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                       Abstract 
 
Chemical reaction systems can exhibit rather complex and interesting dynamic 

behaviour. The stability characteristics of a non-adiabatic continuous stirred tank 
reactor (CSTR) in which a simple exothermic conversion reaction occurs has been 
investigated. A dynamic model of the CSTR was developed from material and energy 
conservation laws applied to the reactor. The model which is a pair of ordinary 
differential equations (ODEs) was then transformed to a dimensionless ODE pair 
which constituted an autonomous system. Linear stability analysis was carried out. 
Results of steady state analysis indicate that the system exhibited steady state 
multiplicity with three steady states identified. Results obtained from carrying out 
linear stability analysis indicate that the high and low temperature steady states were a 
stable node and stable focus respectively. These steady states were stable while the 
intermediate temperature steady state was a saddle point hence it is unstable. The 
former can therefore be used for design purposes while the later cannot be utilised.  
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Nomenclature 
Concentrations: 
A   Concentration of chemical species A (kmol/m3) 
B   Concentration of chemical species B (kmol/m3) 
H   Concentration of chemical species H (kmol/m3) 
X   Concentration of chemical species X (kmol/m3) 
Y   Concentration of chemical species Y (kmol/m3) 
Z   Concentration of chemical species Z (kmol/m3) 
Non dimensionless variables: 
a     non dimensionless concentration of chemical species A 
b     non dimensionless concentration of chemical species B 
u     non dimensionless temperature 
τ    non dimensionless time 
Others: 
At   Heat transfer area (m2) 
Cp   Specific heat capacity of reaction mixture (J/kg.K) 
e    eigenvalues of Jacobian evaluated at steady state 
I    identity matrix 
J   Jacobian 
ki   reaction rate constant (1/s) 
Ku   kinetic parameter 
q   Volumetric flowrate (m3/s) 
r   reaction rate (mol/m3.s) 
U   heat transfer coefficient between cooling coil and reactor content (W/m2.K) 
T   reaction temperature (K) 
V   reactor volume (m3) 
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Subscripts: 

c coolant 
f feed conditions 
o reference conditions 
s steady state 
Greek letters: 
α  non dimensional parameter 
β  non dimensional parameter 

γ  extent of cooling 

δ  heat of reaction intensity 
ρ  density of liquid reaction mixture 

λ  non dimensional parameter 
ξ  vector of perturbations from steady state 

H∆  heat of reaction 
θ  reactor residence time 
 

1.0    Introduction 

There has been a lot of interest in the problem of chemical reactor stability over the past three decades [1-5]. 
Recently, a lot of attention has been given to the various behaviours exhibited by chemical reaction systems. These 
behaviours include oscillating pH profiles, Turing and other patterns, symmetry breaking and pattern concatenation [6-
12]. Instability in chemical reaction systems also referred to as chemical chaos exist in many aspects of the physical world 
[13]. Some concrete and definable examples of chemical chaos can be found in oscillating chemical reactions. One 
common example of such a reaction is the Belousov-Zhabotinskii reaction in chemistry [14]. The oscillatory behaviour 
observed for the BZ reaction can change from periodic to chaotic by simply changing the rate at which reactants are fed 
into the system. The BZ reaction has many variations but the most common involves the oxidation of organic materials 
that are easily brominated in an acidic medium. An example is the oxidation of malonic acid by bromate in acid 
environment catalysed by the redox couple Ce3+/Ce4+. For this case, the colour of the reacting mixture periodically 
changes from yellow to colourless and back to yellow. The chemistry of the BZ reaction is rather complex because of the 
presence of many kinetic steps, which makes it somewhat difficult to model [15]. Many kinetics steps have been proposed 
in the literature but the one outlined below known as the Oregonator was developed by researchers at the University of 
Oregon [14].  

12 kA Y H X P+ + → +        (1) 
2 2kX Y H P+ + →         (2) 
3 2 2kA X H X Z+ + → +        (3) 

42 kX A P H→ + +         (4) 
5kB Z fY+ →         (5) 

Based on the kinetic steps of (1) to (5), the BZ reaction system is described by the following equations. 

