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Abstract

Noncommutative L,, spaces technique is applied in the analysis of a quantum
dynamical semigroup with a view of addressing the question of ergodicity of the
extended stochastic  dynamics PX¥ over a von Neumann algebra M involving
operators of the form xy*“.
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1.0 Introduction

The aim of quantum open system theory is to sthdyiriteraction of simple quantum system interactiitQ very large
ones. In general the properties that one is seeki@go exhibit the dissipation of the small systarfavour of the large one,
to identify when this interaction gives rise toedurn to equilibrium or a thermalization of the dinsgstem [1]. There are
two ways of studying these systems namely, the Hamn approach and the Markovian approach. & Narkovian
approach, one gives up the idea of modelizing ¢éisenvoir and concentrates on the effective dynaofitke small system.
This dynamics is supposed to be described by agseop of completely positive maps admitting aegeior of the
Lindblad form [2]. The aim is then to study thg@dic properties of that quantum dynamical systentlassical settings,
ergodic theory deals with the study of invariantasiges and their connections with the large timeabieur of dynamical
systems. Ergodic theory also played an importaletirothe development of the algebraic approactuantum field theory
and quantum statistical mechanics, mainly in cotioes with analysis of symmetries [1]. An atteniptuse the theory of
noncommutative.,, spaces for the construction and analysis of tfigii@ volume dynamics for spin systems on a latticas
initiated by [3]. The extended quantum stochasyicasnics for spin system on a lattice is definasl the thermodynamic

limit of the finite volume evqutionPtX'A” , hence the extended dynamical semigroup o$ylstem can be written a®X
=lim, PtX'A". We are interested in the ergodicity of theeagled time evolutioR .

1.1 Preliminaries:
We will start with some basic relevant definitidnem [4].
Definition: 1
A strongly continuous one parameter semigr@Bp .., on a Hilbert spac§ is a family P, of linear maps satisfying the
following three conditions, P, =1, P, P, = P,,; lim,,, P,u=u, whereu € . A semigroup(P;): ON a von
Neumann algebraM is said to be (i) a contraction semigroup ||B.x| < |lx|| Yx €M ,t =0 ., (i) uniformly
continuous iflim,,||P, — I|| = 0, (iii) strongly continuous of, —semigroup iflim,_||P,x —x|| =0 V x € M.
Definition: 2
A quantum Sub-Markov semigroup, or quantum dynahsesnigroup (g.d.s) on a von Neumann algeldrais a one
parameter family(P,).s, of linear maps ofM into itself satisfying.

a) P(x)=x forallx e M.

b) Each P.(.) is completely positive.

c) P.(P) =P, for all t,& 0.

d P() <Iforallt=0.

e) Foreach € M, the map t — P;(x) is og-weakly continuous oM

f) P, is a normal operator aov for allt > 0, i.e. for every increasing n@t,), inM with lLuba, =a € M, we

have |Lub P, (a,) = P:(a).
g) A quantum dynamical semigroup is called a quantuankdv semigroup if
a. P,(1)=1 forallt=0.
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2.0 The algebraic setting

We are going to work within the framework of nonooutativeL? spaces arising from a von Neumann algebra. A von
Neumann algebra is a *-subalgelivé of B($) which is self-adjoint, containing the identity ogtor| and is closed in the
weak operator topology. The weak operator topplisgnduced by the family of semi norrr{gng',, } defined on M by
Pen(x) = X[(x€ n)|, with x € M,&,n € § . M, denote the positive elements Jf, i.e M, = {x € M:x = 0}. Alinear
positive functionalg on M is called a state if ¢ (1) = 1. The space of ab- weakly continuous linear functionals on a
von Neumann algebras is called the preduayl , , we denote byM, . the positive part of M. More details on von
Neumann algebras will be found in references §},%5.etM be a von Neumann algebra ampch closed positive self adjoint
operator affiliated tov'. Let p be a projection on the Hilbert spagesuch thatpy  yp and yp is a positive bounded
everywhere —defined operator §nwe say thatp is a bounding projection fgr. Now let(p,,) be an increasing sequence of
projections each of which is bounding fprandV;,—, p,, = I, we say that(p,) is a bounding sequence for and yp,, is a
positive bounded everywhere —defined operato$oip6].

