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Abstract

Queues in which the server takes vacations or breaks down arise naturally as models for
a wide range of computer, communication and production systems. We consider stochastic
decomposition in non-work conserving queue with two independent input streams. One of the
inputs to the queue is an independent and identically distributed process whereas the other isa
general process and it is not required to be Markov nor is it required to be stationary. Time is
divided into slots and the service interruption process is general. We show that the virtual
waiting timein each dot in the queueis conditionally decomposed into two independent terms.
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1.0 Introduction

Queuing theory involves the mathematical study aitiwg lines. A queue system is a system consistinfipw of
customers requiring services where there are s@sigiations in the services that can be provided [D]. We can
identify three main elements of a service centrg@opulation of customers, the service facility ahd waiting line.
Queuing theory tries to answer questions like niean waiting time in the queue, the mean waitingtin the queue, the
mean response time (waiting time in the queue gpdugice time), mean utilization of service faadgidistribution of the
number of customer in the queue and so forth. Thasstions are mainly investigated in a stochasmario, where for
example, the inter-arrival times of the customarseayvice times are assumed to be random. Waitisgs that admit
interruptions of service often appear when theesenges idle periods of time of one queue or osle tiaserve clients in
another queue or to perform another task. Whatemsais that, for these idle periods, the servemds available or
operational for new arrivals to the system. Amornbeo applications, these waiting systems appeamedels for
computer networks, telecommunications, productiod guality control. The study of queuing systemshvservice
interruptions has received a significant amounttigfingion of the researcher in the field. One typse¥ice interruption
has already been considered in the context of wacaueues where interruptions only happen as ssothe queue
becomes empty. These vacation models are showrhtbitea stochastic decomposition property. Theitary number
of customers in the system can be interpreted estim of the state of corresponding system witlvawations and
another non negative discrete random variable. Akesponding decomposition result occurs for thetimngitime
distribution as well.

A study on stochastic decomposition in the M/G/®wpiwith generalized variations was carried ouEblirmann
and Cooper [10]. They considered a class of M/Qi¢éug models with a server who is unavailable farasmnal
intervals of time. As has been noted by other mebeas [1, 2, 3, 4, 5, 9], for several specific maafethis type, the
stationary number of customers present in the systiea random point in time is distributed as the ©f two or more
independent random variables, one of which is thgosiary number of customers present in the stahb#G/1 queue
(i.e. the server is always available) at a rand@intpin time. Ishizaki, et. al [6] considered aatete time queue with
gated priority. The system consists of two queueba gate. Ordinary customers arrive at the firstuguat the gate in
batches according to a batch Bernoulli process (BBFhen the gate opens, all ordinary customerdatfitst queue
move to the second queue at a single server.
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It is assumed that intervals between successivailng® of the gate are independent and identicédlyiduted (i.i.d)
and bounded. Furthermore, the travel times fromfitise queue to the second queue are assumed etbe The gate
closes immediately after all the ordinary customsh® are waiting in the first queue move to the sdcqueue. In
addition, there are also priority customers whedil join the second queue upon arrival. The atfvocess
of priority customers is assumed to be a BBP. Té@es only serves customers in the second queueic8dimes of
ordinary customers are i.i.d. according to a gdngisdribution function. Also, service times of prity customers are
i.i.d. according to a general distribution which ymdiffer from that for ordinary priority customers. Sinpgority
customers do not need to wait for the gate openi®y, have priority over ordinary customers. Theref they called this
system, a queue with gated priority. For this quéley derived the probability generating functfon the amount of
work in the system, the waiting times and the langft high priority and low propriety (ordinary) dosners under the
assumption of bounded gate opening intervals. Otloek conserving queues which have been studidddecan M/G/1
gueueing model in which the server must searchustomers [7, 8].

In this work we will consider stochastic decompiositin non-work conserving queue with two indepertdaeput
streams. We will study three queues; the first gueas two input streams which are represented tBnd-B- processes.
The server in the first queue is subject to breakrdand the availability of the server in the figsteue is determined by
a stochastic process. The second queue with indepeand identically distributed (i.i.d) input stre has only one input
stream which is stochastically identical to the Bqess. The server in the second queue with inpdit stream is always
available. The Third queue has only one input stednich is represented by theprocess constructed from the A- and
d-processes and the distribution of a delayed besipg in the second queue with i.i.d. input stre#im, server in the
third queue is also subject to break down and #adability of the server in the third queue isabietermined by thé-
process. We focus on the virtual waiting-time prsc the first queue, that in the second queule witl. input stream
and that in the third queue which are denoted Xy} ,cz,, {Un}nez, and {Xn}nez+ respectively.

