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1.0    Introduction 

A basic property which we shall demand of an acceptable numerical method is that the solution 

method converges and stable in some sense, to the theoretical solution 

Stability properties of numerical methods are important for achieving a good approximation to the true solution. When a 
numerical method is used, there are often differences between the exact solution and the numerical solution at the mesh 
points; this is the local truncation error. Sometimes the accumulation of errors will cause instability. Therefore a method 
must satisfy the stability condition so that the numerical method converges to the exact solution [1].
The 5-stage symmetric implicit Runge-
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Abstract 

In this work, we present the convergence and stability analysis of an implicit 
Symmetric Runge-Kutta method for direct integration of first, second and third 

order ODEs. In the process we plot the region of absolute stability, find the order and 
error constant, test for consistency and convergence  of the method. Comparison of the 
onvergence and stability analysis were also made.  
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A basic property which we shall demand of an acceptable numerical method is that the solution 

method converges and stable in some sense, to the theoretical solution ))(( xy  as the step length, n tends 

Stability properties of numerical methods are important for achieving a good approximation to the true solution. When a 
numerical method is used, there are often differences between the exact solution and the numerical solution at the mesh 

this is the local truncation error. Sometimes the accumulation of errors will cause instability. Therefore a method 
must satisfy the stability condition so that the numerical method converges to the exact solution [1].
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In this work, we present the convergence and stability analysis of an implicit 5-
Kutta method for direct integration of first, second and third 

order ODEs. In the process we plot the region of absolute stability, find the order and 
error constant, test for consistency and convergence  of the method. Comparison of the 

Kutta Method, Region of Absolute Stability, Order and  

A basic property which we shall demand of an acceptable numerical method is that the solution )( ny  generated by the 

as the step length, n tends to zero. 

Stability properties of numerical methods are important for achieving a good approximation to the true solution. When a 
numerical method is used, there are often differences between the exact solution and the numerical solution at the mesh 

this is the local truncation error. Sometimes the accumulation of errors will cause instability. Therefore a method 
must satisfy the stability condition so that the numerical method converges to the exact solution [1]. 
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 The method (1.2) was reformulated in [2] into 
solution of initial value problems of the form
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The method(1.4) was extended in [3] to a 
Integration Of Third Order initial value problems(IVPs) of the form
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The method (1.2) was reformulated in [2] into 5-stage Symmetric Implicit Runge-Kutta Nyström(SIRKN) method for the 
problems of the form
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The method(1.4) was extended in [3] to a 5-stage Symmetric Implicit Super Runge-Kutta(SISRKN)  method for Direct 
Integration Of Third Order initial value problems(IVPs) of the form 
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Kutta Nyström(SIRKN) method for the 
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As was stated in [4] , there are three ways of deriving and analyzing Runge –Kutta methods: 
• Taylor series expansion 

• The algebraic concept of rooted trees and 

• Computer algebra 

For this work, we are going to analyze our methods using the Taylor series expansion because it enables us to obtain the 
error constant of the methods.  
Definition 1.1 Convergences 

If ))(,( xyxf , ))(),(,( xyxyxf ′ and ))(),(),(,( xyxyxyxf ′′′  satisfies Lipschitz condition then for such method 

consistency is necessary and sufficient for convergence. Therefore the method (1.2),(1.4) and (1.7) are said to be 
convergent if and only if they are consistent (See [1]). 

Definition 1.2: A-stable 

A general linear method is ‘A stable’ if ���� is power bounded for every z in the left half complex plane. 

Note that there is no requirement corresponding to zero-stability, since no parasitic solution can arise with Runge-Kutta 
method [1]. 
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The work is organized as follows in section 2,3 and 4 we present t
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Matrices for stability polynomial [7] ,[8]. 

From equation (1.2)

=A

Using maple software gives the characteristic polynomial and stability function [9] as 

Putting the characteristic polynomial and stability function in MATLAB software 

(RAS) of the method is A-stable. 
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follows in section 2,3 and 4 we present the Convergence and stability analysis of a 
Kutta method for first,second and third order ODEs equation (1.2),(1.4) and (1.7) respectively. T

on the result obtained in the above sections. 

Convergence and stability analysis of a 5-stage Symmetric Implicit Runge
for first order ODEs equation (1.2) 
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Putting the characteristic polynomial and stability function in MATLAB software shows that the region absolute stability 
(RAS) of the method is A-stable. 

 
Figure 1.1: Stability plots for Symmetric Implicit Runge-Kutta(SIRK) for first order ODEs equation (1.2) 
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Figure 1.2: Stability plots for Symmetric Implicit Runge-Kutta Nyström method for second order ODEs equation 
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From equation (1.7),  � � �� �� 
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Figure 1.3: Stability plots for Symmetric Implicit Super Runge-Kutta Nyström Method (SISRKN) for direct 
integration of third order ODEs equation (1.7) 
 

1.0 Conclusion 
From sections 2, 3 and 4, the convergence and stability analysis of the 6-stage block implicit Runge-Kutta 

methods (1.2),(1.5)and (1.9) shows that, an order P method for a G(N) order ODEs extended for a higher order 
G(N+1) ODEs has order P-1, with increase inregion of absolute stability and same error constant leading same 
accuracy. Where P and N are integers and G (1),G(2),….,G(N) denote first order, second order, …nth order.                                           
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