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Abstract

In this paper, thelikelihood ratio test for heteroscedasticity, assuming the Laplace
distribution is discussed and shows to give good approximation results for Gaussian
and fat-tailed data . The drawback of the likelihood ratio test , assuming normality, is
that, it is highly sendtive to any deviation from normality, especially when the
observations are from a distribution with fat tails. However, in this work, it is affirmed
that the Laplace likelihood ratio test can also be used as a more robust test for a
constant variance in residuals or time series if the data is partitioned into groups, than
the Normal likelihood ratio test .
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1.0 Introduction

The likelihood ratio test for equal variances Vit derived under the assumption of Laplace or doeblponential
distributed observations or residuals. The excesto&is of this distribution is three and it istieurtic. It is shown that the
likelihood ratio test for the equality of varianaghen assuming the Laplace distribution for thedeess is more robust than
the normal one. The distributional properties a$ thaplace Likelihood ratio test are very similarthat when normality is
assumed, but with a better approximation in therggtic chi-square approximation of the log-likelitd than the normal
case.

One of the factors to be considered when checKirdiit of a model in time series is to see if tesiduals are white
noise. The use of volatility models for log returatracted a lot of attention in the last few yeasd Autoregressive
Conditional Heteroscedasticity (ARCH) and Genemali Autoregressive Conditional Heteroscedastic®tp\RCH) models
are fitted when heteroscedasticity is present [§ test for a constant variance after partitionthg residuals, suitable for
observations from a distribution with fatter tatlen a normal, can also be used to check for winise.

The tests of Levene [2], Brown and Forsythe [3] &abtwirth et al [4] are often used as a more rotests than the
normal likelihood ratio test for the equality ofriamces in general statistical tests, for exampd$QOVA’s (Analysis of
variance ), Bootstraps methods can also be heipfnlvestigate the distribution of test statisiitshese problems. A review
and some suggestions are given in the paper of BndsBrownie [5]. A simulation study comparing timethods shows
much more robust performance of the Laplace Likalth ratio than the normal likelihood ratio and &ee test.

Assume, that a total of n independent observafiaps, t =1,...... ,n, from a normal distribution, are avhi&a There
are k group with sample sizeg n....... , N . When equal sample sizes are under considerdtiail] be assumed that n =
kno Let n;d;%= oy (wy - ﬁj)z, J=1 , k denote the estimated variances for qgaotition , wherei; denotes the

sample mean of th& group or partition. The terrimj(?—jzla2 ~)(,21j_ 1 Is a gamma variable with parameters {Ly2 , %2 .

In the case of equal variances . The normal likalthratio testAy proposed by Mood, Graybill and Boes [6] for the
hypothesis of the equality of variancesy,:ld? =....=6? = ¢, for normal data is given as
()"
P (@)
(Zf=imj87/m)
A weak point of the statistic ( Normal likelihoodltio test 1y ) is that it is very sensitive to deviations fronrmality.
The statistic and its asymptotic chi-square apmpnaxion, -2log(1y) , was studied widely and many corrections were

suggested to improve the approximation. The idealsrasults of Bartlett [7] and Box [8,9] were thaslks for many of the
asymptotic corrections later derived for the st&ti§ hey considered the statistic, M
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M= (n-k)loge®) -Xf_,(n; — Dlog (af)

k  (n.—1)52 n; .
&Zzzl-l(;_—’k))' - D& =y - )2, (=1 K. )
Letyy=n-1,j=1,... , kK. M can be denoted in the normal case aq M ; v,....... , k ) , where the zero indicates
excess kurtosis of zero. The statistic can be gdined to M (y21,....... Yok s Viyeeeeennnn , Wk ) , where each of the k variance
estimates is from a population with a differenttkars ,y j=1,...... K . It is shown that if the kurtosis is edtoy, for the
k samples, Box [9] , the statistic is distributedSa*M; (0; 8,1,...eeevvnne... O ), 0 =(1+( 1/21,2)‘1 , in large samples ,
for any distribution having finite cumulants . Mt the statistic is distributed as (1+ 1/2)y2)(,§_1 in large

samples .
To find the moments of the log-likelihood ratio sMao problem, but the exact distributionsigf and also log{y) are both
extremely complex and not practical to use. Thetinariate version of the normal likelihood testsicerning covariance

matrices is covered in detail in the book of Muatig¢10]. The Normal likelihood ratidy, is an interesting statistic, anﬁ/”
can be viewed as the ratio of the geometric meathefestimated variances to the arithemetic meagaofma variables,
which is equal to one, only when the individualmerare independent and equal. The ratio of the ggammean to the
arithmetic mean of gamma variables was studied lages [11]. Another way to look dj, is to notice that it can be written
as the product of Dirichlet random variables, orthis paper, it will be considered as the producthe beta random
variables. Let

