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Abstract

Wave phenomenon in plasma is different from whatadbtained in ordinary air.
The nature of plasma and the natural oscillations plasma make wave propagation in
it more important, for example, wave interactionstiw charged particles have been of
great importance in the development of controlldtetmonuclear reactions where high
frequency electromagnetic fields are used in accatang higher particles for nuclear
bombardments to activate nuclear reactions. Geneteatments of wave particles
interaction involving magneto-hydrodynamic equatisrof charged particles in arbitrary
wave fields are mathematically very involving andnebersome. This study considered
propagation of waves in plasma and the simplest wégetermining its parameters such
as speed, frequency and wave number using Poisoatpuation instead of the
cumbersome full Maxwell’'s equations.

1.0 Introduction
The term “Plasma” first appeared in physics thatigas which contains a noticeable proportionhafrged particles
(electrons and ions). To understand the conditafndasma formation, it is very necessary to coragaasma and mixture
of chemically active gases. For instance, the falg chemical reaction can occur in the air, whibasically a mixture of

nitrogen and oxyge|[il.]
N, +O, < 2NO- 415Kcal/mole (1)

Hence, a small amount of nitric oxide,(NO) is présim the air at the equilibrium between nitrogemd aoxygen.
According to the Le’chateiers’ principle, increasithhe air temperature result. In a larger equiliriamount of nitric oxide.

The equilibrium between the neutral and chargetighes is similar to the above case, an atom oremde consists of
bound positively charged nuclei and negatively ghdrelectrons. Thus, plasma is an electrically raéuollection of

electrons and positive ior{Q] .

Plasma Dynamics
Plasma dynamics is the study of the dynamics oizémhgases, especially of fully ionized gases. Wuest familiar
terrestrial ionized gases occur in electronics aroshich usually are a modest degree of ionizat®present, so that the

ionized component can be considered to diffusehwéfugh the neutral ga{ﬁ].ln the absence of a magnetic field, the gross

dynamic behaviour of fully ionized plasma differsrrh that of a normal gas only in its electrical pedies. At low
frequencies the plasma acts as an electrical cemdand does not acquire large electric chargeg,aanumulations being

neutralized by an electron flow in terms of ord’HB

Where @, = 1/ﬁ =105rr_1e 2
m S

For frequencies X,

The electrical behaviour of the plasma is summadrinethe dielectric coefficient

2
_ 2
E=1-w, o ®3)

Corresponding autho®yeleke O., E-mail: oyelekeolaosebikan@yahoo.com-, Tel. +2343616331

Journal of the Nigerian Association of Mathematic&thysics Volume&3 (March, 2013), 283 — 294

283



Treatment of Longitudinal Waves in Plasma Using Poison’s Eqgtian Oyeleke and David J of NAMP

An attempt to develop a detailed kinetic theoryhaf plasma encounters a serious difficulty throtighlong range nature of
the coulomb force which makes a representatioradigbe interaction by two particle encounters atisdic, the Boltzmann
collision integrals diverging. Those correlatiome properly treated, since the principle effectafrelations is its screen, the
interaction between distance, charges and a siByltemann equation screened at the Debye length.

Ao=[ ol } @

ma’ p

Plasma dynamic becomes much more involved whengnetia field is present described as magnetohydaahjes [3] .

Plasma Frequency

The resultant space charge in the plasma betveerathode dark space and the anode of an eldidcicarge tube,
the concentration of electrons and positive iorsdgs and approximately equal, here, is nearly zero

If the neutrality of charge is disturbed, the &iews will oscillate about their equilibrium positi as they are much
higher than the positive ions. Considering the tpasions, to have fixed axis positively, the etectexecute simple

ne
harmonic motion with the plasma frequency give||i41ya)p2 =— (5)

me,

[0}
Where 'n’ is the electron density in the electroass) £, is the permittivity in free space.

Origin of Waves in Plasma
Originally, Maxwell’'s equations lead to propagatimirelectromagnetic energy in
i. Vacuum
ii. Dielectric medium
iii. Conducting medium
These equations are categorized into four.

The first Maxwell's equation is as a result of Flag's law of induction expressed &s = —9¢ where E is electromotive

force.
¢ is magnetic flux

But E=§Edl.d and d¢ = BdS

B.S is magnetic induction and S is a vector.