2 2
1 2 3 42

dX
k AH Y k HXY k AHX k X

dt
= − + −      (6) 

2
1 2 5

dY
k AH Y k HXY fk BZ

dt
= − − +       (7) 

3 52
dZ

k AHX k BZ
dt

= −        (8) 

By making the following transformations, the equation set of (6) to (8) can be presented in dimensionless form 
as follows. 

o

X
x

X
=  

o

Y
y

Y
=   

o

Z
z

Z
=  

o

A
a

A
=  

o

B
b

B
=  

o

t

t
τ =  

2dx
ay xy ax x

d
α µ

τ
= − + −        (9) 
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dy
ay xy bz

d
β µ δ

τ
= − − +                                (10) 

dz
ax bz

dτ
= −                    (11) 

x, y and z are the dimensionless concentrations of species X, Y and Z respectively while τ  is the dimensionless 
time. 

Where: 5

3

o

o

k B

k HA
α =  4 5

2
2 3

2 o

o

k k B

k k H A
β =  1 4

2 3

2k k

k k
µ =  2 fδ =  

The subscripts (o) indicate reference conditions and are defined as follows. 

3

42
o

o

k HA
X

k
=  3

2

o
o

k A
Y

k
=  

2
3

4 5

( )o
o

o

k HA
Z

k k B
=  

5

1
o

o

t
k B

=  

Another example of a chemical reaction system that exhibits instability and chaotic behaviour is the autocatalator. 
This is a slightly simpler but similar reaction involving three variables hence it is referred to as the three-variable 
autocatalator [16]. Autocalators are usually isothermal reactions that proceed in closed systems. For the autocatalytic 
reaction system, a molecule of one of the chemical species involved in the reaction produces more molecules of itself in 
the course of the reaction. This provides internal feedback for the system and leads to robust dynamic behaviour. One of 
the chemical reaction systems exhibiting rich dynamic behaviour is the isothermal cubic autocatalator introduced by Gray 
and Scott [2]. This reaction system is presented in the terms of the following kinetic steps. 

okP A→         (12) 
1kA B→         (13) 

22 3kA B B+ →        (14) 
4kB C→         (15) 

Based on the kinetic steps of (12) to (15), the equations describing the concentrations of species A and B are: 

2
0 1 2

dA
k P k A k AB

dt
= − − +       (16) 

2
1 2 3

dB
k A k AB k B

dt
= + −       (17) 

By making the following transformations, equations (16) and (17) can be presented in dimensionless form as follows. 

o

A
a

A
=  

o

B
b

B
=   

o

t

t
τ =  

2
u

da
K a ab

d
µ

τ
= − −        (18) 

2
u

db
K a ab b

dτ
= + −                                   (19) 

a and b are the dimensionless concentrations of species A and B respectively while τ  is the dimensionless time. 

Where:   

1/22
0 2
3
3

2
[ ]o

k k
P

k
µ

 
=  
 

 1

3
u

k
K

k
=  

The subscripts (o) indicate reference conditions and are defined as follows. 

3

2
o

k
A

k
=  3

2
o

k
B

k
=  

3

1
ot k

=  

The concept of stability is one of the key aspects of dynamical systems. Consider a system of nonlinear ordinary 
differential equations (ODEs) written as: 

1 2( , ,.., )i
i n

dy
f y y y

dτ
=          1,2,...,i n=                        (20) 
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Equation (20) can be written in vector form as: 

( )
yd

f y
dτ

=                                    (21) 

Where 

1 2[ , ,.., ]ny y y y=    1 2[ , ,.., ]nf f f f=  

Since the functions if  depend only on y  and not explicitly ont , the ODE system described by Equation (20) is referred 

to as an autonomous system. A constant vector sy  for which Equation (22) is true is called a steady state or an 

equilibrium point. 

( ) 0sf y =                                    (22) 

If more than one sy  satisfies Equation (22), then multiple steady states will exist. When an initial condition is provided 

such as, (0) sy y= the solution to the ODE set will be( )          t 0sy t y= ∀ ≥ . For this case, the solution is often 

presented as a trajectory which is a nonlinear plot of ( )y t  as a function of time in the n-dimensional phase space ofy . 

Every steady state is represented by a specific point in the phase space and every point in the phase space is a potential 
initial condition. With the foregoing in mind, the following definitions can be presented.  