n;iG;
(A)j = J ],\
Zj=11j0j
~2
O 3
=t for equal sample sizes . (3)
Ejo10j

This ratio has a beta distribution with parametgrs: n’Tl v =(n-k)/2 . The normal likelihood raticstecan be

expressed in terms of the product of beta randamaias and
2 = M= @H"
N X el
(T D T (my53)
(ZK_ymjep)m
K I1fa(57)"
(shy0?)”
A% = k" Hle w;™°
The product of beta and Dirichlet random variableswtudied by Springer and Thompson [12] and RagsatsYoung [13].
The resulting density is complicated and expressedrms of the Meijer's G and H-functions propodsdGradshteyn and
Ryzhik [14]. It will be shown that the likelihoo@dt derived from residuals which have the Lapldstilution can also be
expressed as a product of the beta random variallésge sample sizes.

(4)

2.0 : Methodology
2.1 : Laplace Likelihood Ratio for Distributed Variables

The Laplace or double exponential density is given
P() =,- exp (—%) ol xOw, @ >0 (5)
The variance is@ and the median of the observations is the maxiriketihood estimate of the me#& The maximum

likelihood estimate of is X7, (|x; — 6])/n for a sample of size n , whefledenotes the estimated median. Fdnown ,
7:1(|x]- - 9|) /n is distributed as é&2n) "1 yZ, variable. The properties of the Laplace distribuitare reviewed in the

book of Johnson et al [15]. The variance of theiareés O@~"), and the absolute deviations { Al,j=1,.....,n,are
asymptotically independent [16].
For the seriesyy. . . ., | partition into k parts, the Laplace likelihoodioat; , for the test
Ho:j]_: ........ =[=0 ,iS
m,s,
2, ==Y , (6)

¢
With ¢; = ¥*_,(|x; — 6;])/n; andg = (1)@ by + - + nieyc) -
For equal sample sizes,,, the ratio is simplified to
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A= kT () 7
= e (5 , @

andA/™ is proportional to the geometric mean of the satlé6 was known, the ratiéj/ Zle ¢3]- has a beta distribution
with parameters;, n-n; . This variance is approximately half that of be¢a variable for the normal case . Terms
involving the distribution of the sum of the logmdwers of beta random variables are found in trenal and Laplace
likelihood ratios . The moment-generating functadrthe log of a beta variable with parametersind n -n; to a power is

o(t) = E(log(et'os"))
= &™)
_ (M) I (nj+ht)
T T(n+h) T (n)) ’ (8)
And the log of the moment- generating functiothef sum of k, such variables is
E(log@(1))) = k log((n))- k log"(n)))+X -1 log (I'(n; + ht))- k log(T(n+ht)) , 9
Showing that the expected value of -2lpg(found from the cumulant generating function is
E( -2log@,)) = -2nlog(k) - Zj-; E(log (x; "))
= -2nlog(K)- 2, (0 (ny) =m0 () (10)
Wherex; denotes a beta variable with parametgrsn - n; ande is the digamma function, the derivative of the tdghe
gamma function . Then, making use of the approxomaif ¢ suggested by Gradshteyn and Ryzhik [14]a(n) = log (n)
- (I/n)(1/2+1/12n)

k1
E(-2l0g@,)) = k ~ 1~ 2nlog(k) +2_,(n log(n) — n; log(m))+ =5 Jn,. - (l_ﬁ (11)
~ k-1 ,
Forn=ky,, np=m=--—-- =n., and large sample sizes , the expected valug(@[pis equal to that of¢Z_, random

variable . For the normal ratio , it would be = (n; — 1)/2 in place of they;’s , showing that the large sampfé
approximation for the Laplace likelihood ratio wddde a better approximation for the same sampéersizassuming the
distributional assumption concernifig

The assumption of an expected value of zeroofprréturns is often made in financial time serieeturns, but in most
problems , the expected value would be unknownl th& median of the observations of a specificifi@ntwould be used.
The median is a maximum likelihood estimator anddyapproximation can be expected for reasonalde Isample sizes.
2.2: Statement of the problem
Consider a simulation study of sample size n =f2&itioned into k = 5 equal parts such that congpamere made
amongst the estimated: i). expected mean aiipuce, with their respective theoretical valieeshow if the generated
simulation results is close to Gaussian curve tonea

3.0: Results and Discussion

In Figure 1 , the histogram of simulated and exgedtequencies of 1000 ratio is shown . The ratiese calculated
using Gaussian white noise series . PHeare estimated using the median as the estimater of, 431/2le ¢3j , iIs shown
in Figure 1 . The expected values are from a bistelslition with parameters; =40, n-n,; = 160 . The expected mean
was 0.199875 compare with the theoretical valued.@f , and the estimated variance 7.9740e-004 cadpaith the
theoretical value of 7.9602e-004 . While Tablerevealed the descriptive statistics summary feoilveta distribution .
However, since the estimated expected mean an@ncar were close to the respective theoreticalegaluConsequently,
Fiqure 1, shows a better approximation resuitg¢ifersimulated data with a well displaced normah(&sian ) curve .