ThereforeE = i{)E'dI = —I%—?GS

L -0B
Which give curlE = ——

-0B
ot

This implies that in a region where magnetic fielthnges with time, an electric fried is set up.Hertbis Maxwell's
equation is expressed as

AxE+%aa—?:O (6i)

Thatis, X E =

Where C is the speed of light in free space
The second Maxwell's equation is of force applieelectric field which is expressed as follows:

1
_[ ~Eds=— j ool
80
P is charge density, v is volume, stokes theorfrgE_ds = ij LdivE.dv
E,
dive = £
50
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This equation is expressed as

AE=0 (6ii)
The third Maxwell’s equation is also known as Makisemagnetic flux equation, it is also called ansequence of inverse

square law of force applied to magnetic field. Tisiexpressed a$ B.ds =0
cs
This can as well be expresseddiyB =0 or
AB=0 (6iii)

The forth Maxwell’s equation is also called Maxvekquation for induced magnetic field.
From the Ampere’s law

Bl = p)
Where L, = permeability, i =conduction current or displacememtrent where j is current density and it is cotnger unit
area(] = i/ A)

But in the case of alternate curreht, is related to the rate of charge of surface chategsity.

g .
_t on the surface of the capacitor.

Therefore 1 in equation§ B.dS = y,1 ,is the sum of conduction and displacement cur@tsurface charged .

d do .
Displacement current :d_? = E where q is charged is surface charge density or displacement cu(rp)n
_do
dt
Between the plate of parallel capacitors
g
E=—
£

0o

, , oE
Displacement curreﬁtj ) =& —

ot
o0E .
Therefore,igﬁ.dl = yOSOIE,dS+ :Uo_[ jds

o ifﬂ.ds:j%).dsﬂids

WhereB = 14,H , as B is magnetic induction or magnetic flux dgngihich is flux per unit are%.

p= j B.ds, which is the flux

Bis flux density and its unit i:Wb/m2 or Tesla(T).
H is magnetic field intensityAm™
Dis electric displacemer £,E

Hence,D = &,E ,where E is the electric field intensity.
The differential forms of the equation is

curlE =p,¢, %—Itz + U] (6iv)
,or
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oD .
curlH = —+ |
ot
Hence, the Maxwell's fourth equation states thai inegion of space in which the electric fieldiwieged, a magnetic field is

produced[4] and [5] .
In a more compact form, these equations (6i to &) be expressed as

0E=0
0B =0
g+ 198
C ot
1 0E

UB-——=0
C ot

How Maxwell's Equations give rise to Travelling Wavein Free Space
Using

D)(E:—a_E (i)

ot
X8 = e, 0 (i

Taking the curl of equatiohl X (1 X E = _a—?(D x B).

= —UE 62E (iii)
0 at?
But Ox (0 x E) = O(0.E) - O%E) (iv)
and in the absence of chardge,E =0
o 2 0°E
Hence, equation (iv) U°E = &, P (v)
Which is the wave equation in three dimensions beehl is 3- dimensional operation
.d .0 0
O=i—+j—+k—
ox "oy 0Z
In one dimension as for PLANE WAVE, plane wave irdikection, Electric field ‘E’ does not vary withto z
0 _0
Hence,— =— =
dy o0z
Therefore,
0°E,  0°E, _
o Ht o o
Similarly,
0’B, _ 9°B,

vi()

oxd e o
Waves in Plasma
Although plasma, as consequence of the interadi@iween particles, is gas oscillations and nolag p much
greater role than in ordinary gas. First, in plagha is located in external fields and is not hgemeous, a wide variety of
oscillations between particles occur because ofathg-range interaction between particles.
Secondly, these oscillations vary frequently aeddme amplified to a relatively high energy. Insticiase, the

plasma oscillation determines its parameters amdldpment.
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*ACOUSTICS OSCILLATIONS.
The natural vibrations of gas are the acousticatibns, that is the waves of compression and retiefawhich propagates in
gas. The frequency and wavelength (f Andrespectively of vibrations are related to the evaector K as follows
2n
K=—
A

Any macroscopic parameter of the system can beeszpd as
A=A, +2Awexdi(Kx—wt)]
Where Ayis the macroscopic parameter in the absence oftdims. A is the amplitude of vibrationg, is the angular

frequently of vibration and K is the respective waanumber depending on the amplitudes for otlegyuencies.

