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Abstract 

 
In this paper,  the likelihood ratio test for heteroscedasticity, assuming the Laplace 

distribution is discussed and shows to give  good  approximation results for Gaussian 
and fat-tailed data . The drawback of the likelihood ratio test , assuming normality, is  
that, it is highly sensitive to any deviation from normality, especially when the 
observations are from a distribution with fat tails. However, in this work, it is  affirmed 
that the Laplace likelihood ratio  test can also be used as a  more  robust test for a 
constant variance in residuals or time series if the data is partitioned into groups, than 
the Normal likelihood ratio test . 
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1.0 Introduction 

The likelihood ratio test for equal variances will be derived under the assumption of Laplace or double exponential 
distributed observations or residuals. The excess kurtosis of this distribution is three and it is leptokurtic. It is shown that the 
likelihood ratio test for the equality of variances when assuming the Laplace distribution for the residuals is more robust than 
the normal one. The distributional properties of this Laplace Likelihood ratio test are very similar to that when normality is 
assumed, but with a better approximation in the asymptotic chi-square approximation of the log-likelihood than the normal 
case. 

One of the factors to be considered when checking the fit of a model in time series is to see if the residuals are white 
noise. The use of volatility models for log returns attracted a lot of attention in the last few years, and Autoregressive 
Conditional Heteroscedasticity (ARCH)  and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models 
are fitted when heteroscedasticity is present [1] .  A test for a constant variance after partitioning the residuals, suitable for 
observations from a distribution with fatter tails than a normal, can also be used to check for white noise. 

The tests of Levene [2], Brown and Forsythe [3] and Gastwirth et al [4] are often used as a more robust tests than the 
normal likelihood ratio test for the equality of variances in general statistical tests, for examples, ANOVA’s (Analysis of 
variance ), Bootstraps methods can also be helpful to investigate the distribution of test statistics in these problems. A review 
and some suggestions are given in the paper of Boos and Brownie [5]. A simulation study comparing the methods shows 
much more robust performance of the Laplace Likelihood  ratio than the normal likelihood ratio and Levene test. 

Assume, that a total of n independent observations ���� , t =1,……,n , from a normal distribution, are available. There 
are k group with sample sizes n1,………, nk . When equal sample sizes are under consideration, it will be assumed that n = 

kn0 . Let  �����	=∑ ��� � �
��	���� ,  j =1,………, k denote the estimated variances for each partition , where �
� denotes the 

sample mean of the jth group or partition. The term �����	/�	 ~���� �	  is a gamma variable with parameters ( nj -1)/2 , ½ . 

In the case of equal variances . The normal likelihood ratio test  �� proposed by Mood, Graybill and Boes [6]  for the 
hypothesis of the equality of variances , H0 : ��	 �....=��	 � �	, for normal data is given as  

                                                  �� �  ∏ ����� !�/�#�$%
�∑ ������/�#�$%  !/�                                                                      (1) 

A weak point of the statistic ( Normal likelihood ratio test , �� &  is that it is very sensitive to deviations from normality. 
The statistic and its asymptotic chi-square approximation, -2log( ��) , was studied widely and many corrections were 
suggested to improve the approximation. The ideas and results of Bartlett [7] and Box [8,9] were the basis for many of the 
asymptotic corrections later derived for the statistic. They considered the statistic M1 : 
 
Corresponding author: H.  Akewe,   E-mail: amalareasm@yahoo.com-, Tel. +2348023998403 

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 389 – 394   



390 

 

The Performance of Laplace  Likelihood Ratio Test for... Amalare J of NAMP 
 
 
                 M1 = ( n – k)log(�	&  - ∑ ' �� � 1&���� log ( ��	) 

��	 �  ∑ ' ����&����#�$%
'��� &        ,  (�� � 1&���	 = ∑ ' �� � �
�&	��

�  ,                    j = 1,………., k .                        (2) 