It will be shown that the virtual waiting time inraeh of the slot in the first queue is (in a sensentitional
distribution”) decomposed into two independent t&rihhe virtual waiting time in the second queuehwit.d. input
steam and a quantity which is closely related éouirtual waiting time in the slot in the third quee It is assumed that all
stochastic processes and random variables are diefimea common probability spacéQ, F, P). Also, all random
variables described in this section &rntegrable.

2.0 Virtual and Actual Waiting Time
The time interval during which the server is contiusly busy is called a busy period. In other woifdthe nth customer
finds the server idle, a new busy period begingat t,,. Let X, denote the number of customers in the systemeattim
The eventX, = nis the event that at time t, the server is busythacte arer — 1 customers waiting.
The virtual waiting time at time t is defined as thegth of time a (virtual) customer who arrivediate t has to wait
before starting service.
Let y(t) denote the stochastic process defined at eachirtsts the time elapsing from t until the servempletes
serving customers entering the queue before t iistant t, the server is freg(t) = 0. Denote the arriving time of
customers by, t,, t5,-. Then fort, < t < t,_; The procesg(t) is defined by

V(O = 0 'lf y®) <t-—-t,

y@O—-@—-t) if yO=2t-t,
for t = t,, we have equality
y(tn + 0) = y(tn - 0) + M0 (22)

wheren denotes the service time for customers arrivintinae t,,. The procesg(t) is called virtual waiting process. It is
a Markov process. Physical situations in which tibgal time required to serve any specified grougwstomers is
(nearly) independent of the order in which thesgt@mers are served, such a system, is called Wworgerving queue,
work being identified as the amount of service tilnea work-conserving queue, the service time etistomer is not
affected by the order in which customers are served.

(2.1)

3.0 The Pollaczek-Khinchin Transform Equation
Suppose the a service times dfelient customers are independently distributed aithndom distribution function B(t)
which is not necessarily of a particular simple meaatical form. The arrival process is a Poissaegss with parameter
L. Next, the family of random variables denotes the number of customer arrival in thes@tvice. Denote N(t) as the
number of customers in the system at time t. Novdefine
N; = N(t;)
And it is straightforward to establish the folloyginecurrence equation
Nipp = (N = DT + v

Where(x)" := max{0, x}.
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This equation means that the number of customethdarsystem t time, ., is given by the number a&f, minus the
customer leaving the system plus newly arriving@uers. Additionally, we assume thégt = 0. If the system is in
steady state, the time dependency disappears ilorigerun and the random variabl¥s andv; converge to random
variables N and V respectively. Taking limits yield

N=(N-Dt+V (3.2)
Let Gy(z) be the probability generating function of N.oFr the last equation and from convolution propesty
probability generating function, we have,

Gy(2) = G(N—1)+(Z)V(Z) = Gy-1(2) - G,(2) (3.2)
From definitionGy(z) =Yoo Pr(N = k)z*
Also, from the definition of probability generatifignction we have
Gn-1y+(2) = Xi=o[Pr(n — Dr=i]z"
The random variabléN — 1)* take the value zero if and only if N = 0 or N #adlds. Thus, we have
Pr[(N —1)* = 0]=Pr[N = 0] + Pr [N = 1]
On the other handN — 1)* takes the valug(i > 0) ifand only ifN = i +1,
thus,

Pr[(N —1)* = 0] = Pr[N = i+1]. (3.3)
Collecting like terms yields

G-+ (@) = (Pr[N = 0] + Pr[N = 1])z° +Z[Pr(N =v+1)=i]z"

v=1

1 fee]
= Pr[N = 0] + ;(Pr[N =117+ ) [Pr(N = v) ]Z")
v=2
= Pr[N = 0]+ [Gy(z) — Pr[N = 0] (3.4)
If we takep as the utilization of the server, then the servidrin steady state be free with probability— p. Thus we
havePr[N = 0] = 1 — p, yielding

Giv-1+(2) = z [Pr(v customers arrive during service time) |z?

v=0

- Z[Pr(V — )]z
v=0

In order to computér[V = v], we use the continuous analogue to the law of lates@robability by looking at all
possible interval length, which yields

[Pr(V=v)]= f p(v, Ax)b(x)dx
0
where b(x) is the probability density function efgice time distribution B. Now we collect all tdber and get

G,(2) = Z pr(i,m b(x)dx - !
0

i=0
©

CAx .
= f —e ¥ b(x)dx -z
o 1!

=0
— o Axzi
=f e xz —b(x)dx
o il

i=0

=f e M eM*Zp (x)dx
0

= f e -2 p(x)dx
0

= Ls(A(1 - 2)) (3.5)
whereLg(s) = foooe‘“dB(t) is the Laplace-Stietjes transform of the servioeet Now we can plug all our result back
into the equation to arrive at

Gy (z) = DDA (21 - ) (3.6)
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Which we can rearrange to get

1- 1-
Gu(@) = Ly (A1 = 2)) 'L((mp)—(z)) >
B

which is the Pollaczek-Khinchin Transform equation.

