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Abstract

Response Surface Methodology (RSM) based on Central Composite Design (CCD)
was used to optimize biodiesel conversion. The process variables, reaction time
(A),reaction temperature (B) and catalyst (C) were found to have significant influence
on the biodiesel conversion. The influence of reaction time (40-50min), reaction
temperature (80-90°C), the amount of catalyst (2-3 wt %) were studied. These three
conditions were studied using Design Of Experiment (DOE), based on three variables
Central Composite Design (CCD). The process variables were optimized using the
Response Process Methodology (RSM) in obtaining the maximum conversion of
biodiesel. This method was also applied to determine the significance and interaction
of the variables affecting the biodiesel production. The optimal conditions of response
were found to be at 90°C, 50 minutes and 3.0wt% for reaction temperature, reaction
time and weight of catalyst respectively with 83.2% of biodiesdl conversion.

Keywords: Biodiesel, Conversion, Design of Experiment, Optiation, Response Surface Methodology.

1.0 Introduction

In the last few years, the world’'s energy demanrslihareased due to the needs from global econoavieldpment
and population growth [1However, the most important part of this energgrently used is the fossil energy sources.
The problem is fossil fuels are non renewable. Téeylimited in supply and with the current ratecohsumption the
limited reservoirs will soon be depleted [2, 3].eThil and gas journal estimates that at the beginaf 2004, the
worldwide reserves still had 1.27 trillion barrelf oil per day and 260 billion cubic feet of natugas per day, the
current reserves can only be used for another dfsyfer the oil and 64 years for the natural gdsNtreover, increase
of pollutant emissions from the use of petroleural fwill affect human health. Both the increasedrgneneed and
environmental consciousness have stimulated tlearels of searching an alternatives fuel [5, 6].

As the demand and production of biodiesel grows &sa close substitute for existing fuel. Thedneoptimized
come into play so as to meet up with increasingketademand. The optimum value for the variablesdifiig the
process will be determined by the application o$fitmse Surface Methodology and Central Composisigng7, 8, 9].

Response surface methodology (RSM) is a set of dadttical and statistical techniques used in theirirapstudy
of relationship between one or more responses andup of variables [10]. RMS was developed to nhedpeerimental
responses [11]. The RSM is developed as a meafismdooptimal setting of input factors or design iahtes that
maximize or minimize measured responses or outggives.

Central composite design (CCD) is an experimenggigh useful in RSM for building a second ordera@yatic)
model for the response variable without needingude a complete three-level factorial experimenf.[TICD is a
technique applied for experimental design (12).

2.0 Materials And Methods
2.1 Collection Of Data

The data used for this study were obtained froom@ilr [8].The parameters used for the statisticaingpation;
biodiesel conversion are the reaction time, thetiea temperature and catalyst concentration.
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2.2 STATISTICAL ANALYSIS

A general linear model which accounts for the singhrameters’ linear and quadratic effects witlir imeeraction
effects was considered. The following is the geln@raar model for our analysis

Y= B0 +BiX1 + Xz + BsXz+ X+ E 1)

where, X, X, andX; are the level of the factors and E is the predicgsponse, if the process were to follow the
model. A deconstructionist approach was followedctWhndicates the consideration of a complete qatamodel and
eliminating terms which were not significant as thalysis continued. All further analysis was @rout using both
coded and uncoded variables. Method of least sgweas employed to ascertain the values of the muat@imeters and
ANOVA to establish their statistical significanceaaconfidence level of 95% (in our case).

2.3 STATISTICAL OPTIMIZATION TOOLS

Design Expert version 8.1, a statistical optimaatsoftware was used for this study. Design-Expeftiware offers
two level factorial screening designs, generaldiaat designs, Response Surface Methodology (RShrtiques,
mixture design techniques, and the ability to deonbmed designs with process factors, mixtures comapts and
categorical factors.

2.4 EXPERIMENTAL DESIGN

The key variables in the proposed process affedtieg-AME content of the product are the biodiesaiversion,
the reaction time, the reaction temperature anademmnation. A response surface methodology (RSM) used [13] to
analyze the influence of these three process Jasabn the fatty acid methyl esters (FAMES) contdased on
experience and economic feasibility, a three fagteubset design proposed by Ghadge and Raherham$employed.
The design contains three levels on three factmsdould be represented by a cube with six rejpdica at the center.
The six replications at the center offer betterragipnation of the true error which statisticallylpe in determining
significance of the variables. Another advantagéhisf method is its symmetry in design with regerdhe center, which
offers equal importance to all levels of all paréenge The total number of experimental runs wasv8B replications.
The biodiesel conversion, reaction times, reactemperatures and catalyst concentration were vamigde ranges of
75.0-95.0, 40-50 min,80-80 and 2-3wt%, respectively.