Definition 1: A steady state or equilibrium point sy of the ODE set of Equation (21) is said to be stable if all eigenvalues 

of the Jacobian sJ  evaluated at sy  have real and negative values. The Jacobian is the matrix of partial derivatives of the 

ODE set of equation (21) evaluated with respect to the state vector variablesy . The Jacobian of the ODE set of equation 

(21) is given as:  
1 1 1

1 2

22 2

1 2

1

1 2

  

      

 

n

n

n n

n

f f f
y y y

ff f
yy y

f f f
y y y

J

∂ ∂ ∂
∂ ∂ ∂

∂∂ ∂
∂∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 
 
 

=  
 
  
 

K

M M M

L

 

If the Jacobian is evaluated at the steady state, it is expressed as: 
1 1 1

1 2

22 2

1 2

1

1 2

  

      

 

n

n

n n

n

f f f
y y y

ff f
yy y

s

f f f
y y y s

J

∂ ∂ ∂
∂ ∂ ∂

∂∂ ∂
∂∂ ∂

∂ ∂ ∂
∂ ∂ ∂

 
 
 

=  
 
  
 

K

M M M

L

 

The steady state or equilibrium point is unstable if at least one of the eigenvalues of the Jacobian evaluated at the steady 
state has a positive real value. The eigenvalues of the Jacobian must satisfy the condition: 

0J eI− =         (23) 

e represents the eigenvalues of the Jacobian while I  is an identity matrix 
For a 2-dimensional autonomous system, equation (23) results in: 

2 ( ) 0e trJ e J− + =        (24) 

Thus, the two eigenvalues are given by: 

2
1,2

1
( ) 4

2
e trJ trJ J = ± −

 
      (25) 

Where trJ represents the trace of the Jacobian given as the sum of the off-diagonal elements of the Jacobian while J
represents the determinant of the Jacobian. 

For the case where both eigenvalues1 2 and e e  are real, the term under the square root sign must satisfy the condition: 

2( ) 4 | | 0trJ J− >   
2( ) 4trJ J>
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The eigenvalues1 2 and e e are both negative if and only if their sum is negative and their product is positive, i.e.,  

1 2 0e e+ <         (26) 

1 2 0e e >                        (27) 

Combining equations (25) and (26) results in: 
0trJ <         (28) 

Combining equations (25) and (27) results in: 

0J >          (29) 

Definition 2: Regardless of whether the eigenvalues of the Jacobian are real or complex, the steady state under 
consideration is considered stable if and only if the condition 

0trJ <  and 0J >  

are satisfied simultaneously. Table 1 gives a summary of the type and stability character resulting from the eigenvalues of 
the Jacobian evaluated at the steady state. 
 

Table 1: Summary of steady state type and character 

Eigenvalues Steady state type Stability character 

Real and negative Stable node 
Asymptotically 
stable 

Real and positive Unstable node Unstable 

Real, equal and negative 
(Symmetric Jacobian) Stable proper node 

Asymptotically 
stable 

Real, equal and positive 
(Symmetric Jacobian) Unstable proper node Unstable 

Real, equal and negative 
(Unsymmetric Jacobian) Stable improper node 

Asymptotically 
stable 

Real, equal and positive 
(Unsymmetric Jacobian) 

Unstable improper 
node Unstable 

Real and unequal  
(opposite signs) Saddle point Unstable 

Complex with positive real parts 
Unstable focus  
(spiral source) Unstable 

Complex with negative real parts 
Stable focus (spiral 
sink) 

Asymptotically 
stable 

Complex with zero real parts 
(purely imaginary roots) Center Marginally stable 

 
Of the several types of reactors encountered in the chemical process industry, the continuous stirred tank reactor (CSTR) 
is the most commonly used because it is the most amenable to control action [17,18]. The flow of reactants inside the 
reactor is smooth and continuous [17,19,20]. The concentrations and temperature of the species in the reactor do not vary 
with position and these have the same values as that in the effluent steam [21]. 
In this work, we consider the stability analysis of a nonadiabatic CSTR in which a simple reaction for the conversion of a 
single reactant to a single product occurs. This relatively simple chemical reaction system can exhibit rather complex and 
interesting dynamic behaviour. The specific objectives of the study include determining the steady state(s) of the system 
and obtaining the stability criteria for which the steady state(s) is(are) either stable or unstable to small perturbations.  
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2.     Non Adiabatic CSTR Model 
The non-adiabatic CSTR with single input and single output in which a simple conversion reaction takes place is shown 
in Figure 1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic of non-adiabatic CSTR 
The reaction occurring in the reactor is described by the simple chemical equation expressed as: 

kA P→  (Exothermic) 
The CSTR model formulated from transient mass and energy balance is given by the following pair of ordinary 
differential equations (32) and (33). 

