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Abstract 
 
Wave phenomenon in plasma is different from what is obtained in ordinary air. 

The nature of plasma and the natural oscillations in plasma make wave propagation in 
it more important, for example, wave interactions with charged particles have been of 
great importance in the development of controlled thermonuclear reactions where high 
frequency electromagnetic fields are used in accelerating higher particles for nuclear 
bombardments to activate nuclear reactions. General treatments of wave particles 
interaction involving magneto-hydrodynamic equations of charged particles in arbitrary 
wave fields are mathematically very involving and cumbersome. This study considered 
propagation of waves in plasma and the simplest way of determining its parameters such 
as speed, frequency and wave number using Poison’s equation instead of the 
cumbersome full Maxwell’s equations.    

 

1.0 Introduction 
The term “Plasma” first appeared in physics that is, a gas which contains a noticeable proportion of charged particles 

(electrons and ions). To understand the conditions of plasma formation, it is very necessary to compare plasma and mixture 
of chemically active gases. For instance, the following chemical reaction can occur in the air, which is basically a mixture of 

nitrogen and oxygen.[ ]1   

moleKcalNOON 5.41222 −⇔+                                                           (1)    

Hence, a small amount of nitric oxide,(NO) is present in the air at the equilibrium between nitrogen and oxygen. 
According to the Le’chateiers’ principle, increasing the air temperature result. In a larger equilibrium amount of nitric oxide. 

The equilibrium between the neutral and charged particles is similar to the above case, an atom or molecule consists of 
bound positively charged nuclei and negatively charged electrons. Thus, plasma is an electrically neutral collection of 

electrons and positive ions [ ]2  . 

 Plasma Dynamics 
Plasma dynamics is the study of the dynamics of ionized gases, especially of fully ionized gases. The most familiar 

terrestrial ionized gases occur in electronics arcs in which usually are a modest degree of ionization is present, so that the 

ionized component can be considered to diffuse off through the neutral gas [ ]2 .In the absence of a magnetic field, the gross 

dynamic behaviour of fully ionized plasma differs form that of a normal gas only in its electrical properties. At low 
frequencies the plasma acts as an electrical conductor and does not acquire large electric charges, any accumulations being 

neutralized by an electron flow in terms of order pω   
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For frequencies > pω   

The electrical behaviour of the plasma is summarized by the dielectric coefficient  
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An attempt to develop a detailed kinetic theory of the plasma encounters a serious difficulty through the long range nature of 
the coulomb force which makes a representation of particle interaction by two particle encounters unrealistic, the Boltzmann 
collision integrals diverging. Those correlations are properly treated, since the principle effect of correlations is its screen, the 
interaction between distance, charges and a simple Boltzmann equation screened at the Debye length.   
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Plasma dynamic becomes much more involved when a magnetic field is present described as magnetohydodynamics [ ]3 . 

 Plasma Frequency 
 The resultant space charge in the plasma between the cathode dark space and the anode of an electric discharge tube, 
the concentration of electrons and positive ions is high and approximately equal, here, is nearly zero. 
 If the neutrality of charge is disturbed, the electrons will oscillate about their equilibrium position as they are much 
higher than the positive ions. Considering the positive ions, to have fixed axis positively, the electron execute simple 

harmonic motion with the plasma frequency given by[ ]4  
o

p m

ne

ε
ω =2

                                             (5) 

Where ‘n’ is the electron density in the electron mass, oε  is the permittivity in free space. 

 Origin of Waves in Plasma 
Originally, Maxwell’s equations lead to propagation of electromagnetic energy in 

i. Vacuum 
ii.  Dielectric medium 
iii.  Conducting medium 

These equations are categorized into four. 

The first Maxwell’s equation is as a result of Faraday’s law of induction expressed as 
t

E
∂
∂−= φ

 where E is electromotive 

force. 
φ  is magnetic flux 

But ∫= dldlEE ..  and  dSB.=∂φ  

B.S is  magnetic induction and S is a vector. 

Therefore ∫ ∫ ∂
∂
∂−== S

t

B
dlEE .  

Which give curl 
t

B
E

∂
∂−=  

That is, 
t

B

∂
∂−=Ε×∇  

This implies that in a region where magnetic field changes with time, an electric fried is set up.Hence, this Maxwell’s 
equation is expressed as 

 0
1 =

∂
∂+Ε×∆

t

B

C
                                             (6i) 

Where C is the speed of light in free space 
The second Maxwell’s equation is of force applied to electric field which is expressed as follows: 

∫ ∫ ∂= vdsEes ρ
ε 0

1
.  