(3.6)

4.0 The Queues
First, the virtual waiting-time process in the ficgieue is described. The queue has two indepemngautt streams. The
server is subject to breakdown and the availabdftyhe server is stochastically determined{By},c;, on{0,1} called
the 5-process. To describe the two input streams, inted are two stochastic processes, } ez, and {B, }nez, Which
represents the amount of work brought into the fiteeue in each slot. The proces&és} and {B,,} are called the A-
process and B-process, respectively. Ket (n € Z,) denote a random variables @p representing the virtual waiting
time in the first queue in the nth slot. The viftuaiting time process evolves from initial stafg according to the
following recursion formular
Xny1 = (Xn - Sn)+ +A, + B, (41)
A-and theds-processes are not enquired to be Markov. Alsoy tire not required to be stationary or ergodic. A
dependency between A- process ararocess is allowed. For example, may depend 0fd;},<, due to some control
mechanism. Let an increasing sequence ofestibld {F,} ¢z, and a subr-field F,, of ¥ be defined by
F, = (Ao, Ap, 00,0, 0,) @andF,, = 0(4An, 6,)
The proces$B,} ez, iS an i.i.d. sequence which is independent@X,) v F,. Furthermore, the tfic intensity of B-
process is less than one. (Thapig,= E[B,] < 1). For any subz-field g c F, a generating functiok, (- |g) associated
with the virtual waiting process in the first quesedefined byX;.(z|g) = E[z*»|g]. Also, a generating functio®*(-)
associated with the B-process is defined by
B*(z) = E[z5"] (4.2).
Next, the virtual waiting-time process in the setgueue with i.i.d. input stream, which is stocladly identical to the
B-process is described. The server is always dlaildet U,, denote the virtual waiting time in the stationguneue with
i.i.d. input stream in the nth-slot. The proc#&gsevolves according to the following recursion
Un1 = (Un - 1)+ + B, (43)
That is, the number of customers in the systemstantt,,,; is given by the number of customers at titpeninus the
customer leaving, plus newly arriving customerss known, under stability conditiorpz < 1. Itis assumed thatk,}
is stationary. Let/*(:) denote the generating function of the virtual gjttime U,, in the second queue with i.i.d. input
streamU*(z) = E[zU»]. From the result in section 3.0 it can be seen tha
\ (z—1B"(2)
U'(z) = m(l = Pp) (44)
Finally, the virtual waiting time process in therthqueue is described. The server in the quesahgect to breakdown
and the availability of the server is determinedtiys-process in the same manner as the first queus.tiind queue
has only one input stream, which is representeth®yi-process specified below. LEtdenote a random variable @g
representing the virtual waiting time in the qu@uéhe n-th slot. Then
Xn+1 = (Xn - §n)+ + An. R (45)
X5 (z|9) = E[z*"|g]) and4;(zlg) = E[z""|g]).
Let 8 denote a generic random variable representinglayeld busy period in the second queue with indepeindnd
identically distributed input stream. The genemfianctiond is defined as
8*(z) = E[2°%] = B* (20" (2)) (4.6)
Let g, = 0(4,,8,), with assumption that the conditional distributioh4 is determined by the distribution of delayed
busy period in the second queue with i.i.d inprgaain. That is
A (219n) = (20" ()4 [ly5,=00" (2) + Ii5,,-1)] (4.7)
Wherel(-) is the indicator function.

5.0 The Decomposition Result
To establish the decomposition result, we link ¢baditional distribution of the initial virtual wing time in the third
gueue to that of the first queue.
X*(21Fn) = U"(2)Xn(2/B* (2)|F) (5.1)
for anyn € {0, ..., m + 1}
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That is that the virtual waiting time in each oéthlot in the first queue is (in a sense “condaiodistribution”)
decomposed into two independent terms: The virugiting time in the second queue with i.i.d. inptéam and a
guantity which is closely related to the virtualitiveg time in the slot in the third queue. We valow this by induction.