( )f

dA q
A A r

dt V
= − −        (30) 

For a first order reaction: 
r kA=          (31) 

The material balance for A becomes: 

( )f

dA q
A A kA

dt V
= − −        (32) 

The energy balance about the reactor gives: 

( ) ( ) ( )p p f t c

dT
V C q C T T UA T T V H kA

dt
ρ ρ= − − − + −∆   (33) 

The ODE pair of (32) and (33) has the following initial conditions: 

;         at    0o oA A T T t= = =  

By making the following transformations, equations (32) and (33) can be presented in dimensionless form as follows. 

f

A
a

A
=  

f

T
u

T
=   c

c
f

T
u

T
=   

tτ
θ

=   
V

q
θ =  

1
da

a a
d

λ
τ

= − −        (34) 

1 ( )c

du
u u u a

d
γ δ

τ
= − − − +                     (35) 

a is the dimensionless concentration of A, u is the dimensionless temperature while τ  is the dimensionless time. 
Where: 

kλ θ=  t

p

UA

V C

θγ
ρ

=  
( ) f

p f

H kA

C T

θ
δ

ρ
−∆

=  

2.1.     Linearized Stability Analysis 
The dimensionless ODE pair of (34) and (35) is an autonomous system with the following initial conditions:  

;         at    0o oa a u u τ= = =
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11 ( , )
da

a a f a u
d

λ
τ

= − − =       (34) 

21 ( ) ( , )c

du
u u u a f a u

d
γ δ

τ
= − − − + =                    (35) 

The steady state(s) of the autonomous system is (are) obtained by setting both time derivatives to zero. 

From (34): 0 1 s s

da
a a

d
λ

τ
= = − −  

On resolving: 
1

1sa
λ

=
+

        (36) 

From (35): 0 1 ( )s s c s

du
u u u a

d
γ δ

τ
= = − − − +  

On resolving: 
1

1
c s

s

u a
u

γ δ
γ

+ +=
+

       (37) 

On substituting for sa : 

11

1
c

s

u
u

δ
λγ

γ
++ +=

+
       (38) 

Thus the unique steady state is: 

1

1sa
λ

=
+

 and 11

1
c

s

u
u

δ
λγ

γ
++ +=

+
 

In order to determine whether or not the steady state is asymptotically stable or otherwise, we consider the following 
linearized system given as: 

da
J

d
ξ

τ
=         (39) 

Where the vector of perturbations from the steady state ( ,s sa u ) is given as: 

s

s

a a

u u
ξ

− 
=  − 

        (40) 

The Jacobian evaluated at the steady state is given as: 
1 1

2 2

f f
a us s

s f f
a us s

J

∂ ∂
∂ ∂

∂ ∂
∂ ∂

 
 =
 
 

       (41) 

The partial derivatives are evaluated from the autonomous system represented by equations (34) and (35).  
Hence: 

(1 ) 0

(1 )sJ
λ

δ γ
− + 

=  − + 
      (42) 

For the Jacobian, the trace and determinant are respectively given as: 
(1 ) (1 ) ( )trJ λ γ λ γ= − + − + = − +   

( )trJ λ γ= − +   

(1 )(1 )J λ γ= + +        (43) 

For the steady state to be stable to small perturbations, it must satisfy the conditions below simultaneously. 

0trJ <  and 0J >  

From the result obtained, the trace of the Jacobian is: ( )trJ λ γ= − + . 
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Since the parameters λ andγ  are both positive, then it follows that the trace of the Jacobian is negative. Thus the first 

condition is satisfied. 

In the same way, the determinant of the Jacobian i.e., (1 )(1 )J λ γ= + + is positive as both parameters are positive. 