ρ is charge density, v is volume, stokes theorem, ∫ ∫= dvdivE
E

dsE ves .
1

.
0

 

0ε
ρ=divE  
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This equation is expressed as  

0. =∆ E                                                                          (6ii) 
The third Maxwell’s equation is also known as Maxwell’s magnetic flux equation, it is also called a consequence of inverse 

square law of force applied to magnetic field. This is expressed as ∫ =
cs

dsB 0.  

This can as well be expressed as 0=divB  or 

                        0. =∆ B                                                              (6iii) 
 
The forth Maxwell’s equation is also called Maxwell’s equation for induced magnetic field. 
From the Ampere’s law 

∫ = ldlB oµ.  

Where =0µ permeability, i =conduction current or displacement current where j is current density and it is current per unit 

area ( )Aij =  

But in the case of alternate current, acI is related to the rate of charge of surface change density. 

dt

dσ
on the surface of the capacitor. 

Therefore I in equation ∫ = IdSB 0. µ ,is the sum of conduction and displacement current of surface charge σ . 

Displacement current  
dt

d
A

dt

dq
I

σ==  where q is charge, σ is surface charge density or displacement current( )j  

dt

dσ=  

Between the plate of parallel capacitors 

o

E
ε
σ=  

Displacement current( )j  
t

E
o ∂

∂= ε  

Therefore, ∫ ∫ ∫+∂= sdjds
dt

E
dlB .,. 000 µεµ  

Or ∫ ∫ ∫+
∂
∂= idsds

t

D
dsH ..  

Where HB 0µ= , as B is magnetic induction or magnetic flux density which is flux per unit area
A

φ
. 

 ∫= dsB.φ , which is the flux 

B is flux density and its unit is 2mwb or Tesla(T). 

H  is magnetic field intensity 1−Am  

D is electric displacement E0ε=  

Hence, ED 0ε= ,where E is the electric field intensity. 

The differential forms of the equation is    

Ecurl  = j
t

E
o 00 µεµ +

∂
∂

                                                         (6iv) 

          ,or 
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j
t

D
curlH +

∂
∂=  

Hence, the Maxwell’s fourth equation states that in a region of space in which the electric field is changed, a magnetic field is 

produced [ ]4  and [ ]5  . 

In a more compact form, these equations (6i to 6iv) can be expressed as 
 

0. =∇ E  

0. =∇ B  

t

B

C
E

∂
∂+∇ 1

.                                                                   

0
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-. =
∂
∂∇

t

E

C
B  

How Maxwell’s Equations give rise to Travelling Wave in Free Space  
Using 

t

B
E

∂
∂−=×∇                                       ( i) 

t

E
B oo ∂

∂=×∇ εµ                                     ( ii ) 

 

Taking the curl of equation ).( B
t

E ×∇
∂

∂−=×∇×∇   

2

2

00
t∂
Ε∂−= εµ                                                                              (iii) 

  But ( ) ( ) ). 2Ε∇−Ε∇∇=×∇×∇ E                                         ( iv) 

 and in the absence of charge, 0. =Ε∇  

 Hence, equation ( iv )    .
2

00
2

t∂
Ε∂=Ε∇ εµ                                  (v) 

Which is the wave equation in three dimensions because ∇ is 3- dimensional operation 

Ζ∂
∂+

∂
∂+

∂
∂=∇ k

y
j

x
i  

In one dimension as for PLANE WAVE, plane wave in x- direction, Electric field ‘E’ does not vary with y to z 

   Hence, 0=
∂
∂=

∂
∂

zy
 

  Therefore, 
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εµ                                                 ( vi ) 

Similarly, 
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2
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2

t

B

x

B z
oo

z

∂
∂

=
∂

∂ εµ                                                  ( vii ) 

 Waves in Plasma 
 Although plasma, as consequence of the interaction between particles, is gas oscillations and noise play a much 
greater role than in ordinary gas. First, in plasma that is located in external fields and is not homogeneous, a wide variety of 
oscillations between particles occur because of the long-range interaction between particles. 
 Secondly, these oscillations vary frequently and become amplified to a relatively high energy. In this case, the 
plasma oscillation determines its parameters and development. 

