
341 

 

Journal of the Nigerian Association of Mathematical Physics 
Volume 23 (March, 2013), pp 341 – 346           

© J. of NAMP 
 

Stochastic Decomposition in Non- Work Conserving Queues with Multiple Input Stream 
 

T. O Ogunlade1, O. O Ugbebor2, J. O Okoro3 
1Department of Mathematical Sciences,  

Ekiti State University Ado- Ekiti, Ekiti State. 
2Department of Mathematics,  
University of Ibadan, Ibadan 

3Department of Mathematical and Physical Sciences,  
Landmark University, Omu-aran, Kwara State 

 
                       Abstract 

 
      Queues in which the server takes vacations or breaks down arise naturally as models for 

a wide range of computer, communication and production systems. We consider stochastic 
decomposition in non-work conserving queue with two independent input streams. One of the 
inputs to the queue is an independent and identically distributed process whereas the other is a 
general process and it is not required to be Markov nor is it required to be stationary. Time is 
divided into slots and the service interruption process is general. We show that the virtual 
waiting time in each slot in the queue is conditionally decomposed into two independent terms.  
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1.0    Introduction 

Queuing theory involves the mathematical study of waiting lines. A queue system is a system consisting of flow of 
customers requiring services where there are some restrictions in the services that can be provided [1 - 10]. We can 
identify three main elements of a service centre: a population of customers, the service facility and the waiting line. 
Queuing theory tries to answer questions like, the mean waiting time in the queue, the mean waiting time in the queue, the 
mean response time (waiting time in the queue plus service time), mean utilization of service facilities distribution of the 
number of customer in the queue and so forth. These questions are mainly investigated in a stochastic scenario, where for 
example, the inter-arrival times of the customers or service times are assumed to be random. Waiting systems that admit 
interruptions of service often appear when the server uses idle periods of time of one queue or one task to serve clients in 
another queue or to perform another task. What matters is that, for these idle periods, the server is not available or 
operational for new arrivals to the system. Among other applications, these waiting systems appear as models for 
computer networks, telecommunications, production and quality control. The study of queuing systems with service 
interruptions has received a significant amount of attention of the researcher in the field. One type of service interruption 
has already been considered in the context of vacation queues where interruptions only happen as soon as the queue 
becomes empty. These vacation models are shown to exhibit a stochastic decomposition property. The stationary number 
of customers in the system can be interpreted as the sum of the state of corresponding system with no vacations and 
another non negative discrete random variable. A corresponding decomposition result occurs for the waiting time 
distribution as well. 

A study on stochastic decomposition in the M/G/1 queue with generalized variations was carried out by Fuhrmann 
and Cooper [10]. They considered a class of M/G/1 queue models with a server who is unavailable for occasional 
intervals of time. As has been noted by other researchers [1, 2, 3, 4, 5, 9], for several specific model of this type, the 
stationary number of customers present in the system at a random point in time is distributed as the sum of two or more 
independent random variables, one of which is the stationary number of customers present in the standard M/G/1 queue 
(i.e. the server is always available) at a random point in time. Ishizaki, et. al [6] considered a discrete time queue with 
gated priority. The system consists of two queues and a gate. Ordinary customers arrive at the first queue at the gate in 
batches according to a batch Bernoulli process (BBP). When the gate opens, all ordinary customers at the first queue 
move to the second queue at a single server.  
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It is assumed that intervals between successive openings of the gate are independent and identically distributed (i.i.d) 
and bounded. Furthermore, the travel times from the first queue to the second queue are assumed to the zero. The gate 
closes immediately after all the ordinary customers who are waiting in the first queue move to the second queue. In 
addition, there are also priority customers who directly join the second queue upon arrival. The arrival process  
of priority customers is assumed to be a BBP. The server only serves customers in the second queue. Service times of 
ordinary customers are i.i.d. according to a general distribution function. Also, service times of priority customers are 
i.i.d. according to a general distribution which may differ from that for ordinary priority customers. Since priority 
customers do not need to wait for the gate opening, they have priority over ordinary customers. Therefore, they called this 
system, a queue with gated priority. For this queue, they derived the probability generating function for the amount of 
work in the system, the waiting times and the length of high priority and low propriety (ordinary) customers under the 
assumption of bounded gate opening intervals. Other work conserving queues which have been studied include an M/G/1 
queueing model in which the server must search for customers [7, 8].  