Let y, = yp, be considered as a bounded operator with spedbgusw(y;,,). Let C(sp(yn)) be the von Neumann
algebra of all continuous real valued functionsspfly,,) and letB($), be the set of positive operatorsBii$). Applying
functional calculus, we defing? as f, (y,,) for real values ofa. Thus f,(y,) = ¥¢ € B(H). .

For a self-adjoint operatox € M, let M ={%: u.y =%, u€ M,y € B(9),} be the set of strong product of
bounded operators orf, this is a *-algebra when endowed with the openat of product and involution defined as
follows,

(u.yH . y5) = uv.ys, wvEM
(w.y3) = x*.y%, x*eEM

Fory® € B($),, the setM is clearly a *- subalgebra &($) and % is a strong product of bounded operator$Harf
the form y&.x.y%, that is,

ey = Ly .y = (Lx).yd =x.y8 = % € M,
and is also self-adjoint, in the sense that
= (nxyn) = @)y = ya Xy =x"yq =x.yy =%
sincex is assumed to be self-adjoint. Thd$ is a unital weakly closed *- subalgebraBif$) hence a von Neumann
algebra.

Now let Z4,d > 1 be thed -dimensional lattice, whose sites are occupiedpcbly-% particles. One associates with each
point j = (jy, ja, ... jq) € Z¢ a Hilbert space $g;; and with each finite subset c Z* the tensor product space$, =
je(?\b{,-}. The self-adjoint operators at sjte= (jy, j,, ....jq) € Z* are elements of the point algebﬁ{,—}. The von Neumann
algebraMy; is isomorphic to a 2 x 2 matrix algebra M, (C). The algebra of self-adjoint operators localized ffinite
region A c Z¢, defined by M, = je(’?\ﬁ[{,—}, is then the full matrix algeb®(, A (C). Let F be the set of all finite subsets
of Z¢ ordered by inclusion, and let;, A, € F be two disjoint finite regions, that isA; N A, = @. Then$Ha,ua, =
Hr, ®@ H4, »and we write M, 5, = My, ® M,, for the matrix algebra.

M,, is isomorphic to the matrix subalgelbd,, ® I,, of M, 4, Wherel,, denotes the identity ong,, .
Identifying ]\7[,\1 andJ\7[Al ® 14, one concludes that the algekﬁrﬁ,\)/\ef form an increasing family of matrix algebras,

whose unionU,er M, is a normed *-algebra, which is incomplete becaZfsés infinite. Considering the closure with

——lll . .
respect to the norm topology, we have that,.- M, = M, is a quasilocal von Neumann algebra [3] . Wavehthe

following definitions

2.1 Non Commutative L, —Spaces:

We defined L, -spaces over the quasi-local von Neumann alggfya ThelL, —spaces of interest is the Truny—spaces
[7]. The construction is as follows: Let be a faithful normal semifinite track, . The set of positive nonsingular self-
adjoint operators with a finite trace is given bfh € M,: t|h| < »}, we denoted this set iy (M,). Now for % € M,

h € L, (M,) , we have from [8], the representatipron M, defined by (¥) = t(%. k). Thuse(¥) = t(%.h) = t(h.X) =

~1 ~1 ~
T (hE. x. hE). This representation enables one to define fon gdag p < o anorm]||.|[, on M,. For h € L;(M,), we
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P\p
have the norm  [[%]|, = T( > , the setL,(M,) = {9? € My: |IX|l, <o } is a Banach space of pth-power

integrable operators iht, . We set L,(M,) = M, and the preduaM, = L,(M,)
3.0 Ergodicity of Quantum Dynamical Semigroup oV,

In classical setting the dynamical system compgisof a triple namely the phase space measurable space that is a
set equipped with @ field and continuous map index by tirpg and a measune that is the triple X, ¢,, 1) is called ergodic
if for f € L' one has

E,(f(x)) = u(f(x)) for u—almost all x € X, whereE, is the expectation. In this case we also saythaian ergodic
measure forp,. To generalized the classicdl, —spaces technique to the quantum setting, we aesshcommutative
L, —spaces and this is realized by a von Neumann algéle triple(X, ¢, 1) is then replaced with its quantum counterpart
of a dynamical system, namely, the triglgf,, P, w), where M, is a von Neumann algebi! is the finite volume
stochastic dynamics, anad is a faithful normal state. This constitutes aidb&sr a description of infinite quantum system.
The quantum dynamical semigroup defined ¥ = ett* isa positive, unit-preserving map &y, such that the extended
map is L, — symmetric with respect to the inner product indlidey w and contractive with respect to the(M,) norm.
We outline formally these properties as follows ,

(i Py =1

(ii) (P¥%,9) = (X, Py, X,y € Ly(Mo)
(iii) 1PEZNL, 0e0) < IRl » X € Lp(Mo)
(iv) P(PER) = ¢(2) X € M.