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 283 – 294   



287 

 

 
          Treatment of Longitudinal Waves in Plasma Using Poison’s Equation Oyeleke and David J of NAMP 
**ACOUSTICS OSCILLATIONS. 
The natural vibrations of gas are the acoustic vibrations, that is the waves of compression and rarefaction which propagates in 
gas. The frequency and wavelength (f andλ ) respectively of vibrations are related to the wave vector K as follows  

λ
π2=K  

Any macroscopic parameter of the system can be expressed as 

  ( )[ ]∑ −+= tKxiAAA ωω exp0  

Where 0A is the macroscopic parameter in the absence of vibrations. A is the amplitude of vibrations, ω  is the angular 

frequently of vibration and K is the respective wave number  depending  on the amplitudes for other frequencies. 
Plasma Oscillations. 
In analyzing the oscillations which are due to the motion of charged particles in a plasma or weakly ionized gas, in the 
simplest case of homogenous plasma, and in the absence of external fields, there are two kinds of the natural plasma 
oscillations since plasma has been two species of charged particles. This kinds of oscillations differs considerably since the 

electrons and ions responsible for them differ greatly in mass [ ]2 . 

Studying the high frequency oscillations of the homogeneous plasma, these oscillations are due to electrons motion. They are 
referred to as plasma waves. Because of their large mass, the ions are not involved in these oscillations and when analyzing 
plasma waves, one could assume the ions to be at rest then charges are uniformly distributed over the gas volume. 
The dispersion relation could be derived from plasma waves from the continuity equation,  

( ) 0=+
∂
∂

ωNdiv
t

N
                                                   (7) 

The Euler equation 

 ( ) 0=−+∇+
∂
∂

m

Fgrad

t

w

ρ
ρωω                                 (8) 

And the adiabatic equation, =γPV constant for waves. 
Also, the electric field produced by the motion of the election owing to disturbance of the quassineutrality of plasma 
must be taken into account. 
 Introducing the electric field term into Euler equation and the electric field strength will be given by 
Poisson’s equation 

( )ei NNedivE −=−∇= πφ 42                                                     .(9) 

Similar to the derivation of the dispersion relation for acoustic oscillations and assuming also that the macroscopic 
parameters of the oscillating plasma can be written in the form of  

 ( )[ ]tKxiAAA ω−+= exp0  ,and when there is no oscillation, the mean velocity  ω of electrons and 

the electric field strength E are zero and obtained 

0=′+′− ωω oe iKNNi  

0=
′

+
′

+′−
m

Ee

mN

PiK
i

o

ωω                      (10)                                  

        
o

e

o N

rN

P

P =
′

 

         oeNEiK π4−=′  

K and ω  are the wave number and the frequency of the plasma oscillations. 0N  is the mean density of charged 

particles ( )2
0 xo VmNP =  is the electron gas pressure in the absence of oscillations, m is the electron mass, xV  is 

the electron velocity component in the direction of oscillations and the angular bracket denotes averaging over the 

electron velocities. The quantitieseN ′ ,ω′ , P′ and E ′ in equation (10)  are the oscillations amplitudes of the 

electron density, mean velocity, pressure and electric field strength respectively. 
 On the other hand the time derivative of Ampere’s law and the force equation can be combined to give an 

equation for the fields. [ ]4 . 
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Combining the continuity and force equation, a wave equation for the density functions resulted as 

0
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The structures on left hand side of equations (11) and (12) are identical. 

For 0=
∂
∂

t

B
, having excluded static fields, it could be concluded that 0=B  is a possibility. If   0=

∂
∂

t

B
  ,then faraday’s 

law implies 
 0=Ε×∇  
Hence, E is a longitudinal field derivable from a scalar potential. 
If the pressure term in equation (12) is neglected, it could be found that the density, velocity, and electric field all oscillate 

with the plasma frequently pω  

 .
4 2

02

m

en
p

πω =                                                   (13) 

 If  the pressure term is included, a dispersion relation is obtained for the frequency: 

 2
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22 1
k
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mp 
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+=
δ
δωω                                     (14) 

Dispersion Relations 
Considering the case in which no external field exists and neglecting the effect of collisions between the electrons and 

heavier particles, starting from the momentum equation for the electrons [ ]6  

0=−+

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                       (15)           