Plasma Oscillations

In analyzing the oscillations which are due to thetion of charged particles in a plasma or weaklyized gas, in the
simplest case of homogenous plasma, and in thenabsef external fields, there are two kinds of tleural plasma
oscillations since plasma has been two specietariged particles. This kinds of oscillations diffeonsiderably since the

electrons and ions responsible for them differ tyyea mass[Z].

Studying the high frequency oscillations of the logi@neous plasma, these oscillations are due tor@leomotion. They are
referred to as plasma waves. Because of their lanags, the ions are not involved in these osaltatiand when analyzing
plasma waves, one could assume the ions to betahen charges are uniformly distributed overghs volume.

The dispersion relation could be derived from plasmaves from the continuity equation,

ON
—+diviN,_)=0 7
S T AvNG) 7)
The Euler equation
ow, (ad)w+ gradp _F _ (8)
ot P m

And the adiabatic equatio?V ¥ = constant for waves.
Also, the electric field produced by the motiortleé election owing to disturbance of the quasshadityt of plasma
must be taken into account.
Introducing the electric field term into Euler @dgion and the electric field strength will be giveg
Poisson’s equation

divE = -0%p=47&(N, - N,) (9)
Similar to the derivation of the dispersion relatior acoustic oscillations and assuming also thatmacroscopic
parameters of the oscillating plasma can be writighe form of
A=A+ Aexp{i(Kx—aI)] ,and when there is no oscillation, the mean vefocic of electrons and
the electric field strength E are zero and obtained
—iaN. +iKN & =0

+—=0 (10)

iKE" = -47eN,
K and & are the wave number and the frequency of the @lassuillations.N,, is the mean density of charged

particles P, = Nom(\/xz) is the electron gas pressure in the absence dfatisns, m is the electron mas¥, is
the electron velocity component in the directioros€illations and the angular bracket denotes giuggaover the
electron velocities. The quantitié\‘s;,cu',P' and E'in equation (10) are the oscillations amplituddsthe

electron density, mean velocity, pressure and refeeld strength respectively.
On the other hand the time derivative of Ampetaig and the force equation can be combined to give

equation for the fields[4].
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2 47e°n
oE, o e~ 1| P foE)=coxB) (11)
ot m mfon ], ot
Combining the continuity and force equation, a weageation for the density functions resulted as
2 4 Zn
9 ?+ & 1, n—l{@} 0% =0 (12)
ot m m{on |,

The structures on left hand side of equations &hti) (12) are identical.
oB . o . . . 0B
ForE =0, having excluded static fields, it could be codeld thatB = 0 is a possibility. If _t =0 ,then faraday’s

law implies
OxE=0
Hence, E is a longitudinal field derivable fromcalar potential.
If the pressure term in equation (12) is neglectiedould be found that the density, velocity, addctric field all oscillate

with the plasma frequentlxzup

4rm,e’
wh=—2— 13]
m
If the pressure term is included, a dispersidatian is obtained for the frequency:
1
P =at+ 2 R (14)
m{ on |,

Dispersion Relations
Considering the case in which no external fieldstsxiand neglecting the effect of collisions betwé®n electrons and

heavier particles, starting from the momentum dqudbr the eIectrons{G]
N, N, oY
N—rr{—'+Nj —-+—--N,E =0 (15)
& X, X,
Writing (I/ij as some scalalP — g, where the effect of the anisotropy can be incluidetthe particular form of P,hence the

momentum equation can be written as

oV, ov. -e 1 oP
— tM)—=—F -——— (16)
ot ox, m Nm 0x;
Equation (16) is nonlinear and in order to procéted,very important to make it linear.
Assuming that the wave phenomena or oscillatiores adequately described as small perturbations faom

equilibrium position, that is, electron veloci(vi> and electron number density N can be written as
<\7i >= C +V, (17)

=N_+N.

N =N, +N, 1)

Where Ciand N, are constant average values whWkand N represent all perturbations from equilibrium. the

linearization process, products of these small tities are neglected. From the pressure gradient te equation (16) it
could be written as

19 _10pdN__ 0N

mox, MmN 0x ) (19)
1
Where Where a= {I— 6—3}2 (20)
moN

If the plasma is assumed to be Isothermal then
P = NoKT, = (N, + NKT,, hence,
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KT
a?=— (21)
m
When plasma oscillations behave more likely adiabHy, the adiabatic law can be assurr[é(]i and [7]
y
P_| N
= - (22)
R Ny
Where P, = N,KT, = Constatnt (23)

, and T, is the constant average part of the electron tempm[l] using equations (22) and (23) and having knowa th

