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Abstract

We study different phases of GaAs crystalline structure andthe ground state
cohesive properties of the most-stable structure of GaAs are computed within
generalized gradient approximations GGA and the local-density approximation LDA of
the density-functional theory using FHI-aims code.Among the phases of GaAs crystal
studied Zincblende structure is found to be the most-stable structure of GaAs crystal.
The computed ground state properties such as lattice constant, cohesive energy and bulk
modulus are 5.62 A°, -5.27 eV and 71.9 GPa respectivelyand are found to be in
agreement with experimentally found values within reasonable percentage errors.

1.0 Introduction

Gallium arsenide (GaAs) is among the most technoddly important and the most studied compound semductor
materials. It is used in the manufacture of deviEwsh as microwave frequency integrated circuitsnatithic microwave
integrated circuits, infraredlight-emitting diodésser diodes, solar cells and optical windows[1,2]

The diamond lattice structure is very common inisenductor materials, such as Si, Ge. GaAs and laPa zincblende
lattice structure which is similar to the diamouttite structure. The diamond and zincblende sirastare similar except
that in diamond structure there is only one typatoin(see Fig.1a.) whereas in zincblende theréwaraypes of atoms. In
the GaAs unit cell there are four Ga-atoms anddheare As-atoms(see Fig.1.b.).

Calculation of the bulk ground state propertiesshsas lattice constants, bulk modulus, cohesivegsneand atomic
positions, play an important role in the physics cofindensed matter [3,4].Bulk calculations help asuhderstand,
characterize, and predict mechanical propertigsaiérials in surroundings, under extreme condifijns

The cohesive energy of crystalline solid structisreefined as the energy that must be added torifstal to separate its
components into neutral free atoms at rest atitefiseparation, with the same electronic configarg6]. The term lattice
energy is used in discussion of ionic crystals sndefined as the energy that must be added terifstal to separate its
component ions into free ions at rest at infingparation.

(b)
Fig 1. Unit cell structure of (a) Diamond cubiclaahd (b) zincblende (GaAs) lattice. Ga atomsslu@vn small, As atoms
shown large, and the dashed lines show the urit cel
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Density-functional theory is one of the most popudad successful quantum mechanical approachesateemnlit is
nowadays routinely applied for calculating, e.dre binding energy of molecules and the band strectd solids in
Physics[7,8,9].

Density Functional Theory (DFT) is a ground-stdteatry in which the emphasis is on the charge demasitthe relevant
physical quantity[10,11,12]. DFT has proved to ghly successful in describing structural and ®t@dc properties in a
vast class of materials, ranging from atoms ancemdés to simple crystals to complex extended sysi@ncluding gasses
and liquids). Furthermore DFT is computationallyywsimple. For these reasons DFT has become a canwobin first-
principles calculations aimed at describing or epeadicting properties of molecular and condensattensystems [7, 10,
12, 13].

Modern first principles calculations for extendegstems of metals, semiconductors, and insulatagsoéien based on
density functional theory. The theory was placedaorngorous foundation by Hohenberg and Kohnwhongtbthat the
properties of a system of electrons and nucleithim ground state, are determined uniquely by tleetrnic charge
density[8, 14]. The total energy of the systemhisréfore a unique functional of this charge dengtiyrthermore, they
showed that the functional, whatever it is, is miizied by the true electronic charge density. The maportant step was
taken by Kohn and Sham, who showed that the proldém interacting electrons could be mapped exaotijo N
independent electrons, each moving in an effeingle particle potential which emulates the intéoms with all other
electrons[9, 13]. In this way density functionag¢thy has reformulated the many interacting elecimailem, in which the
central quantity is the many electron wave functionterms of non-interacting electrons moving medfective potential
that describes all the electron interactions andvliich the central quantity is the electronic dnsThe single particle
equations are