Writing ijψ as some scalar jP σ−  where the effect of the anisotropy can be included in the particular form of P,hence the 

momentum equation can be written as 

i
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Nm
E

m

e

x

V
V

t
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∂
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∂
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∂ 1
)(                                              (16) 

Equation (16) is nonlinear and in order to proceed, it is very important to make it linear. 
 Assuming that the wave phenomena or oscillations are adequately described as small perturbations from an 

equilibrium position, that is, electron velocity 
iV  and electron number density N can be written as 

iV = ii VC +                                                                                       (17) 

io NNN +=
         (18)

 

 Where iC and 0N  are constant average values while iV and N represent all perturbations from equilibrium. In the 

linearization process, products of these small quantities are neglected. From the pressure gradient term in equation (16) it 
could be written as 

ii x

N
a

x

N

N

p

mx
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m ∂
∂=

∂
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∂=

∂
∂ 2
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                                          (19) 

Where  .
2
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


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∂
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p

m

I
aWhere                                      (20) 

If the plasma is assumed to be Isothermal then 

 ( ) 0000 KTNNKTNP +== , hence, 
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m

KT
a =2                                                                (21) 

When plasma oscillations behave more likely adiabatically, the adiabatic law can be assumed [ ]4   and [ ]7   
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                                                       (22) 

Where ConstatntKTNP == 000                                      (23) 

, and 0T is the constant average part of the electron temperature [ ]1   using equations (22) and (23) and having known that 

N  << N ,it is found that 
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p
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                                                                (25) 
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m

Kt
athatSo oγ

=                                                              (26) 

It is noted that equation (26) is different from equation (21) only in the constantγ . for an ideal gas with three degrees of 

freedom, it is found thatγ =5/3. due to the anisotropy nature of the plasma, in consideration, one degree of freedom is taken 

into consideration in which γ =3 

In any event, equation (19) will be used in momentum equation where velocity ‘a ’ is of order of the thermal velocity. 
Substituting equation (17), (18) and (19) into equation into equation (16) and neglecting terms involving the products of the 
small perturbations, yields. 
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Considering plasma whose electron has no constant average velocity, then 50,01 =C that the only electron motion 

contributing ( )iV  is the small oscillation motions  

Hence in this case equation (27) can be written as 
x

N

N

a
E

m

e

t

iV

∂
∂−−=

∂
∂

0

2

1
                  (28) 

The continuity equation for this electron is +
∂
∂

t

N
(N− 

iV ,i= 0) 

Which can be written in linearized form using equation (17) and (18) with 0=iC  as 

+
∂
∂

t

N
( N  

iV ) i,i= 0                                              (29) 

From Maxwell’s equation 

ikjij BEE −=
                                                           (30) 

iikjijk EjBE 000 ∈+= µµ                              (31) 

Where the current density ij is given, after linearing by 
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ii VeNj 0−=                                                                     (32) 

Equations (28) to equation (32) represent a total of thirteen scalar equation with thirteen unknowns ,iE  iB , j , iV and N of 

the form ( )wtxK qq
i −∝l  the equations (28) to (32) can be written respectively as. 
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0ˆ =∝+ ii VNoikNiw                                                             (34) 

iwBjEjKiKE ki =∝                                                               (35) 

iki EiwjijKBiKE 000 ∈−= µµ                                                 (36) 

ii VeNj ˆ
0−=                                                                            (37) 

Equation 35 can be written as 

)ts
w

k
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Substituting equations (38) and (37) into (36) and using 
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From equation 34, 

jj VN
K
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Substituting equation (40 ) into equation (33) the resulting equation is  
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,is obtained substituting equation (40) into equation (33) it result to: 
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Substituting equation (39) into equation (41) it leads to. 
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If it is assumed that the wave is propagating in the −ZX direction so that )1,0,0(=ijk  
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From the matrix, we obtain 
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For the fields 321, andEEE to exist, the coefficients in each case must vanish from equation (45) and (46) it is observed that 

the dispersion equation for the Transverse field 21andEE is  

 2222 CK+= πω                                                          (48) 
However, from the equation (48) it is also observed from that longitudinal wave in which the field E is in the direction of 
propagation and that the dispersion equation for this wave is given by 