Let vj = nj – 1 , j = 1,……, k . M1 can be denoted in the normal case  as M1 ( 0 ; v1,……., vk ) , where the zero indicates 
excess kurtosis of zero. The statistic can be generalized to M1 ()21,…….,)2k ; v1,………, vk ) , where each of the k variance 
estimates is from a population with a different kurtosis , )2j , j = 1 ,……,k . It is shown that if the kurtosis is equal to )2 for the 
k samples, Box [9] , the statistic is distributed as *��M1 (0; *+�,…….……., *vk ) , * = ( 1 + ' 1/2-�&�� , in large samples , 
for any distribution having finite cumulants . Or that the statistic is distributed as                         ( 1 + ' 1/2&-�����	  in large 
samples . 
To find the moments of the log-likelihood ratio  was no problem, but the exact distributions of ��  and also log(��& are both 
extremely complex and not practical to use. The multivariate version of the normal likelihood tests concerning covariance 

matrices is covered in detail in the book of Muirhead [10]. The Normal  likelihood ratio �� is an interesting statistic, and ��
	/� 

can be viewed as the ratio of the geometric mean of the estimated variances to the arithemetic mean of gamma variables, 
which is equal to one, only when the individual terms are independent and equal. The ratio of the geometric mean to the 
arithmetic mean of gamma variables was studied by Glaser [11]. Another way to look at �� is to notice that it can be written 
as the product of Dirichlet random variables, or in this paper, it will be considered as the product of the beta random 
variables. Let  

                                            .� =       
������

∑ ������#�$%
 

                                                  =       
����

∑ ����#�$%
                for equal sample sizes .                   (3)                                                                    

This ratio has a beta distribution with parameters /� � ����
	 ,    v = (n – k)/2 . The normal  likelihood ratio test  can be 

expressed in terms of the product of beta random variables and  

                                              ��	   =      
∏ '����&!�#�$%

'∑ �����/!�#�$% &! 

                                                    =         
' �!/ ∏ ��!�#�$% & ∏ ������� !�#�$%

' ∑ ������#�$% &!                                                (4) 

                                                    =          
�! ∏ ����� !�#�$%

�∑ ����#�$%  !  

                                              ��	        =          1� ∏ .��2����  
The product of beta and Dirichlet random variable was studied by Springer and Thompson [12] and Rogers and Young [13]. 
The resulting density is complicated and expressed in terms of the Meijer’s G and H-functions proposed by Gradshteyn and 
Ryzhik [14]. It will be shown that the likelihood test derived from residuals which have the Laplace distribution can also be 
expressed as a product of the beta random variables for large sample sizes. 
 
2.0 :  Methodology 
2.1 :  Laplace Likelihood Ratio for Distributed Variables 
The Laplace or double exponential density is given by  

             P(x) =  
�

	3 exp �� |8 �  9|
3    ,    - ∞ ˂ x ˂  ∞ ,       3 : 0                                                          (5) 

The variance is 23 and the median of  the observations is the maximum likelihood estimate of the mean <. The maximum 
likelihood estimate of 3 is ∑ '=>� � <?=&/�����  for a sample of size n , where <? denotes the estimated median.  For < known ,  
∑ �|>� � <|����� /�  is distributed as a '2�&��˂�	�	  variable. The properties of the Laplace distribution are reviewed in the 

book of Johnson et al [15]. The variance of the median is O(���), and the absolute deviations |>� � <?|, j = 1,….., n , are 
asymptotically independent [16]. 
For the series u1, . . . . , un partition into k parts, the Laplace likelihood ratio �@ , for the test 
H0 : ˂ 1 = ……..= ˂ k = ˂         ,  is  

                                            �@  � 
∏ AB�

!�#�$%
AB !              ,                                                                                (6) 

With  C?� � ∑ '=>� � <?�=&/������  and C? � (1/n)(��C?� D E D ��C?�) . 
       For equal sample sizes , �F , the ratio is simplified to  
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       �@  �  1� ∏ G AB �
∑ AB �#�$%