The sample size of n =200 is not very large ftime series. It can be seen that the ratios otttienatedp;'s to the
sum of thep;'s are approximately beta distributed for this sangute
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Figure 1: Simulated ratios and the expected fregjesrof the beta density

Table 1: Descriptive Statistics Summary from a Beta disttitn

X
Mean 0.1998750
Median 0.1999720
Maximum 0.2946600
Minimum 0.0944350
Std. Dev. 0.0282400
\Variance 0.0007974
Skewness 0.0077680
Kurtosis 3.0322540
Jarque-Bera 0.2670220
Probability 0.8750180
Observations 1000

In addition, the generated simulation data obtaineithe given problem in section (2.2) were usetesi and compare
the asymptotigy? approximation of Ay, A, of the likelihood ratios and Brown-Forsythe vaoatof the Levene tests at
x = 0.05 level of significance . Since series of n = 20@aWations , partitioned into k = 5 , were simulal®00 times .
The expected values for the normal and Laplateapproximation are k — 1 = 4 , and for the Levetadigtic [2] , the
expected value ofF,.,4¢ variable is 1.0103 . The following data was getegtan Table 2: normal white noise , white noise
from the Laplace distribution , and independenugalfrom the stable distribution with index= 1.9 and 1.5.

Time series were also generated to check thetsestien the test is used for checking a constandnee in residuals .
The series generated were an AR(1) and a Garabssefihe disturbance terms are normally distributEde Garch series is
the IGARCH(1,1) fitted by Tsay [17] to excess rati The results are shown in Table 2.
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Table 2: Results of simulation study comparimg likelihood ratio tests and the Levene test

Laplace Normal Levene
Proportion  Mean of Proportion Mean of Proportion  Mean of
Rejected -2log(1;) Rejected -2log(Ay) Rejected Levene W)
Gaussian White
Noise 0.0020 2.3277 0.0500 4.0783 0.0430 0.9455
Laplace White Noise 0.0570 4.0606 0.4250 9.7604 84M0 1.0904
t-distribution
(df = 4) White Noise 0.0560 4.0253 0.5240 13.8947 0.1120 1.2181
Stable ¢ =1.5) 0.4880 19.2967 0.9370 107.9499 0.3410 3.5335
Stable ¢ =1.9) 0.0530 4.3012 0.3950 23.5564 0.1190 1.5190
AR(1) p;=0.1 0.0040 2.3710 0.0630 4.1258 0.0450 0.9491
AR(2) p;=0.5 0.0290 3.5989 0.2140 6.4760 0.1590 1.4636
IGARCH(1,1) 0.7890 34.6704 0.9410 83.8057 0.6970 97725

Both tests are sensitive to heteroscedasticity tHauLaplace likelihood ratio tesf() is less sensitive when testing for a
constant variance for non-Gaussian white noisegesthe normal likelihood ratio testif,) can be very sensitive and
effective only in the normal data case. Itisiiesting to note that both tests are sensitivertgelautocorrelation in the series
and also when the variance is infinite for statdtadvithec < 200 . The stable noise with index= 1.9 is close to Gaussian
, but theoretically only B(*) is finite . All the tests detect that the semdgth « = 1.5 is not second-order stationary . The
tests are not very sensitive when autocorrelatoprésent in the AR(1) models, but the sensitiiyreases as the first-
order autocorrelation increases . All the testeeisily Laplace Likelihood ratio testA{) easily detect the heteroscedasticity
in the IGARCH(1,1) model .

4.0 Conclusion

The Laplace likelihood test performs much bettedata with heavier tails ,and better than the Bréwnrsythe variation
of the Levene test , for example , in the caséheftidistributed series . The normal likelihoodadest is only effective in
the normal data case . It seems that these testseasitive for serial correlation and heterosdézifysin series and can be
used as a check for white noise in residuals. ®eedai filtering as proposed by Lumsdaine and Ng [ be applied to
investigate and improve results when testing faetwscedasticity where serial correlation is presetime series models.
An investigation into the use of size-adjustment a@prove the effectiveness of Laplace likelihoedio test 1, ,
especially when working with GARCH type series.
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