When we consider processes like dissipation, timergeor of the dynamical semigrouy® that describes such processes is
the map £X: M, — M,, defined by,

LX (%) = Ex(®) -5 (Ex (1), %,

where the mapEy: My, — M, is defined by Ex(¥) = Try(yx ¥ vx), VYx € M,. Ex is the generalised conditional
expectation of [9] . We give the proof of propesti¢) — (iv) for the quantum dynamical semigroups.
Proof:

0] Using the Taylor expansion of the exponential witenthe dynamics as follows.P¥ (1) = emx(l)
2, X(rX
P¥(1) =1+ t£X(1) +t£(2ﬂ+
since £L¥*(1) = 0, we have all the remaining terms to be zerocken PX (1) = 1

(ii) Now £ ([ dsPX) = P¥ —P§
(PF = PO, ) = (L ([ dsP¥) %,7)
= (%, £* (f, dsP¥ )
= (%, (P = P§)¥) = (PX(R), §) = (X, PX()
(iii) For contractivity of the semi-group, we havenfr [10] the following definition of the tangenti&inctional. If
q € (1,0), then for anyx € Ly (M,), there exists a uniquep,(X) € Lj(M,) with %+ é =1 defined by
rf%@ﬁﬂﬁ) P
¢p(%) = ~, |q—2 )
and ¢,,(0) = 0 for % = 0, with the following properties;

() ||’5c||fq(M0) =(¢,(%), %), X €L;(M,), and (., .) is the duality pairing.
@) oD, ) = N E g0y ) Bp(1%lq) = &5 (D), -
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Now let %, ¥ € L,(M,), suchthaty = P*(%), from (i), we have

190 0 = (8a(), 7)< 0D, 300) 11,000

|| PEY SIS ||¢q(7c)||Lq(Mo) , replacing ¥ with PX(%) and using property (i) we have,
1P (D), 0000 < I8, ) = 1ty 000

||PtX(33)||Lp(M0) < 1% lle, )-

(V) (PX (%)) = (L P¥ () = (PF(D), () =(L, B = ¢ (D)

Q.E.D.
We define an infinite volume generatof formally by L* = ¥c;a Ly,; such that [|L¥]| <o, where Ly, ;(%) =
Ex,j(X) —Xx s the elementary generator aid ; is a 2-positive unit preserving map such thaEx+j( ]\7[A) c ]\7[/\c+j .
We start with the following definition of a normzdid partial trace oM, that is, a completely positive map o, . We
define this normalized partial trade; at a point j € Z4 on the von Neumann algehid,. Since the point algebra\?'[{,-}
generatesM, , we have

ﬁ/\ = ]\7[{1} ® ]\7[{]}C

Definition 3
A normalized partial trac€r; on M, is a completely positive mafy; : M, - ]\7[{i}c satisfying the following conditions
for ¥ € M,

() Try(X* %) =20

(i) Try(1) =1

iy  Try(Tr; %) = Try(%)

(v)  Tr(E9) = Tr(FX), %5 € M,

V)  Tr(g.xf)=(3.T(®).f), xeMyandg,f € M.

Definition 4

The discrete gradieat; X is defined by 9; X = * — Tr;X , fora vectoy € VAR

This defines a seminortil. ||| onM, given by [ %Il = Xjezal|9; %|.

Let the set of operators ¥, with finite seminorni||. ||| be denoted by, , that is, the setM; = {X: * € My, ||| %]|| <
o }

Definition 5

Forany X € M; an elementary operatdy.,; is calledregular if there is a positive constartiy, with j, k € Z% such
that||Lx.; %|| < Tk bji||0; X|| andbyy € [0,%0) , such that sup; ¥y by, < .