A general second order linear model with the deitoogonist approach was employed for its flexiyiland ease of
parametric evaluation for the predicted responsdase. Statistically insignificant terms were exd#d from the
proposed design based on design hierarchy for ¢imstuction of the response surface. Also, theracteon terms
considered manifests a better estimation on thebgmation effect of any two parameters considerededr least square
method was used to predict the values of paramateosved. The confidence level of the statistiaablysis conducted
was 95%.

3.0 Results And Discussion

3.1 MODEL FITTINGS

The optimization of biodiesel conversion was stddising Design Expert version 8.1. The experimedeaign
applied to this study was a full three-level fa@bdesign (three factors each at three levels) extdnded to surface
response methodology.

The response (Y), biodiesel conversion was studsg input variables. The variables chosen weaetien time
(A), reaction temperature (B) and catalyst conadiutn (C) as shown in Table 4.

The data from Statistical Analysis using Design &x8.1 are presented in Table 1 and shown in Eidur The
model developed as shown in Equation (2) is a skooder polynomial equation that could relate beséi yield to the
parameters of study.

Y =81.60 + 1.03A + 4.04B + 6.20C + 2.13AB +38AC - 3.87BC
-1.90A + 2.88F -5.25C 2)

From the Statistical Analysis using Design Expett i@ Table 1, ANOVA analysis for quadratic modelTiable 2,
the second order response functions representisghé response for biodiesel conversion, A theedogalue of reaction
time variable, B the coded value of reaction terapge and C the coded value of catalyst conceatraiihe closer the
value of R to unity, the better the empirical models fit #ietual data. On the other hand, the smaller theeval R the
lesser will be the relevance of the dependent blagain the model in explaining the behavior ofiations [14]. Thus,
the value Ris 0.9440.
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Table 1: Statstical Analysis using Design Expert .&

Source Sum of Df Mean F P-Value
Squares Square Value Prob > F
Block 64.53 1 63.53
Model 2561.82 9 284.65 16.87 0.0001 sigaific
A -Time 14.44 1 14.44 0.86 0.3790
B-Temperature 222.96 1 222.96 13.21 0.0054
C-Catalyst 525.64 1 525.64 31.15 0.0003
AB 36.13 1 36.13 2.14 0.1774
AC 1035.13 1 1035.13 61.35 < 0.0001
BC 120.12 1 120.12 7.12 0.0257
AZ 51.76 1 51.76 3.07 0.1138
B? 119.19 1 119.19 7.06 0.0261
c 397.61 1 397.61 23.57 0.0009
Residual 151.85 9 16.87
Lack of Fit 46.60 5 9.32 0.35 0.8574 not significa
Pure Error 105.25 4 26.31
Cor Total 2778.20 19
Table 2 : ANOVA analysis for the quadratic model.
Source SS DF MS F value Prob > F
Model 2561.82 9 284.65 16.87 0.0001 significa
Residual 151.85 9 16.87
Lack of Fit 46.60 5 9.32 0.35 0.8574  insigrafit
Pure Error 105.25 4 26.31
Cor Total 2778.20 19

Table 3: Statistcal parameters obtained.

Std Dev 4.11 R - squared 0.9440
Mean 78.30 AdjR- squared  0.8881
C.V 5.25 Pred R- squared 0.7896
Press 572.20 Adeq precision 16.294

Table 4: Coeficient estimation and factor

Factor coefficient df | Standard 95% ClI 95% ClI Vif
Estimate Error Low High
Intercept 81.60 1 1.69 77.77 85.43
Day 1 -1.92 1
Day 2 1.92
A-Time 1.03 1 1.11 -1.49 3.54 1.00
B-Temperature 4.04 1 1.11 1.53 6.55 1.00
C- Catalyst 6.20 1 1.11 3.69 8.72 1.00
AB 2.13 1 1.45 -1.16 5.41 1.00
AC 11.38 1 1.45 8.09 14.66 1.00
BC -3.87 1 1.45 -7.16 0.59 1.00
A2 -1.90 1 1.08 -4.34 0.55 1.02
B2 2.88 1 1.08 0.43 5.33 1.02
Cc2 -5.25 1 1.08 -7.90 -2.81 1.02

Table 5: Variables showing lower and upper limits.