In this work we will consider stochastic decomposition in non-work conserving queue with two independent input 
streams. We will study three queues; the first queue has two input streams which are represented by A- and B- processes. 
The server in the first queue is subject to break down and the availability of the server in the first queue is determined by 
a stochastic process. The second queue with independent and identically distributed (i.i.d) input stream has only one input 
stream which is stochastically identical to the B-process. The server in the second queue with i.i.d. input stream is always 
available. The Third queue has only one input steam which is represented by the ��-process constructed from the A- and �-processes and the distribution of a delayed busy period in the second queue with i.i.d. input stream, the server in the 
third queue is also subject to break down and the availability of the server in the third queue is also determined by the δ-
process. We focus on the virtual waiting-time process in the first queue, that in the second queue with i.i.d. input stream 
and that in the third queue which are denoted by  �����	
� , �
���	
�  and ������	
� respectively. 

It will be shown that the virtual waiting time in each of the slot in the first queue is (in a sense “conditional 
distribution”) decomposed into two independent terms: The virtual waiting time in the second queue with i.i.d. input 
steam and a quantity which is closely related to the virtual waiting time in the slot in the third queue. It is assumed that all 
stochastic processes and random variables are defined on a common probability space  �Ω, �, ��. Also, all random 
variables described in this section are �-integrable. 
 
2.0 Virtual and Actual Waiting Time  
 The time interval during which the server is continuously busy is called a busy period. In other words, if the nth customer 
finds the server idle, a new busy period begins at time ��. Let �� denote the number of customers in the system a time t. 
The event �� �  � is the event that at time t, the server is busy and there are � � 1 customers waiting.  
The virtual waiting time at time t is defined as the length of time a (virtual) customer who arrives at time t has to wait 
before starting service.  
Let ���� denote the stochastic process defined at each instant t as the time elapsing from t until the server completes 
serving customers entering the queue before t. If at instant t, the server is free, ����  �  0. Denote the arriving time of 
customers by � , �!, �",###. Then for �� $  � $  ��%  The process ���� is defined by 

���� �    0                                 &'     ���� ( � � ��  ���� � �� � ���    &'     ���� ) � � ��                           �2.1� 

for � � �� we have equality ���� , 0� �  ���� � 0� , -�                                                       �2.2� 
where - denotes the service time for customers arriving at time ��. The process ���� is called virtual waiting process. It is 
a Markov process. Physical situations in which the total time required to serve any specified group of customers is 
(nearly) independent of the order in which these customers are served, such a system, is called Work-conserving queue, 
work being identified as the amount of service time. In a work-conserving queue, the service time of a customer is not 
affected by the order in which customers are served. 
 