H
�2����                 ,                                                     (7) 

and ��/� is proportional to the geometric mean of the ratios. If < was known, the ratio C?�/ ∑ C?�����  has a beta distribution 
with parameters ��,   n -  �� . This variance is approximately half that of the beta variable for the normal case . Terms 
involving the distribution of the sum of the log of powers of beta random variables are found in the normal and Laplace 
likelihood ratios . The moment-generating function of the log of a beta variable with parameters �� and n - �� to a power is  

                                                    φ(t) = E( log( I�JKL8M
)) 

                                                              =  E(>�N) 

                                                              =   
O'�& O ' ��PN�&
O ' �PN�& O '��&        ,                                                                  (8)  

And  the log of the moment- generating function of the sum of k ,  such  variables is  
E( log(φ(t))) = k log(Q(n))- k log(Q(��))+∑ log 'Q'�� D UV&&���� - k log(Q(n+ht)) ,           (9)  
Showing that the expected value of  -2log(�@) found from the cumulant generating function is 

                                                   E( -2log(�@)) = -2nlog(k) - 2∑ W'log '>�
��&&����  

                                                                          = -2nlog(k)- 2∑ '��X���� � ��X'�&&����                 (10) 
Where >� denotes a beta variable with parameters �� , n -  �� and φ is the digamma function, the derivative of the log of the 
gamma function . Then, making use of the approximation of  φ suggested  by Gradshteyn and Ryzhik [14] ,     φ(n) Y log '�& 
- (1/n)(1/2+1/12n)  

    E(-2log(�@&) =  k – 1 – 2nlog(k) +2∑ '�� log'�& � �� log����&���� + ∑ �#�$%
'�PZ��

  -  
�

'��Z�          (11) 

                               Y    k – 1    , 
For n = k�F , n0 = n1= -----= nk , and large sample sizes , the expected value -2log(�@& is equal to that of  ����	  random 
variable . For the normal ratio , it would be  /� � '�� � 1&/2  in place of the ��′[ , showing that the large sample �	 
approximation for the Laplace likelihood ratio would be a better approximation for the same sample size n , assuming the 
distributional assumption concerning < 
  The assumption of an expected value of zero for log returns is often made in financial time series of returns, but in most 
problems , the expected value would be unknown , and the median of the observations of a specific partition would be used. 
The median is a maximum likelihood estimator and good approximation can be expected for reasonable large sample sizes. 
2.2: Statement of the problem  
Consider a simulation study of sample size n = 200 partitioned into k = 5 equal parts such that comparism were made 
amongst the estimated:   i).  expected mean   ii) variance,  with their respective theoretical values to show if the generated 
simulation results is close to Gaussian curve in nature . 
 
3.0:  Results and Discussion 

In Figure 1 , the histogram of simulated and expected frequencies of 1000 ratio is shown . The ratios were calculated 
using Gaussian white noise series . The C?′[ are estimated using the median as the estimator of  <  . , C?�/ ∑ C?�����  , is shown 
in Figure 1 . The expected values are from a beta distribution with parameters  �� � 40 ,   n -  �� � 160 . The expected mean 
was 0.199875 compare with the theoretical value of 0.2 , and the estimated variance 7.9740e-004 compared with the 
theoretical value of  7.9602e-004 . While Table 1 , revealed  the descriptive statistics summary from a beta distribution . 
However,  since the estimated expected mean and variance were close to the respective theoretical values . Consequently,  
Fiqure 1, shows a better approximation resuits for the simulated data with a well displaced normal ( Gaussian ) curve . 