Since the unique steady state simultaneously satisfies both criteria for stability, it follows that it is asymptotically stable. 
The criteria for stability for the autonomous system under consideration are thus: 

• ( ) 0λ γ− + <  or ( ) 0λ γ+ >  

• (1 )(1 ) 0λ γ+ + >  

Recalling that  kλ θ=      t

p

UA

V C

θγ
ρ

= , both criteria can be transformed to obtain: 

• 0t

p

UA
k

V C

θθ
ρ

 
+ >  

 
 

• (1 ) 1 0t

p

UA
k

V C

θθ
ρ

  
+ + + >      

 

2.2. Classification of Unique Steady State 
The eigenvalue problem for the Jacobian is cast as follows: 

0J eI− =         (44) 

I  is an identity matrix 

(1 ) 0
0

(1 )

e
J eI

e

λ
δ γ

− + −
− = =

− + −
    (45) 

The eigenvalues of the Jacobian evaluated at the unique steady state are thus: 

1 (1 )e λ= − +  

2 (1 )e γ= − +  

Since the parameters λ andγ  are both positive and real, it follows that both eigenvalues are real and negative. Following 

the classification criteria of Table 1, it is seen that the unique steady state is a stable node whose stability character is 
“asymptotically stable”. 
 
3.0  Case study: Single, first-order exothermic irreversible reaction in a non-Adiabatic CSTR 
 
Exothermic reactions are one of the most interesting chemical reaction systems to study because of potential existence of 
multiple steady-states. Consider a CSTR with a single, first-order exothermic irreversible reaction occurring in a non-
adiabatic CSTR. 

kA B→  (Exothermic) 
The first order rate of reaction is given as: 

expo

E
r k A

RT

− =  
 

                      (46) 

For the CSTR shown in Figure 1, the following assumptions were made in developing a model for the reaction. 
• Perfect mixing 
• Constant density and volume 
• Constant parameter values 
• The cooling jacket temperature can be directly manipulated. This removes the need to carry out an energy 

balance around the jacket. 

The material and energy balance equations for A becomes: 

( )f

dA q
A A r

dt V
= − −         (47) 
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( ) ( ) ( )p p f t c

dT
V C q C T T UA T T V H r

dt
ρ ρ= − − − + −∆     (48) 

The ODE pair of (47) and (48) has the following initial conditions: 

;         at    0o oA A T T t= = =  

The pair of equations (49) and (50) also constitutes the modelling equations given as: 

1( , ) ( ) expf o

dA q E
f A T A A k A

dt V RT

− = = − −  
 

     (49) 

2

( )
( , ) ( ) ( )t

f c
p p

UAdT q H
f A T T T T T r

dt V V C Cρ ρ
−∆= = − − − +    (50) 

3.1.   Steady state solution: 
The steady state solution is obtained when both time derivatives of equations (49) and (50) are set to zero i.e.  

1( , ) 0
dA

f A T
dt

= = ; 2( , ) 0
dT

f A T
dt

= =  

The values of parameters used in obtaining the steady state solution are presented in Table 2. 
 

Table 2: Parameter values for steady state solution [22] 
 

Solution parameter Value Units 
V 1 m3 
q 1 m3/h 
Tf 25 oC 

Tc 25 oC 

E 49584  kJ/kmol 
ko 34930800 1/h 
Af 10 kmol/m3 

( )H−∆  
24953  kJ/kmol 

pCρ
 

2093  kJ/ oCm3 

tUA
 

628  kJ/h oC 

 
As with most numerical solution methods, the initial condition of a variable determines the value to which that 

variable will converge to during solution. For this case study, three initial conditions were chosen viz: 
• Initial condition A: This is the low temperature, high concentration and low conversion condition 

characterised by the variable values ( 39 /  and 27oA kmol m T C= = ) 
This initial condition led to the following steady state solution tagged the low temperature steady state: 

8.56

38.1
s

s

A

T

   
=   
  

 

• Initial condition B: This is the intermediate temperature,  concentration and conversion condition 

characterised by the variable values ( 35 /  and 77oA kmol m T C= = ) 
This initial condition led to the following steady state solution tagged the intermediate temperature steady state: 

5.52

66.1
s

s

A

T

   
=   
  

 

• Initial condition C: This is the high temperature, low concentration and high conversion condition 

characterised by the variable values ( 31 /  and 177oA kmol m T C= = ) 
This initial condition led to the following steady state solution tagged the high temperature steady state: 

2.36

95.1
s

s

A

T

   
=   
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These are the only possible solutions as other initial conditions did not lead to any other solutions for the given set 
of parameter values. 

