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Abstract

Today the Dihedral groups turn out to be one of the simplest examples of finite
groups. The role the size of the conjugacy class plays on the finite groups is a major
and striving area of research[1]. This paper will consider the dihedral groups via its
generators and relations, where a will be considered as a generator of order n and b a
generator of order 2. These two generators are taken to satisfy therelation ba=a'b.
Particular interests is given to the order, cosets, normalizers, and conjugacy classes of
this group. The conclusion is drawn from the intelligent and detailed report derived
from the results obtained.

1.0 Introduction

The Dihedral groups are groups of symmetries gditeconsidering the rotations and reflections giutar polygons. In
general today it is well known that when considgrigroups that they can be shown to be dihedralpgrday considering
how these groups are generated. In particular pgrgenerated by functions whose inverse is itaedf dihedral groups. We
shall in this paper take a preview of dihedral gby considering some particular dihedral groupkteow their structures
are influenced by their Cosets, Abelian, Normalnjdgacy and Centralizer properties.

2.0 Basic Definitions and Preliminary Results
Definition 1:
A non-empty set G with one algebraic opera#pis called agroup if the following conditions are satisfied:
1. CLOSURE: Ifa andb are in G, thena = his also in G.
2. ASSOCIATIVITY: Ifa. bandc areinGthenfa* b} » ¢ = a » (b » c}.
3. IDENTITY: There is an elememtof G such that for any elemeabf G
ase=eca=a.
4. INVERSES: For any elemeatof G thereis an elemeattsuchthag » a* — e anda™ s 3 — e
The operation in G need not be commutative. B tammutative, then G is called a commutative etiab group [2] .
Definition 2
Given a groupG, a subgrougt = G is anormal subgroup, denoted = G, if

gKg™t =K foreveryg € ¢ [3].

Definition 3

Given a groupG and an elemer of G. The least positive integas such thag™ = 1

is called theorder of g. Now if all the elements ofs are exhausted by, we say the grou is generated by g. Denoted
G = {gi[4].

Definition 4
The Dihedral groups can be defined as:

D, = a bla" = 1.b* =1,ba = a~'h)

Definition 5

Given a group(, H a subgroup of ofi and g £ . Then

gH ={ghlh € H}
is called a lefCoset of H in G [4].
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Definition 6

Let G be a group, fox.¥ € G, we say thaf is a conjugate cf, if there existy € &, such thay = gxg~*. writtenx ~y. The

equivalence classes ofare called te conjugacy classe<-db].

3. Proof of Main Result

I. Identities and cosets of thel),,

Using the definition of the dihedral groups as give definition 2 above, we shall here verify tdeitities that:
a. ba" =g hforalll =r=<n
b. Every element of the forrz" & has an order c.

Proof of a:

We shall prove this inductively.

Firstly we assume th#a* = a—%b, so that we have:

— a-':i‘."'l:'h

Thus we conclude that this identity holds forra#t Z*, whereZ * is the set of all positive integers.

Proof of b:

To show that every element with the foend has an order d, we simply consider the the form as below:
(a'b) =a"ba'b

But from Proof of a we showed thizg™ = a~"b, thus
(a"b)¥ =a" a kb

— u_i"+|:—i“_‘| EJ:
= oK
Also in definition 4,2 = 1 and it is obvious thai® = 1. Therefore we get that:
(a'b)* =
Next we shall consider how to find all the left etss of b. Firstly we know from the definition of &, that
=1

We also, in particular know from definition 3, thats a generator. Thus we seek to find all thedeftets ofiz}. Now in I,
the only other element iz, which has an order. Thus we expect the left cosetsiaf to take te form:

o (b)={a", a bl rez*
Similarly we would have all its right coset to take form;

(ba =l e Thlredt
II.The Normal and Abelian properties of I),,.
We shall consider two specific Dihedral groups witkpect to their being normal and also being abeli
Casel: Given the grouly and a subgroufn®} = fe,a®1 of D;.
We will here verify that

a. {a@?)is a normal subgroup d;
b. D,/{a%}is abelian. Wher@, /{a?®} := the set of all left cosets ££%} in Dj.