3.0 The Pollaczek-Khinchin Transform Equation 
Suppose the a service times of different customers are independently distributed with a random distribution function B(t) 
which is not necessarily of a particular simple mathematical form. The arrival process is a Poisson process with parameter 
λ. Next, the family of random variables ./ denotes the number of customer arrival in the ith service. Denote N(t) as the 
number of customers in the system at time t. Now we define  0/ � 0��/� 
And it is straightforward to establish the following recurrence equation 0/1 � �0/ � 1�1 , ./ 
Where �2�1 3�  max�0, 2�. 
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This equation means that the number of customers in the system t time ��1  is given by the number at �� minus the 
customer leaving the system plus newly arriving customers. Additionally, we assume that 06  �  0. If the system is in  
steady state, the time dependency disappears in the long run and the random variables 0/   and ./   converge to random 
variables N and V respectively. Taking limits yields 
  0 �  �0 � 1�1 , 7                                        (3.1) 
Let 89(z) be the probability generating function of N. From the last equation and from convolution property of 
probability generating function, we have,  89�z� �  8�9% ���z�.�;� �  89% �z� # 8<�;�                                                                         (3.2) 
From definition 89(z) = ∑ �>�0 �  ?�;@A@B6  
Also, from the definition of probability generating function we have 8�9% ���z� = ∑ C�>�� � 1�1 � & D;@A@B6   
The random variable �0 � 1�1 take the value zero if and only if N = 0 or N = 1 holds. Thus, we have Pr C�0 � 1�1 � 0]=PrC0 � 0D , Pr C0 � 1D 
On the other hand, �0 � 1�1 takes the value &�& G  0� if and only if 0 �  & , 1, 
thus, 
  �>C�0 � 1�1  �  0D  �  �>C0 �  & , 1D.      (3.3) 
Collecting like terms yields 

8�9% ���z� � �PrC0 � 0D , PrC0 � 1D�;6 , HCPr�0 � . , 1� � & D;<
A

<B 
 

� PrC0 � 0D , 1; IPrC0 � 1D ; , HCPr�0 � .� D;<
A

<B!
J 

� PrC0 � 0D ,  
K C89�z� � PrC0 � 0D                          (3.4) 

If we take L as the utilization of the server, then the server will in steady state be free with probability 1 � L. Thus we 
have �>C0 �  0D  �  1 � L, yielding 

8�9% ���z�  � HCPr�. customers arrive during service time� D;<
A

<B6
 

� HCPr�7 � .� D;<
A

<B6
 

In order to compute �>C7 �  .D, we use the continuous analogue to the law of absolute probability by looking at all 
possible interval length, which yields 

CPr�7 � .� D � V W�., X2�Y�2�Z2A
6  

where b(x) is the probability density function of service time distribution B. Now we collect all together and get 

8<�z� � H V p�i, X2�A
6

A

\B6
Y�2�Z2 · ;/ 

� H V X2i!
A

6 e%_`
A

\B6
Y�2�Z2 · ;/ 

� V e%_`A
6 H X2;/

i! Y�2�Z2
A

\B6
 

� V e%_`e_`KY�2�Z2A
6  

� V e%_`� %K�Y�2�Z2A
6  

  � abcX�1 � ;�d                                             (3.5) 

where ab�e� � f g%h�Zi���A6  is the Laplace-Stietjes transform of the service time. Now we can plug all our result back 
into the equation to arrive at 

89�z� � jk�l�1� %m�� %l�
K · abcX�1 � ;�d                         (3.6) 
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Which we can rearrange to get 

 

89�z� � abcX�1 � ;�d · �1 � ρ��1 � z�
abcX�1 � ;�d � ;                                 �3.6� 

which is the Pollaczek-Khinchin Transform equation. 
 
4.0  The Queues 
First, the virtual waiting-time process in the first queue is described. The queue has two independent input streams. The 
server is subject to breakdown and the availability of the server is stochastically determined by �δ���	
� on{0,1} called 
the δ-process. To describe the two input streams, introduced are two stochastic processes, �����	
�and �i���	
�which 
represents the amount of work brought into the first queue in each slot. The processes ���} and �i�} are called the A-
process and B-process, respectively.  Let  ��, (� 	 
1) denote a random variables on 
1 representing the virtual waiting 
time in the first queue in the nth slot. The virtual waiting time process evolves from initial state �6 according to the 
following recursion formular  ��1  �  ��� � δ��1 , A� , B�                                          �4.1�  
 A−and the δ-processes are not enquired to be Markov. Also, they are not required to be stationary or ergodic. A 
dependency between A- process and δ-process is allowed. For example, �� may depend on ��u�uv� due to some control 
mechanism. Let an increasing sequence of sub-w-field ���� �	
�and a sub-w-field �A of � be defined by ��  �  w��6,### , ��, �6,### , ��� and �A  �  w���, ��� 
The process �i���	
� is an i.i.d. sequence which is independent of w��6� x �A. Furthermore, the traffic intensity of B-
process is less than one. (That is, Lb � zCi�D $ 1). For any sub-w-field { | �, a generating function ��}�· |{� associated 
with the virtual waiting process in the first queue is defined by ��}�;|{� � zC;��|{D. Also, a generating function, i}��� 
associated with the B-process is defined by                                                  i}�;� � zC;b�D                                            �4.2�. 
Next, the virtual waiting-time process in the second queue with i.i.d. input stream, which is stochastically identical to the 
B-process is described. The server is always available. Let  
� denote the virtual waiting time in the stationary queue with 
i.i.d. input stream in the nth-slot. The process 
� evolves according to the following recursion  
 