Variables Goal Lower Upper Lower Upper Importance
Limit limit weight weight

A: time is in range 40 50 1 1 3

B:temperature is in range 80 90 1 1 3

C:Catalyst is in range 2 3 1 1 3
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The model F - value of 16.87 shown in Table lliespthe model is significant. There is only a 0.0%tance that a
“model F-value” could occur due to noise.

Value of “Prob > F” less than 0.0500 indicate nidgems are significant. In this case B, C, AC,,H&2,C*are
significant model terms. Values greater than 0.1l0@lcate the model terms are not significant. Hére are many
insignificant model terms, model reduction may iy the model. The “Lack of fit F- value” of 0.3Bplies the lack of
fit is not significant relative to the pure errdihere is a 85.74% chance that a “lack of fit Faedlthis large could be
occur due to noise. Insignificant lack of fit isggbas sufficiently good model fitting is desirable.

The “Pred R -squared of 0.7891 is in reasonaklieesgent with the “Adj R- squared” of 0.8881. “Adgggcision”
measuree the signal to noise ratio. A ratio gretlian 4 is desirable . The ratio of 16.294 indisadn adequate
signal. This model can be used to navigate thegdespace.

3.2 Stastistical Analysis

Statisticall parameters obtained from the analg$isariance (ANOVA) for response surface reducedadyatic
model are shown in Tables 2 and 3 . The value BEF” for models is less than 0.05, indicated tha&t model is
significant which is desirable as it indicates thhe terms in the model have a significant effattthe response. The
value of P < 0.0001 indicates that there is onlyG1% chance that a “model F — Value” thiséacguld occur due to
noise. Generally P- values lower than 0.01 inded#tat the model is considered to be satisticadjgificant at the 95%
confidence level [15,16]. Values greater than O0LD@licate the model terms are insignificant. Iis ttase, B, C, AC,
BC, B? and € are significant model terms. The insignificantdebterms can be removed and may result in an
improved model. The “Lack of Fit F-Value” of 0.3Bplies the lack of Fit is insignificant relative tbe pure error .
There is a 16.87% chance that a “ Lack of Fit Fuédl this large could occur due to noise. Insiigaifit lack of fit is
good as sufficiently good model fitting is desimbThe values of the’Robtained as shown in Table 3 indicates a strong
corellation between the parameters used. In Talhe Sower and the upper limit of each of the paetars used for the
analysis were diplayed.

3.21 Influence Of Individual Effect:

In the individual effect of A, B and C towards biesel conversion . These three effects showedipoaifluence to
the conversion of biodiesel.The biodiesel conversimreased with the increase of these three facidiis is due to the
positive quadratic model as shown in equationlaldb indicates that the experimental value mossicler running
effect of A, B and C at a higher level to maximike biodiesel conversion. However, the interacfamior also must be
consider as the individual effect plot does noegivformation regarding the significant interactiomolved.

3.22 Influence Of Interaction Effect

Three dimensional for interaction effect of reawstitime and reaction temperature towards biodieselersion are
shown in Figure 2. The biodiesel conversion inogeas the reaction time increased to its high 1€88min). The
biodiesel conversion also increased with react@mpierature to (88). Therefore, biodiesel conversion decreased as
the temperature increased increased towards its lbigel (93C), and the stronger influence of reaction timeuocd
when reaction time was at its high level. The dasireg of biodiesel conversion at a higher reactiemperature was
probably as a result of losing of methanol duehi fact that it did not condense effectively atighbr temperature as
boiling point of methanol is 65.

The result obtained in this optimization processrghtens the work of Yuan et al.[17] in their aptation of
conversion of waste rapeseed oil with high fretyfatid to biodiesel using Response Surface Metloggyo
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Figure 2: Three dimensional plot for interaction ofthe effect of reaction time and reaction temperatte

towards biodiesel conversion.

4.0 Conclusion

The mathematical model developed was used to gmirhiodiesel conversion which is influenced by tieactime,
reaction temperature and catalyst concentrationyels as the determination of the optimum conversid biodiesel
conditions. The high correlation in the model irzdés that the second order polynomial model coaldded to optimize
the biodiesel yield. The conditions to get optimedponse with 83.2% Of biodiesel conversion wetmdoto be 98C for
reaction temperature, 50 minutes for reaction tand 3.0% for the catalyst concentration. Theseltseeshow that the
optimization of biodiesel conversion using a regmsurface methodology based on central compossigm was useful

in improving the optimization of biodiesel convensi
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