Proof of a:
To prove a we shall consider two methods.
Method1:
Using definition 2 gkg=* € {a®¥ wherek is now an element d&*» andg € D;
From the identities shown above, we can deduce that

ba* =a *bh=a"bh
So

bkb=! =
If k= a®.
The next but only element ¢&*} to check is identity we we shall denetenowa will always commute with® irrespective
of the value ofn. Thus,gkg™* = {a®) with k € {g*} andg € D;.
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Method 2:
We shall in this method get all the left and rigbsets oft = {z*) and compare.
The left cosets are as follows:

K = {e a®}

ak = ale,a®} = {a.a*}

o’k = a*le,a®} = {a?,a%}

bK =ble.a®} = {b, ba®}

abK = able, o’} = {ab,aba’} = {a, a0’ b} = {a.a*b)

a’bK = a’ble,a®} = {a’b, a’ba’} = {a®b.a’a® b} = {a’b. a® b}
Note that we were able to get the results abovegubie identityba”™ =a~"b foralll =r =n
The right cosets are as follows:

K = {e a®}

Ko ={e.a?la ={a a*]

Ka* ={e.a*}a* = {a?, 0’}

Kb ={e, a*}b = {b,a*b}

Kab = {e.a’}ab = {ab,a*ab} = {a.a*b}

Ko'b ={ec®la’b = {a’b.a’a’b} ={a’b, a°b}
Thus we have verified the fact thizf } is a normal subgroup @;.
Proof of b:
To show thatD, /{a®} is abelian, we will need to show tHatk ) (bK) = (bK) (aK).
Now from the results gotten for the proof of a adowe get that:

o = {a a*}

bK = {b. ba®}
Thus,

(aK}(BK) = abK = [ab,a*b}
And

(bK) (aK) = baK =a®°bK ={a®b,a’b}
True because by definition 4% = 1.
Thereforelak ) (bK} # (bK]) (aK'). Thus we conclude tha@; /{a?) is not abelian.
Case 2:
Given the groug;; and a subgrouf = {e,a*.a® a*} of Dy;.
We will here verify that

a. K is anormal subgroup @,
b. D, /K is abelian.

Proof of a:
In casel, we showed th&?} is a normal subgroup. In fact it is obviously d&guwup of K, we can show here that K is
normal by using the identitya"™ = a~"h.
We see that :

ﬂr{a!m:]u—r = gim
Also,

ﬂrﬁ{ﬂ!m]ﬂ_rﬁ =g'g Mg = {m—!m:]—l
Next we consider the cosets which include the falhgy:

K= {e,a%.,a%a"}

Kb = {b,a*b, a®b,a’ b}

Ka ={aa*. a, a'®}

Kab = {ab.a*b,a’b, a'" b}

Kol = -[:!.:, r.}.E', E.E, I,_1].].}

Ka*b ={a’b,a°h,a"h,a"* b}
Proof of b:
In proving this we again considd&a) (Kb} = (Kb)(Ka).

So
(Ka)(Kb) = Kab
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But

(Kb) (Ke) = Ka*b
And ba =a* b in Ka’b.
III.The Conjugacy and Centralizer properties of I.,.
Just as in 2, we shall consider two specific Diaédroups with respect to their conjugacy classekstheir centralizers.
Casel:
We shall here obtain all the cojugacy classef,of
Using definition 4, let
D, ={eaa’.a’ baba'ba’ b}
Suchtha* = ¢,5* = ¢ andba = a™*&.
Now sinceyey~t = ¢, it means tha¢ is a conjugate of itself.
Now if m is any chosen power &f theny would commute withz, so thatyay~* = a
Furthermore ify = a'b, then we would have that
}_,a}_,—l = adbaa=ih = glgi~1p2 = gii-1
Thus inD,, g*anda are the only conjugates far
Now from 1 and 2 above, we are able to deduceinhizf
J_,ﬂ:}.—l =gl
Thus,a? is conjugated by no other element.
Next, if y = a*,then we expect that
}-‘EJ_}-'_" =dbai=dab =ab
If ¥ = a'b,then we expect that
yhy ™t =a'bba'b = a'a't =a*'b
So the only conjugate dfis a® b.
}-‘EJ_}-'_" =dbai=dab =ab
If y = a'b,then we expect that
yaby~! = ababa'h = at*lalh =gtk
So the only conjugate @b is a® b.
Case2:
We shall here find the centralizer @fin D,.
The centralize£ (a) by definition would contain every power a@f so thatla} = C(a) . This means that there are atleast
elements inc {a).
ConverselyC{a) = D,, because by the definition 6{a), ¥ £ C(a). Now half the elements di, are inia} and by
lagrange’s theorem there are no subgroups lyingflgtbetweend,, and{a}, hence we have that
{a) C C(a)
And
Clay < I,
butfia) = I, so we get that

€la) = {a).

Conclusion
With the above results derived from consideratibspecific cases of the Dihedral group, an inteltigreport has been
generated which will birth further observationsibsequent papers.
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