(—%VZ + Veff(r)> Y (r) = e (r) )

wheré/,;( is the local effective mean potential, which deggeon electron density only, ande; are the single particle
wave function and eigenvalue respectively. The iens$ the non-interacting system given by

n(r) = X (m)? (2)

will reproduce the exact density of the interactiygtem. Again the energy of the non-interactirgfesy will reproduce the
exact ground state energy of the interacting sysfidme existence of the this potential is interegptiut the use of density
functional theory depends on finding approximationVsthat can be used in practical computations[9]. sy, Veris
expanded into:

Veff = VH + Ve—nuc + ch (3)

Where \f; is the Hartree potential due to electron-electioteractionye . is potential due to electron-nuclear
interactionand the remaining term is the excharagestation potentialy,..

A great variety of different approximations tocdVhave been developed. Those approximations arkoial Density
Approximation, LDA, (ii) Generalized Gradient Appimation, GGA and (iii) Hybrid Approximation[12, 1.3For many
years the local density approximation (LDA) hasrbased. In the LDA the exchange correlation enelgysity at a point
in space is taken to be that of the homogeneowsretegas with the local electron density(n)[8, 12, 15, 16].Thus the
total exchange correlation energy functional isragipnated as,

EpR* = [n(F) exc(n(®))d? 4)
from which the potential is obtained as,

6 XC
Ve = =2 (5)

For many years properties such as structure, \imalt frequencies, elastic-moduli and phase stghgiie described very
reliably for many systems. However, in computingreyy differences between rather different structiuhe LDA can have
significant errors[17]. For instance, the bindingergy of many systems is overestimated and eneagyiebs in diffusion or

chemical reactions may be too small or absent.€dtlyr, effective potentials that depend both onltival density and the
magnitude of its local gradient — so called, geliwgd gradient functionalare widely used [14]. TR&A approach in its

various forms goes some way to correcting the jgrmblseen in LDA calculations.

Solids are stable structures, and therefore thast iateractions holding atoms in a crystal togethi-or example a crystal
of sodium chloride is more stable than a collectiériree Na and Cl atoms. This implies that theaxia Cl atoms attract
each other, i.e. there exist an attractive intenitdforce, which holds the atoms together[18]. Tdiso implies that the
energy of the crystal is lower than the energyheffree atoms. The amount of energy which is reguio pull the crystal

apart into a set of free atoms is called the cakesnergy of the crystal.

Cohesive energy = energy of free atoms — cryseigsn

Magnitude of the cohesive energy varies for difféislids from 1 to 10 eV/atom, except inert gaémeshich the cohesive
energy is of the order of 0.1eV/atom[19]. The calesnergy controls the melting temperature .
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Calculation of the bulk ground state propertiesshsas lattice constants, bulk modulus, cohesiveggneand atomic
positions, play an important role in the physice@fidensed matter[4], bulk calculations help usrtderstand, characterize,
and predict mechanical properties of materialsimoaindings, under extreme conditions.

2.0 Methodology

2.0 FHI-aims Code

FHI-aims(“FritzHaberlInstituteabinitiomolecularsinatibns”)isacomputerprogram package for computationzaterials
science based on quantum-mechanical first principlesmainproductionmethodisdensityfunctionaltheDfy{) to compute
the total energy and derived quantities of molacolasolid condensed matterinitselectronicgrourtdstinaddition,FHI-
aimsallowstodescribeelectronic single-quasipamixtitationsinmoleculesusindtirentself-energyformalisms,andwave-
functionbasedmoleculartotalenergycalculationbaskeldoimee-Fockandmany-bodyperturbationtheory[20].

