � 
 � � 

                                                �2 � �� � �'� � � 

                                                �3 � &� � �� � �                                                 (5) 

                                                �4 � �� � �'
 � 
 

And the following parameter estimation update law 

                                                    �&� � �� � �2 � �"   

                                                     &� � ��2 � # 

                                                      �'� � �� � �̃                                            (6) 

                                                      �'� � 
2 � �%                                      

With the choice of (5) and (6), the time derivation of the Lyapunov function becomes 

 � � ��2 � �2 � �2 � 
2 � �"2 � #2 � �̃2 � �%2 * 0 

Since the Lyapunov function   is positive definite and its derivative  �  is negative definite in the neighborhood of the zero 
solution for system (2). Therefore, based on the Lyapunov stability theory, the controlled system (2) can asymptotically 
converge to the unstable equilibrium �0�0,0,0,0� with controllers (5) and parameter estimation update law (6). Fig. 2 
shows the time responses of the four state variables of the controlled system (2). 

3.2 Numerical Results 
 Using the fourth order Runge-Kutta algorithms with initial conditions ��, �, �, 
� � �0.028,0.02,0.03,0.04�,  a time step 
of 0.005 and fixing the parameter values of  �, , �, � as in Fig.1 to ensure hyperchaotic dynamics of the state variables, 
we solve system (2) with the adaptive control law (5) and the parameter estimation update law (6). The results obtained  
show that the state variables move hyperchaotically with time when the controller is switched off, and when the controller 
is switched on at - � 50.  the state variables are controlled to stabilized at the origin, Fig.2 
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Fig. 2: Time responses of state variables ��, �, �, 
� stabilizing at the origin when the control activated at - � 50 

4.0 Adaptive Synchronization of Identical New Hyperchaotic Systems 
In this section, adaptive synchronization between two identical new hyperchaotic systems [28] with unknown parameters 
is achieved based on the Lyapunov stability theory and adaptive control. 
4.1 Design of the adaptive controller 
We assume that there are two new hyperchaotic systems and that the drive system with the subscript 1 is to control the 
response system with subscript 2. The drive and the response systems are: 
                            ��1 � ���1 � �1� 	 
1 

                            ��1 � ��1 � �1�1                                                              (7) 

                            ��1 � ��1 	 �1�1 

                            
� 1 � ��1�1 	 �
1 
and 
                           ��2 � ���2 � �2� 	 
2 	 �1 

                           ��2 � ��2 � �2�2 	 �2                                                     (8) 

                           ��2 � ��2 	 �2�2 	 �3 

                           
2 � ��2�2 	 �
2 	 �4 
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  Where �, , �, � are unknown parameters, which need to be estimated, �1, �2, �3, ��� �4 are the controllers which are to 
be designed such that the two hyperchaotic systems can synchronized with each other. 
   Subtracting drive system (7) from response system (8) yields the following error dynamical system: 

                             0�1 � ��02 � 01� 	 04 	 �1 

                             0�2 � �01 � 0102 � �101 � �103 	 �2 

                             0�3 � �03 	 0102 	 �102 	 �101 	 �3                            (9)     

                             0�4 � �04 � 0203 � �102 � �103 	 �4 

Where  01 � �2 � �1, 02 � �2 � �1, 03 � �2 � �1, 04 � 
2 � 
1  

   Choose the following Lyapunov function 

 � 1/2�012 	 022 	 032 	 042 	 01
2 	 02

2 	 03
2 	 04

2�                                     (10) 

 In which n 

  01 � � � �&,  02 �  � &, 03 � � � �',  04 � � � �'.                                       (11) 

�&, &, �', �' are the estimate values of these unknown parameters �, , �, ��� �, respectively.  

Note that   

 0�1 � ��&� , 0�2 � �&� , 0�3 � ��'�, 0�4 � ��'�                                                             (12) 

The time derivation of the Lyapunov function along the trajectory is      

  � � 010�1 	 020�2 	 030�3 	 040�4 	 010�1 	 020�2 	 030�3 	 040�4                       (13) 

Substituting Eqs.(9), (11) and (12) into Eq.(13), we have   

       � � 01��&�02 � 01� 	 04 	 �1�  	02��'01 � 0103 � �101 � �103 	 �2� 

       	03��&03 	 0102 	 �102 	 �101 	 �3� 	04��'04 � 0203 � �102 � �103 	 �4�    

       	01�01�02 � 01� � �&� � 	 02 (�032 � &� ) 	 03�0102 � �'�� 	 04�042 � �'�� 

According to the Lyapunov stability theory, to ensure the error dynamical system converges to the origin asymptotically, 
the condition  � * 0 should be satisfied. So we choose the following controllers: 

                                     �1 � �&�01 � 02� � 04 � 01 

                                     �2 � ��'01 	 0103 	 �101 	 �102 � 02                         (14) 

                                    �3 � &03 � 0102 � �102 � �101 � 03 

                                     �4 � ��'04 	 0203 	 �102 	 �103 � 04 

 And the parameter estimation updates laws 
                                      �&� � 01�02 � 01� 	 01 

                                      &� � �032 	 02 

                                      �'� � 0102 	 03                                                     (15) 

                                      �'� � 042 	 04 

Journal of the Nigerian Association of Mathematical Physics Volume 24 (July, 2013), 7 – 16            



12 

 

Adaptive Control and Synchronization of a new …      Adegoke,  Ojo   and  Njah   J of  NAMP 
 
With the choices of  (14) and (15), the time derivation of the Lyapunov function  �  becomes  

 � � �012 � 022 � 032 � 042 � 01
2 � 02

2 � 03
2 � 04

2 * 0 

In the light of the Lyapunov stability theory, the error dynamical system can converge to the origin asymptotically. 
Consequently, the drive system ( 7) is synchronous asymptotically with the response system ( 8)  with the adaptive 
controllers (14) and the parameter estimation update laws (15). 