 2222 aK+= πω                                                             (49) 
Hence, it is observed that the dispersion equation is of the same form as (48 and 49) but in transverse waves, the thermal 
speed ‘a ’ replace the speed of light C. 
 In view of the fact that Maxwell’s equations in the treatment of wave is mathematically more INVOLVING 
although richer, when considering only longitudinal modes of propagation, it is sufficient to use POISSON’S equation rather 
that the full Maxwell’s equation in the wave treatment. 
 Considering electron charge e, mass m, density n(x,t) and velocity v(x,t), the dynamic equation for the electron field 
are: 
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( ) .0. =∇+
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mn
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vv

t

V ∇−

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 ×=∇−
∂
∂ 1

.                                               (51) 

The electron pressure ‘p’ describes the thermal kinetic energy effect and this is assumed to be scalar. 
The charge current 

( )0nnee −=l                                                        (52) 

The current density neVj =         (53) 

In equation (52) '' 0n represent constant average value of the electron density and ‘n’ represent all disturbances or 

perturbations from equilibrium. 
From the Maxwell’s equation 

,4.
l

πρ=∇ E hence substituting for 

     ( )0nnee −=l    it gives 

( )oe nE n -4. π=∇                                                  (54a) 

0. =∇ B                                                                  (54b) 

0
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B

c
E                                                    (54c) 

V
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E
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B eπ41 =
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∂−×∇                                                          (54d) 
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                                                      (55a) 
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Equation (55a) is linearized equation of motion. 

04. =−∇ nE eπ  

V
Ct

B

C
B e 041 µπ+

∂
∂−=×∇  

Assuming a static state for the electron, that is they are at rest, it implies that 0nn = and 0n  prescience of field is observed. 

Due to the initial disturbances, a static state is now departed, no linearising the equations of motion, 
Equation (55b) is the homogeneous Maxwell’s equations. 
Equations 55a and 55b are now independent of magnetic field. Hence, 0=B   which now show that the solution of the force 
equation is purely electrostatic in nature. 
The continuity equation for the electron is purely electrostatic in nature. 

The continuity equation for the electron is n
t

n
(+

∂
∂

V ) = 0                            (56) 

Now combining the continuity and force equations, it resulted in to ( ) 0
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      (57)                                          

Equation (57) is a wave equation for density fluctuation. 
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Combining the time derivative of Ampere’s law and for equation: 
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                                 (58) 

Substituting for ,0=
∂
∂

t

B
it implies that 0=×∇ E  

 
 
Neglecting the pressure term in equation (58), the density, velocity and electric field oscillate with the plasma frequency.  

m

en
p

2
02 4πω =                                                          (59) 

Including the pressure term , the dispersion relation for the frequency is  

2

0

22 1
K

N

P

mp 








∂
∂+= ωω                                                                         (60) 

Where K is the wave number 

From the adiabatic law,  

γ






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
=

0
0 n

n
PP                                                    (61) 

Since one dimensional oscillation is maintained, degree of freedom on (1) is appropriate [ ]4 . Hence,
m

m
2+=γ , here, m is 

degree of freedom. Substituting the degree of freedom, it results into 3
1

2
1 =+=γ   

Hence, 3=γ for this case, therefore, 
0

0

0
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                                        (62) 

From the ideal gas law, .00 KTnP = the root means square velocity components in one direction parallel to the electric field 

is m < u
0

0

mn

P
KT =≥                                                         (63) 

Hence, equation 60 is the dispersion relation and can be re-written as 

322 += pωω <  u2 > K2                                                                                            (64) 

Equation (64) is valid for long wave length. 
 
 Conclusion. 

The dispersion equation (64) 322 += pωω < u2 > K2 is approximate one, valid for long wavelengths and is actually just the 

first two terms in expansion involving higher and higher moments of the velocity distribution of the electrons. 
The dispersion equation has validity beyond the ideal gas law which was used in the derivation. 
From the wave treatment of this form, although, Poisson’s equation was derived from the Maxwell’s equation, it is sufficient 
to treat a longitudinal wave completely to get the dispersion relation in plasma which is a function of density, velocity and the 
field effect. Treatment of waves – particles interaction involving magneto hydrodynamic equations of charged particles in 
arbitrary wave fields are mathematically cumbersome when using full Maxwell’s equation but using Poisson’s equation is the 
simplest way of treating such waves when propagation of  special longitudinal waves  in plasma is considered. 
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