The focus here is on density-functional theory ([PHTthe local and semi-local (generalized gradiepiproximations, but
an extension to hybrid functionals, Hartree—Fodaotly, and MPZEW electron self-energies for total energies andtesci
states is possible within the same underlying #gms. An all-electron/full-potential treatment tha both computationally
efficient and accurate is achieved for periodic ahgter geometries on equal footing, includingaxation andab initio
molecular dynamics[21]. The construction of traralfide, hierarchical basis sets is demonstrateoladl the calculation to
range from qualitative tight-binding like accuraoymeV-level total energy convergence with the $asit. Together with a
scalar-relativistic treatment, the basis sets pi®waccess to all elements from light to heavy. Botk-communication
parallelization of all real-space grid based aldpons and a Scal apack-based, customized handlittgedinear algebra for
all matrix operations are possible, guaranteeifigieft scaling (CPU time and memory) up to madyiyarallel computer
systems with thousands of CPUs[21].

To compute the ground state cohesive propertieGafs crystal structure, we first calculate theugia state total energies
of the most-stable structure of GaAs as a functibits lattice constants. The energies are therveed to the cohesive
energies as a function of its molecular volumeagiihe equations[5, 22].

_ _ Epuik—NEgtom __ Epuik
Ecoh - - = N - Eatom (6)

N

The equilibrium quantities such as the lattice tamsa, the cohesive enerdy.,, molecular volumeY,, the bulk modulus
By and its derivative with respect to pressBig can be obtained by use a thermodynamically mad/aind more accurate
fitting function, the Birch-Murnaghan equation ¢tétes[22] given by

BoV [(Ve/v)P0 BoVo
E(V) = By + 22 [“222 + 1] - 2 )
2.1 General Computational Requirement
All calculations are carried out using fhi-aims eagpgrade 5 (released on™.July, 2011; version 071711_5). It only works
on any Linux based operating system. Computatiamsonly be carried out after building an executdbiery file. Since
the fhi-aims package is distributed in a sourceedodm,

a. A working Linux-based operating system (Uburtul0 in this case)

b. A working FORTRAN 95 (or later) compiler. In ghtase we use x86 type computer and therefore I'sinteifort
compiler (specifically Composerxe 2011.6.233) westdlled for this  work.

C. A compiled version of lapack library, and a diby providing optimized linier algebra subroutifB$AS). Standard

libraries such as Intel's mkl orIBM's essl proviteh lapack and BLAS support. Intel's composerxe128.233 comes with
mkl.

All necessary adjustment are made for buildingekecutable binary file for running the code and eRecutable program
was successfully build.

FHI-aims requires two input files: (1fontrol.in:- which contains all runtime-specific informationada (2).
geometry.in- which contains information directly related teetatomic structure for a given calculation. The input files
must be places in the same directly from wherd=theaims binary file is invoked at the terminal.

2.2 Construction of the Input Files and Running the=HI-aims Code

Ouir first step towards studying periodic systemihWwiHI-aims is to construct periodic geometrieshi@ FHI-aims geometry
input format geometry.in). Next, we set basic parameterscontrol.in for periodic calculations. Finally, we compareatot
energies of different GaAs bulk geometries.

A geometry.infiles for the GaAs bcc and zincblende structuwvese constructed using the experimental latticestzonts a

of 5.3 A for bce and 5.6 A for zincblende.

In setting up thgeometry.infile of a periodic structure in FHI-aims all thrizgtice vectors as well as the atomic positions in
the unit cell are specified. The lattice vectors apecified by thekeyworthttice_vector. For example, the GaAs bcc
structure with a lattice constant ain A is spedifie the following format:
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lattice_vector -al2 al2 al2
lattice_vector al2 -al2 al2
lattice_vector al2 al2 -al2

atom 0.0 0.0 0.0 Ga
atom a/4 ald al4d As
Similarly the GaAs zincblende structure with aitattconstant a in A is specified as

lattice_vector -0.0 al2 al2
lattice_vector a2 0.0 a2
lattice_vector a2 a2 0.0

atom 0.0 0.0 0.0 Ga
atom a/4 al4 a4 As
A control.in input files for GaAs was created with the follogigettings.