The sample size of  n = 200 is not very large for a time series. It can be seen that the ratios of the estimated C� ′[ to the 
sum of the C�′[ are approximately beta distributed for this sample size 
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X 
Figure 1: Simulated ratios and the expected frequencies of the beta density 

 
Table 1: Descriptive Statistics Summary from a Beta distribution  

 X 
 Mean  0.1998750 
 Median  0.1999720 
 Maximum  0.2946600 
 Minimum  0.0944350 
 Std. Dev.  0.0282400 
Variance  0.0007974 
 Skewness  0.0077680 
 Kurtosis  3.0322540 
 Jarque-Bera  0.2670220 
 Probability  0.8750180 
 Observations  1000 

 
In addition, the generated simulation data obtained in the given problem in section (2.2) were used to test and compare 

the asymptotic �	 approximation of  �� , �@ of the likelihood ratios and Brown-Forsythe variation of the Levene  tests at 
^ � 0.05  level of significance . Since series of n = 200 observations , partitioned into k = 5 , were simulated 1000 times .  
The expected values for the normal and Laplace �	 approximation are k – 1 = 4 , and for the Levene statistic [2] , the 
expected value of  ab;�dZ variable is 1.0103 . The following data was generated in Table 2: normal white noise , white noise 
from the Laplace distribution , and independent values from the stable distribution with index ^ � 1.9 and  1.5 . 

 Time series were also generated to check the results when the test is used for checking a constant variance in residuals . 
The series generated were an AR(1) and a Garch series . The disturbance terms are normally distributed . The Garch series is 
the IGARCH(1,1) fitted by Tsay  [17] to excess returns. The results are shown in Table 2. 
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Table 2:    Results of simulation study comparing the likelihood ratio tests and the Levene test 
 

 Laplace Normal Levene 
 Proportion 

Rejected 
Mean of 
-2log(�@) 

Proportion 
Rejected 

Mean of 
-2log(��) 

Proportion 
Rejected 

Mean of 
Levene W) 

Gaussian White 
 Noise 

 
0.0020 

 
2.3277 

 
0.0500 

 
4.0783 

 
0.0430 

 
0.9455 

Laplace White Noise 0.0570 4.0606 0.4250 9.7604 0.0840 1.0904 
t-distribution 
(df = 4) White Noise 

 
0.0560 

 
4.0253 

 
0.5240 

 
13.8947 

 
0.1120 

 
1.2181 
 

Stable (α =1.5) 0.4880 19.2967 0.9370 107.9499 0.3410 3.5335 
Stable (α =1.9) 0.0530 4.3012 0.3950 23.5564 0.1190 1.5190 
AR(1) f1 = 0.1  0.0040 2.3710 0.0630 4.1258 0.0450 0.9491 
AR(2) f1 = 0.5 0.0290 3.5989 0.2140 6.4760 0.1590 1.4636 
IGARCH(1,1) 0.7890 34.6704 0.9410 83.8057 0.6970 7.9725 

 
Both tests are sensitive to heteroscedasticity , but the Laplace likelihood ratio test ( �@) is less sensitive when testing for a 

constant variance for non-Gaussian white noise , since the normal likelihood ratio test ( ��) can  be very sensitive and 
effective only in the normal data case.  It is interesting to note that both tests are sensitive to large autocorrelation in the series 
and also when the variance is infinite for stable data with ̂  g 200 . The stable noise with index ^ � 1.9 is close to Gaussian 
, but theoretically only E(>^ ) is finite . All the tests detect that the series with ^ � 1.5 is not second-order stationary .  The 
tests are not very sensitive when autocorrelation is present in the AR(1) models, but the  sensitivity increases as the first-
order autocorrelation increases . All the tests especially Laplace Likelihood ratio test  ( �@) easily detect the heteroscedasticity 
in the IGARCH(1,1) model . 
 
4.0 Conclusion 

The Laplace likelihood test performs much better on data with heavier tails ,and better than the Brown-Forsythe variation 
of the Levene test , for example , in the case of the t-distributed series . The normal likelihood ratio test is only effective in 
the normal data case . It seems that these tests are sensitive for serial correlation and heteroscedasticity in series and can be 
used as a check for white noise in residuals. The use of filtering as proposed by Lumsdaine and Ng [18] can be applied to 
investigate and improve results when testing for heteroscedasticity where serial correlation is present in time series models. 
An investigation into the use of size-adjustment can improve the effectiveness of  Laplace  likelihood ratio test   �@  , 
especially when working with GARCH type series. 
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