Remark: The stochastic dynamics sequen@é”\” is Cauchy in the norm topology for the sets aféasing bounded
regions A,, satisfyingA,,.; @ A, andUA, = Z¢. The limit exists ag\, — « and defines an extended volume quantum
stochastic dynamic®* on M,, provided the elementary generatby.,;, j € Z* is regular and satisfies some certain
conditions . We now give a proof of the main tfego, that is, thePX extended dynamical semigroup is strongly ergodi

Theorem :
The semi-grouP¥) .o is strongly ergodic in the sense that there isigue (P{),, - invariant locally normal state for
which we have,

IPE (%) — w@)|| < 2e~ DXy £|I] , % € M.
Proof
To show the strong ergodicity property of the dyiwmP, we have the following formulation. We note thgtthe weak
compactness of the space of stateMij and the fact that the dynamig has a Feller property, the set of invariant states
with respect to the dynamics is non-empty. hdbte such an invariant locally normal state,
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then HIPE(®) — 0@l = 1PF () — w(PFE)I
now we consider the tensor product algebravtf by itself, and, from [4], the completely positineap

0: M, ®@ My — M, defined by 6(%\, ® %r,) = @A (Fa,)%n, - Xr, Fa, € M .
We note that  8(P¥ (%) ® I) = w(P¥ (%)) = w(P¥ (X))
0(I ® P¥ (X)) = w(DPE(E) = PER) ,
since w o P¥ = w we have,

1PX (%) — w @Il = I1PF () — w(PFE)I
= 18U ® P¥ (%)) — (P (%) @ D
< lled ® PF(®) — PX(®) @ DI
<P —PEE ® .

With this formulation in mind, we may expreR¥(%) as follows:

PX(%) = PX (%) + Try, PX (%) — Tr;, PX (%) + Tr,PX (%) — Try, PX(®) + Tr,PX(%)
—Try, PX(X) +T1,,PX(X) — Try,PX(X) + .. +Tr; PX(X) — Tr; PX(%)

thus let {j,},en © Z¢ be a sequence with lexicographic ordering such fitraeach j; € A; and A;_; € A; we have
Ji—1 < Ji - Since the partial tracd$;,  andTr;, are projections with the orderifig;, < Tr;, we have the relation

Imy, Ty, =T

Ji-1 Trji = Trji—l !

hence we rewrite the zero terms as follows

PX(%) = PX(%) + Tr, PX(®) — Try,Tr;,PX (%) + Tr,PX(X) — Try,Tr;, PX (%)
+T1, PE(X) -Tr,Try, PX(X) ... +Tr;, PX(X)—Tr; Try . PE(R).
P¥(%) = PX(%) — Try, PE(X) + Tr;, PX(X) + Try, (PE(X) — Try, PX (X))
+Tr, (ng (%) — Tr;,P¥ (9?)) +Try, (P¥(®)-Tr;, PX() )
+Tr;, (PE(®) = Try, PX (X)) .. +Tr; (PX(®) — Ty, , PE(R))
hence from  9; PX(%) = P#(X) — Tr;, PX (%) ,
we have P (%) = 0, PX(%) + Ynen Tr{jlljzlj%jn}(ng x) — Tr;,, PX®)

note that the summation is finite because ,
713, (P (®) = T75,, PE®) = Tr3, PE(®) = T3, Ty, PE(R)
= Tr; PX(%) —Tr, PF¥(X) =0 forne€N.

n+1

Thus we have

therefore we can write I ® P (%) = 9), P (£) + Xnen T7(; .} Oy P (X)

and also we haveP¥ (%) ® I = Tnen Trj,..j30j,., PE(X) — 9), PX(X)

hence, |IP¥(%) — 0@l < [|(1 ® PF®) - (PF@ @ D|

< (| @ PEG) + S Tr s PE ) = (B T O PE ) = 0, PE )|
< 2[|a, @) = 2[|[PX®)||| < 2 e P

4.0 Concluding Remark:

The extended quantum dynamics defined as the tdymamic limit of the finite volume evolution] f’A is shown to be
ergodic, if it exists in the appropriate topolodyis is quite important in any serious study afchiastic processes and
expectation semigroups, especially the algebigcaach to quantum statistical mechanics.
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