3.2   Linearized Stability Analysis and classification of steady states 
By making the following transformations, equations (39) and (40) can be presented in dimensionless form as follows. 

f

A
a

A
=  

f

T
u

T
=   c

c
f

T
u

T
=   

tτ
θ

=   
V

q
θ =  

1
da

a a
d

λ
τ

= − −        (51) 

1 ( )c

du
u u u a

d
γ δ

τ
= − − − +                     (52) 

a is the dimensionless concentration of A, u is the dimensionless temperature while τ  is the dimensionless time. 

Where: 'kλ θ=  t

p

UA

V C

θγ
ρ

=  

'( ) f

p f

H k A

C T

θ
δ

ρ
−∆

=  

The ODE pair of (41) and (42) is an autonomous system with the following initial conditions: 

;         at    0o oa a u u τ= = =  

11 ( , )
da

a a f a u
d

λ
τ

= − − =       (53) 

21 ( ) ( , )c

du
u u u a f a u

d
γ δ

τ
= − − − + =                    (54) 

In order to determine the stability of the autonomous system, we consider the following linearized system given as: 
da

J
d

ξ
τ

=         (55) 

Where the vector of perturbations from the steady state ( ,s sa u ) is given as: 

s

s

a a

u u
ξ

− 
=  − 

        (56) 

The Jacobian evaluated at the steady state is given as: 
1 1

2 2

f f
a us s

s f f
a us s

J

∂ ∂
∂ ∂

∂ ∂
∂ ∂

 
 =
 
 

       (57) 

The partial derivatives are evaluated from the autonomous system represented by equations (51) and (52).  

Hence: 
( ) ( )s

t

p p p s

q
k Ak

V
J

UAH k q H Ak

C V C V Cρ ρ ρ

 − − − 
 = −∆ −∆ − + −
 
 

    (58) 

Inputting the parameter values in Table 2 into the Jacobian, the eigenvalues were calculated for each initial condition. The 
results obtained as presented as follows. 

• Initial condition A:  
8.61

38.5
s

s

A

T

   
=   
  

 

For this operating point, the eigenvalues are respectively: 

1 0.91λ = −  and 2 0.50λ = −  

• Initial condition B: 
5.55

66.3
s

s

A

T

   
=   
  

 

For this operating point, the eigenvalues are respectively: 
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1 0.85λ = −  and 2 0.50λ =  

• Initial condition C: 
2.41

95.3
s

s

A

T

   
=   
  

 

For this operating point, the eigenvalues are respectively: 

1 0.78 0.93iλ = − +  and 2 0.78 0.93iλ = − −  

Based on the classification criteria presented in Table 1, the multiple steady states are thus classified. 
• Initial condition A: Real and negative eigenvalues implies that this steady state is a stable node which is 

asymptotically stable.  
• Initial condition B: Real and unequal eigenvalues with opposite signs implies that this steady state is a saddle 

point which is inherently unstable. 
• Initial condition C: Complex eigenvalues with negative real parts implies that this steady state is a stable focus or 

spiral sink which is stable.  
The phase space plot showing the coexistence of all steady state is shown in Figure 2. 

 

Figure 2: Phase plane plot for three steady states coexisting A (stable node), B(saddle point) and C (stable focus) 
4.     Conclusion 
In this work, the concept of dynamical systems and how it applies to chemical reactor stability has been introduced. The 
case for investigation was a non-adiabatic continuous stirred tank reactor in which a simple exothermic conversion 
reaction takes place. The exothermic reaction exhibits steady state multiplicity with three steady states existing. The low, 
intermediate and high temperature steady states are characterised as a stable node, saddle point and stable focus 
respectively. Both the low temperature and high temperature steady states were stable and can be used for design 
purposes. The intermediate temperature steady state was found to be unstable and cannot be utilised for design purposes.  
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