N << N ,it is found that

. _
9P - Nk, -L 2 {NOJ“N} =N0KTOL{1+?\I_N}.

oN "ONON| N, oN . (24)
op
—_— = T
o N KT (25)
So  that aZZJK t°. (26)
m

It is noted that equation (26) is different fromuation (21) only in the constapt for an ideal gas with three degrees of
freedom, it is found thgt=5/3. due to the anisotropy nature of the plasm&pnsideration, one degree of freedom is taken
into consideration in whicty =3

In any event, equation (19) will be used in momentequation where velocityd’ is of order of the thermal velocity.
Substituting equation (17), (18) and (19) into d@muminto equation (16) and neglecting terms inwdvthe products of the
small perturbations, yields.
v, .9V, -e_ _,0N
+C —-

LAMS T8 229N
at ax  m ox, @7

Considering plasma whose electron has no consteertage velocity, thenC, = 0p0that the only electron motion

contributing (\/I ) is the small oscillation motions

Hence in this case equation (27) can be written agVi _ _e o _a® oN (28)

at m ' N, 0x
. . : oN :
The continuity equation for this electronﬂgt— + (N- <V| > ,i=0)

Which can be written in linearized form using edpra(17) and (18) withC, =0 as

ON —
E*‘(N <\/i>)i,i:0 92

From Maxwell's equation

E,E; =-B

(30)

BB =to)i thLL E (31)
Where the current densit_j/i is given, after linearing by
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J, =—NyeVi (32)
Equations (28) to equation (32) represent a tdt#itteen scalar equation with thirteen unknowls, B, ] V, and N of

the form /' (K S Wt) the equations (28) to (32) can be written respebtias.

. —

—iwVy = -2 E -ikgat N (33)
m N,

iwN +ik O, NoV, =0 (34)
iKE, jK O JE, =iwB (35)
IKE, JKB, = 1, ji —iwg, O, E 136
j, = -NjeV 37)

Equation 35 can be written as
Bk = E |:|krs|:|r tS) (38)

w
Substituting equations (38) and (37) into (36) asithg
C*= L , we have
Ho Uy
iK? _. : 5
—HEiJKE, O j UrEs=—-1,NyeV, -1, L, E
w
N -
or Ekj Ekrs 0 SES—|0.]JONOe\/i _WE

Hence

(o-ir _o-isa-jr)lz| jDr Es = Iaﬁiolz\loe\ii - Kailzz Ei

Or sincel; ;=1

Vi :%{Dimj -0, {1—K‘;’—C2HE,.. (39)
1y No€

From equation 34,

~ K _
N=—NODjV,- (40)
w
Substituting equation (40 ) into equation (33) esulting equation is
~ e K *a® 5 _
V= E +——— U1, V, from which
maw Q@
-ie_ [ K?Za? I
E}Ei = Jij - a]z Di Dj Vj (42)
,is obtained substituting eqt]ation (40) into ecpmt_"BS) it result to:
-ie_ [ K?Za? Iv
—mei =0~ 7 0.0,V (42)

Substituting equation (39) iato equation (41) a'ide_to.

N,/? 0, E _ K ?a® o’
m€[| . OK% _|:0.ij - a]z DiDj DiDj _5jk 1‘@ Ek
0
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2,2
%Ei:{mimj_o}k(l_ «“ j—K a 0.0, + 0,0, Kzaz(]_— @ }Ek
K°C

K*C? o w, K.,C,
a’ w
= |:|:|| Dk (l_Fj_Qk(l_WJ}Ek
From which
w? T a’
|:Uik(l_ K 2C2 + chzj_ 0, O, (1_?HEI< =0 (43)
If it is assumed that the wave is propagating & ¥, —direction so thaijk = (0,0,1)
0O 0 O
0.d,=/0 0 O
0O 0 1
Equation (43
2
w7 0 0 E,
K?C? K?*C?
w? E
-————+— 0 2
0 K?’C? K?
0 0 0 E,
(44)
From the matrix, we obtain
W’ g
(1WW 5 =0 )
46
1—%+% E2 =0 (46)
K“C* K-°C
47
1- C;)Zz + ]272 7 |Es=0 “0
K°C® K-“C

For the fieldsE,, EzandE3t0 exist, the coefficients in each case must vafi@in equation (45) and (46) it is observed that

the dispersion equation for the Transverse figl@ndE, is

o = +K?*C? (48)

However, from the equation (48) it is also obserfredn that longitudinal wave in which the field E in the direction of
propagation and that the dispersion equation fentlave is given by

o =m +K?a® (49)

Hence, it is observed that the dispersion equatiasf the same form as (48 and 49) but in trangveraves, the thermal
speed A’ replace the speed of light C.