4.2 Numerical Results 
To verify the effectiveness of the proposed synchronization scheme, we simulate the dynamics of the drive system and the 
response system. In  the simulation, the fourth order Runge-Kutta algorithm is empolyed with time  step of 0.005 and 

fixing the parameter values � � 10,  � 8

3
, � � 16, ��� � � �0.3 to ensure hyperchaotic dynamics of the state variables 

without control, we solved (7) and (8) with the control functions as defined in (14). The initial conditions of the drive 
system and the response are ��1.0, �1.0, �1.0, �1.0���� �1.0,1.0,1.0,1.0�, respectively. The initial condition of the 
parameter update law is �5, 5, 10, 5�.  
The results shows that the error state variables move hyperchaotically with time when the controller is switched off and 
when the controller is switched on at - � 20 5,6 state variables converge to zero, thereby guaranteeing the 

synchronization of systems (7) and (8). The estimated values of the unknown parameters converges to � � 10,  � 8

3
, � �

16, ��� � � �0.3 as - 7 ∞, respectively.  

 

 

 

 
Fig. 3. Error dynamics between the two new hyperchaotic systems with the controller deactivated for 0 * - * 20 and 
activated for - 8 20 
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Fig. 4 Time evolution of the drive system (red colour) and the response system (green colour) 

 

Fig. 5. Time series of the response system parameters 
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5.0 Secure information transmission via adaptive synchronization  
The basic idea of chaos secure communication is based on using chaotic nonlinear oscillator as a broadband signal 
generation. The signal is combined with message to produce unpredictable signal which is transmitted from the 
transmitter to the receiver. At the receiver the pseudo-random is generated through the inverse operation, original 
message is recovered. In order for this scheme to properly work, the receiver must synchronize robustly enough so as to 
admit the small perturbation in the drive signal due to the addition of the message. The power of information signal must 
be lower than that of chaotic signal to effectively bury the information signal. The signal from the master serves two 
purposes: to control the slave system so as to synchronize it with the master and to carry the information signal, just like 
any other communication scheme, the purpose of chaos secure communication is to hide message during transmission.  
The suitability of chaotic systems for application in secure communication is based on the feature of chaotic carriers such 
as: broadband or wide spectrum ( which reduces the fading of the signal and increase the transmission capacity); 
orthogonality (which reduces signal distortion); sensitivity to slight changes in the initial conditions and system parameter 
as well complexity and noise-likeness dynamics which lead to unpredictability, thereby making extraction of hidden 
message difficult [30]. The secret keys are the set of value of the system parameters and since the system parameter are 
real number, the number of possible keys is infinite, thereby, enhancing confidentiality. 

In this chaotic masking scheme, encryption is achieved by mixing by information signal with the chaotic carrier signal 
using mixing algorithm which is simply a function of information and chaotic carrier signals. So far many mixing 
algorithm have been proposed to achieve chaotic masking: some of which are additive masking; multiplicative masking 
etc [28]. Here we demonstrate our secure communication scheme using the additive encryption masking scheme. The 
information signal is chosen to be a periodic function .9 � 5sin2- , with this choice the chaotic carrier �2 remain 
chaotic. The encrypted information is given by the masking algorithm .0 � .9 � 2��.  Consequently, the decrypted 
information  :9  is given by the inverse function :9 � .0 	 2��. The chaotic signal  �2 of the master is transmitted to 
the slave via a coupling channel for synchronization between the master and the slave, the information signal  .9 �
5sin2-  is masked in the encrypted signal 09 and transmitted to the receiver. The decrypted information :9 is extracted 
by inverse function. The block diagram for the communication scheme is shown in Fig. 6 while, the numerical simulation 
results for secure information transmission is shown in Fig. 7. 

                  TRANSMITTER                                                                   RECEIVER  

 

 

 

 

 

 

 

Fig. 6: Block diagram of a typical chaotic communication system. 
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Fig.7: (a) original information sm; (b) encrypted signal se; (c) decrypted signal rm; (d) decrypted error er-rm 

 

6.0 Conclusion 
We investigate control and synchronization of chaos of a new uncertain hyperchaotic system using the adaptive control 
method. By Lyapunov stability theory, the adaptive control laws and parameters update laws are derived to ensure stable 
chaos control and chaos synchronization of the two  new identical hyperchaotic systems evolving from different initial 
conditions. Adaptive synchronization result is computational demonstrated for secure information transmission. The 
effectiveness of all the results  are validated by numerical simulations. 
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