�1  �  �
� � 1�1 , i�                                                        �4.3�    
That is, the number of customers in the system at instant ��1  is given by the number of customers at time �� minus the 
customer leaving, plus newly arriving customers. It is known, under stability condition,  Lb $ 1.  It is assumed that {
�} 
is stationary. Let 
}��� denote the generating function of the virtual waiting time 
� in the second queue with i.i.d. input 
stream. 
}�;� � zC;��D. From the result in section 3.0 it can be seen that  


}�;� � �; � 1�i}�;�
; � i}�;� �1 � Lb�                               �4.4� 

Finally, the virtual waiting time process in the third queue is described. The server in the queue is subject to breakdown 
and the availability of the server is determined by the δ-process in the same manner as the first queue. This third queue 
has only one input stream, which is represented by the ��-process specified below. Let �� denote a random variable on 
1 
representing the virtual waiting time in the queue in the n-th slot. Then 
 ���1 � ���� � ���1 , ��.                                                     (4.5) ���}�;|{� � zC;���|{D� and ���} �;|{� � zC;���|{D�. 
Let �� denote a generic random variable representing a delayed busy period in the second queue with independent and 
identically distributed input stream. The generating function ��  is defined as �}�;� �  z�;�� � � i}c;�}�;�d                                             �4.6�  
Let {� � w���, ���,  with assumption that the conditional distribution of �� is determined by the distribution of delayed 
busy period in the second queue with i.i.d input stream. That is  ���} �;|{�� � �;�}�;�����Ι���B6��}�;� , Ι���B ��                  �4.7� 
Where Ι�·� is the indicator function. 
 
5.0 The Decomposition Result 
To establish the decomposition result, we link the conditional distribution of the initial virtual waiting time in the third 
queue to that of the first queue. �}�;|��� � 
}�;�����;/i}�;�|���                                     (5.1) 
for any � 	 �0, … , � , 1� 
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That is that the virtual waiting time in each of the slot in the first queue is (in a sense “conditional distribution”) 
decomposed into two independent terms: The virtual waiting time in the second queue with i.i.d. input steam and a 
quantity which is closely related to the virtual waiting time in the slot in the third queue. We will show this by induction.  

We allow a dependence between the conditional distribution of the initial virtual waiting time in the first queue and 
that in the third queue. The length of delay cycle starting with �6 (i.e. the initial virtual waiting time in the original queue) 
in the second queue with independent and identically distributed input stream is equal (in the sense in distribution 
conditioned by ��) to the sum of two independent components, one of which is the length of a delay cycle starting with 
6 (i.e. the virtual waiting time in the second queue with independent and identically distributed input stream) in the 
stationary queue stream and the other of which is ��6 . 