We allow a dependence between the conditionaliloigion of the initial virtual waiting time in thérst queue and
that in the third queue. The length of delay cytlerting withX,, (i.e. the initial virtual waiting time in the oiiital queue)
in the second queue with independent and ideniaitributed input stream is equal (in the sensdistribution
conditioned byF,,) to the sum of two independent components, onghi¢h is the length of a delay cycle starting with
U, (i.e. the virtual waiting time in the second queni¢h independent and identically distributed ingtiteam) in the
stationary queue stream and the other of whidh is

That is if there exists a non-negative integer uchghat:

Xo" (2|Fy) = U*(2)Xo(2/B* (2)1Fpn).
For notational convenience, we defffg = o(B,, ..., B,) and FZ, = {¢, Q}

X, —8,)* + A, is a function of(X,, Ag, ..., Ay, 8¢, ) 81, Bgs -, Bn—1). Thus forn € Z, withn <m (X, — 6,)" + A,
iso(Xy) VFy VFE | — measurable. SinceB,, anda(X,) vV F, vV FEZ_, are independent, thus for anmye Z, withn <m
E[ZXn+1 |Tm] — E[Z(Xn_‘sn)++An+Bn|}'m]
= E[E[z0n 00"+ Ant B0 (X,) V Fy V FE Fop]| Fip]
= E[Z(Xn_‘sn)++AnE[ZBn] |j:‘m]

= B*(2)E[z0n= " +4n|F, | (5.2)
On the other hand for € Z, with n < m since(4,, §,,) is F,-measurable,
E[20n=8m"4An| B, | = E[lis, 200z % 40| B + E[li,20y2 00" 0|y ]
= l(5,=002"" X7 (2| Fp) + L5, =127 i [X*(2|Fm) + (z = DX (0| Fp) (5.3)
From (5.1) and (5.2), we obtain
Xn (2| Fn)lis,=1y(z — D) Xn (0| Fy)
VA

Xns1(2|Fp) = 27 B*(2) | X (2| F) 5,201 + (5n=1}

We define an increasing sequence of stfields {?f}nez+ of F by
FA = o(A,, .., Ay) andFA, = {¢, 0} .
(&n — )t isa(8y) V Fp v FA -measurable and noting thBt c F,, we obtain,
E[Zf(nﬂ | %] = E[Z()?n—5n)++An|g:'m]
= E[E[zFn=00)"+An |6 (X)) V Fpy V FA L Fon]|Fn]

= E[z5n =" E[2%0|6(R,) V B V FA 11| Fn]

Noting thatg,, ¢ %,
E[z%|g,] = E[2%16(8o) V Fp V FA]
We have
E[z%n+1 |Fy]| = E[zEn=0" E[ 240 g, ||Fn] = E[257 00| By E[2%0| g
Sinced,, is F,,-measurable, the first term on the right hand sftthe above equation becomes
E[z%v | B = E[ls,=002 " |Fn] + E[Ii5, 2225V | ]
= lo,=0 E[250|Fn] + 15, = E[[z5n 7| 7,

P 1 ~ ~ K
= I{6n:0}X1§1(Z|Tm) + I{Sn:1}; [Xn (le:m) + (Z - 1)Xn (Ole)

o, . . X, @F) + (z - 1DX, (0|,
Xn1(z|1F) = Azl gn) [Xn (Zle)I{SnZO} +— = Z & =

Equation (5.1) holds when n=0, suppose it holdsfonen = k (k < m) then,
X" (2|Fm) = U™ (2) X, (2/B"(2)| Fp)

{5n:1}]

For n=k+1, we have
Xins (AF) = 244B*(2) [u*(zp?*k(z/B*(z)tFm)lwk:o}

U*(2)X*(z/B* (@) Fp) + (z = (1 — pp) X (0IF,) ]
+ P Its=13
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B ()X (z/B" (2)|Fn) + (2 = B> ()X (0IFn)
Z

= 240" (2) [B*(z))?*k(z/B*(z)|fm>1{5k:o} - 1{5k:1}] (54)

L@/ DIFD)
- i
_ B*(2)X*x(z/B*(2)|F,, — B*(2))X,. (0| %,
/B*(Z)lgk) [X*k(Z/B*(Z)lfm)l{skzo} + (Z) k(Z/ (Z)l );_ (Z (Z)) k ( | )I{akzl}]

= 2% [l(5,20)B"(2) + Ii5,=1}] [XA*k(Z/B*(Z)le)I{(Sk:o}

B*(2)X*1.(z/B*(2)|Fp) + (z — B*(@) &, (01Fy) ]
+ P Its,=1)

B*(2)X"(2/B* ()| Fn) + (2 — B*(2)) X, (0IF;n)
zZ

— ZAk |:B*(Z)XA*k(Z/B*(Z)lfm)l{gkz[]} + I{6k=1}] ...... (55)

From (5.4) and (5.5) it is derived that for< m

Xir1(21Fn) = U (2)Xi41(2/B" (2) | F)
Conclusion
It has been shown that the virtual waiting timeeach of the slot in the first queue is (in a setiseconditional
distribution”) decomposed into two independent t&rihhe virtual waiting time in the second queuehwit.d. input
stream and a quantity which is closely relatech\tirtual waiting time in the slot in the thirdeue. It is assumed that
all stochastic processes and random variablesedited on a common probability spa€g F, P).
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