In view of the fact that Maxwell's equations inethreatment of wave is mathematically more INVOLAN
although richer, when considering only longitudinaddes of propagation, it is sufficient to use PEXDBI'S equation rather
that the full Maxwell’s equation in the wave treamh

Considering electron charge e, mass m, density)rg§md velocity v(x,t), the dynamic equation fbetelectron field
are:
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on

—+0(nv)=0.

5 T0dnv) =0

oV _e vy 1

o (v.D)v_m(ExCBj —mnDP (51)

The electron pressure ‘p’ describes the thermadtidrenergy effect and this is assumed to be scalar
The charge current

£e=e(n—n0) (52)
The current densityj = neV (53)

In equation (52)'Nn,'represent constant average value of the electramsitfeand ‘n’ represent all disturbances or

perturbations from equilibrium.
From the Maxwell’s equation

L.E = 47p,, hence substituting for
l, = e(n - nO) it gives

O.E=4m(n-n,) 46
0.B=0 (54b)
DXE+Ea—B=O (54c)
c ot
nxg-L0E 247N, (540)
C ot C
on
E +n,00V =0 (55a)
a_V_EEJ,i(a_PJ On=0 (55b)
o m mn,\dn),
Equation (55a) is linearized equation of motion.
OE-4mn=0
(OxB= —ia_B+—4ne'uOV
C ot C

Assuming a static state for the electron, thahéy tare at rest, it implies théit = N, and N, prescience of field is observed.

Due to the initial disturbances, a static statgoi& departed, no linearising the equations of nmptio
Equation (55b) is the homogeneous Maxwell’'s equatio

Equations 55a and 55b are now independent of miagiedt. HenceB =0 which now show that the solution of the force
equation is purely electrostatic in nature.
The continuity equation for the electron is pureligctrostatic in nature.

n —
The continuity equation for the electron%:zt— +(n <V>) =0 (56)

0n 4m’, \—1(oP
° (no)n_
on

Now combining the continuity and force equatiohsesulted in toa—2 + —jﬂzn =0 (57)
m m

Equation (57) is a wave equation for density flation.
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Combining the time derivative of Ampere’s law aod équation:

2 2
9 E+(4’E nojE—l(a—Pj D(D.E)=(Dxa—8j (58)
m m{an )/, ot

ot?

0B
Substituting forE =0, itimplies thatLJxE =0

Neglecting the pressure term in equation (58)deesity, velocity and electric field oscillate witie plasma frequency.

4rmn e’
¢ =0 (59)
m
Including the pressure term , the dispersion m@fatdr the frequency is
1(0P
=+ = —— | K? (60)
m{oN /,
Where K is the wave number
y
n
From the adiabatic law, P = P{—] (61)
nO

2
Since one dimensional oscillation is maintainedjrde of freedom on (1) is appropria[t@]. Hencey = m+—, here, mis
m

2
degree of freedom. Substituting the degree of fseedt results intoy = 1+ I =3

Hence, y = 3for this case, therefor 1 6_P = 3F (62)
m{on/, mn,

From the ideal gas lawg, = n,KT.the root means square velocity components in ametitin parallel to the electric field
. P
ism<u= KT = (63)

mn,
Hence, equation 60 is the dispersion relation amdbe re-written as
W =w," +3< > K (64)

Equation (64) is valid for long wave length.

Conclusion
The dispersion equation (64:&12 = a)p2 +3< ? > K? is approximate one, valid for long wavelengths &naictually just the

first two terms in expansion involving higher arigher moments of the velocity distribution of tHearons.

The dispersion equation has validity beyond thalidas law which was used in the derivation.

From the wave treatment of this form, althoughsBoin’s equation was derived from the Maxwell’s ¢igua it is sufficient
to treat a longitudinal wave completely to get digpersion relation in plasma which is a functiéiensity, velocity and the
field effect. Treatment of waves — particles inti@n involving magneto hydrodynamic equations bamged particles in
arbitrary wave fields are mathematically cumbersevhen using full Maxwell’s equation but using Pois's equation is the
simplest way of treating such waves when propagaifospecial longitudinal waves in plasma is ddesed.
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