That is if there exists a non-negative integer m, such that:  �6}�;|��� � 
}�;���6�;/i}�;�|���.  
For notational convenience, we define ��b � w�i6, … , i�� and �% b � ��, Ω� ��� � δ��1 , A� is a function of ��6, �6, … , ��, δ6, … , δ�, B6, … , B�% �. Thus for � 	 
1 with � ( � ��� � δ��1 , A� 
is w��6� x �� x ��% b � measurable. Since i� and w��6� x �� x ��% b  are independent, thus for any � 	 
1 with � ( � zC;����  |��D � zC;���%����1A�1B�|��D � zCzC;���%����1A�1B�|w��6� x �� x ��% b ��D| ��D � zC;���%����1A�zC;b�D|��D                                               � i}�z�z�;���%����1A�����                                   �5.2) 
On the other hand for � 	 
1 with � ( � since ���, δ�� is  ��-measurable,  z�;���%����1A����� � zCΙ���B6�;���1���|��D , zCΙ���B �;���% ��1A�|��D 
� Ι���B6�;����}�;|��� , Ι���B �;��  

K C�}�;|��� , �; � 1���}�0|���           �5.3�  

From (5.1) and (5.2), we obtain 

��1 } �;|��� � ;��i}�z� ���}�;|���Ι���B6� , ��}�;|���Ι���B ��; � 1���}�0|���
; Ι���B �� 

We define an increasing sequence of sub-w-fields {������	
� of � by  ���� � w���6, … , ��6� and �% �� � ��, Ω� .  ���� � ���1 is wc��6d x �� x ��% �� -measurable and noting that �� | �� we obtain, z�;����� ���� � z�;����%����1A����� � zCz�;����%����1A���wc��6d x �� x ��% �� ���|��D � zC;����%����zC;���|wc��6d x �� x ��% �� D|��D 
Noting that {� | ��  z�;����{�� � zC;���|wc��6d x �� x ��% �� D 
We have  z�;�����  ���� � z�;����%����z�;����{������ � zC;����%����|��] z�;����{�� 
Since �� is ��-measurable, the first term on the right hand side of the above equation becomes z�;�����  ���� � z�Ι���B6�;������� , z�Ι���B �;����% ������ 

� Ι���B6�z�;���|��� , Ι���B �zC�;����% ������ 
� Ι���B6����} �;|��� , Ι���B � 1; C���}�;|��� , �; � 1����}�0|��� 

���1 } �;|��� � ���;|{�� ����}�;|���Ι���B6� , ���}�;|��� , �; � 1����}�0|���
; Ι���B �� 

Equation (5.1) holds when n=0, suppose it holds for some � � ? �? ( �� then,  �}�;|��� � 
}�;���@�;/i}�;�|��� 
For n=k+1, we have 

�@1 } �;|��� � ;��i}�;� �
}�;���}@�;/i}�;�|���Ι���B6�

, 
}�;���}@�;/i}�;��|��� , �; � 1��1 � Lb���@}�0|���
; Ι���B �� 
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� ;��
}�;� �i}�;���}@�;/i}�;�|���Ι���B6� , i}�;���}@�;/i}�;�|��� , c; � i}�;�d��@}�0|���
; Ι���B ��   �5.4� 

��}@�;/i}�;�|���  � ��@} �;
/i}�;�|{@� ���}@�;/i}�;�|���Ι���B6� , i}�;���}@�;/i}�;�|��� , �; � i}�;����@}�0|���

; Ι���B �� 
� ;���Ι���B6�i}�;� , Ι���B �� ���}@�;/i}�;�|���Ι���B6�

, i}�;���}@�;/i}�;�|��� , c; � i}�;�d��@}�0|���
; Ι���B ��              

� ;�� �i}�;���}@�;/i}�;�|���Ι���B6� , i}�;���}@�;/i}�;�|��� , c; � i}�;�d��@}�0|���
; Ι���B �� … … �5.5� 

From (5.4) and (5.5) it is derived that for ? ( � �@1 } �;|��� � 
}�;���@1 �;/i}�;�|��� 
Conclusion 
It has been shown that the virtual waiting time in each of the slot in the first queue is (in a sense ”in conditional 
distribution”) decomposed into two independent terms: The virtual waiting time in the second queue with i.i.d. input 
stream and a quantity which is closely related to the virtual waiting time in the slot in the third queue. It is assumed that 
all stochastic processes and random variables are defined on a common probability space �Ω, �, ��.  
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