# Physical settings

XC pw - Ida

spin none

relativistic atomic_zora scalar

# SCF settings

charge_mix_param 0.2

n_max_pulay 8

sc_accuracy_eev 1E-2

Sc_accuracy_etot 1E-5

sc_accuracy_rho 1E-4

sc_iter_limit 40

# Kk - grid settings

k grid 3 33
The above settings basically define pw-lda as tteh@&nge-corralation approximation and the self-istasce covergence
criteria. In addition to the above parameters,dibfault “light” species settings for Ga and As apmied with the code were
also incooparated in to the control.in file.
A bash script namerun.sh was created to calculate total energies of thierdifit phases of GaAs as a function of lattice
constant a. For this, seven different values af atéps 0.1 A around the lattice constants givavalwas used for each
structure.
Note that the grid factors refer to the reciprdattice vectors corresponding to the real-spadiedatectors irgeometry.in.
If there are inequivalent lattice vectors, theideringeometry.in determines the ordering of reciprocal lattice wexin the
code.
The total energy per atomfor each structure istgdbas a function of the lattice constant usindoting software ORIGIN.
The most stable structure was determined from lite p
The above procedure was repeated using GGA asxtiiege-correlation. Also all calculations done Zorcblende were
repeated for GaAs bcc structure.
2.3 Energy Convergence Tests
Having zincblende phase found to be the mostststlectureof GaAs, we nextinvestigate total energgpvergence for
zincblende GaAs with respect to the k-grid andishset.
2.3.1  k-grid convergence test
The total energies for zincblende GaAs was caledlais a function of the lattice constant for k-gnid 8x8x8, 10x10x10,
12x12x12, and 16x16x%16 using the minimal+spd ksetisThe same computational settings and the satieelconstants as
in the previous calculations of secti@r? was used. Graphs of the total energy and the ctatipoal time against lattice
constant were plotted . The results of 3x3x3 fromvipus runs was added. From the plots the k-goidipcing the minimal
energy for GaAs zincblende was found.
2.3.2  Convergence with basis set size
The total energies for zinblende as a functionhef lattice constant for the minimal and the tieskib sets are calculated.
The same lattice constants and computational gettis in2.2 together with the 10x10x10 k-grid are used. Agaimilar
plotsas in 2.3.1 were made but for the minimal &edl basis set calculations. The results for theimal+spd basis set
obtained in 2.3.1 was also added to the resultairAffom the plot the basis set for which the Gaiksblende structure
gives the minimal energy and minimal convergenee tis determined.
2.4 Phase Stability and Cohesive Properties
After finding “converged” computational settingse wow revisit the phase stability of bulk GaAs.Nibtat in practice check
convergence must be achieved first in order tochtaise conclusions. We will now compute the basibesive properties
and study the pressure dependence of phase stabilit
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2.4.1 Recalculation of E@) curves

The total energies of bcc GaAs as a function dickatconstant are calculated. The settings from sectib8 (k-grid of
10x10x10, minimal+spd basis) and the same lattitestants as in sectichl were used. The results obtained and that of
zincblende GaAs obtained in section 2.3 were pladiein sectio.2and the plots were analyzed to arcertain the mabtes
phase of GaAs crystall.

2.4.2  Calculations of Cohesive energies and atomiolumes

The total energy of a free atomfor GaAs unit ceichladeis calculated as follows: For the singtamaenergy, special care
has to be taken. First, the free atom is of cospse polarized and we u$spin collinear” instead of “spin none” as well as
properly initialize the magnetization witldefault_initial_moment hund” . Second, we use a more converged basis. In
particular, we use all basis functions up to “t8r the cutting potential was increase“tut_pot 8. 3. 1.”, and basis
dependent confining potentials was turned off Withsis_dep_cutoff 0"

The cohesive energy (Ecoh ) of a crystal is thegnper atom needed to separate it into its carstitatoms. g, is defined

as

_ _ Epuik—NEgtom __ Epuik
Ecoh - N - N - Eatom

whereEy, is the bulk total energy per unit cell aNdhe number of atoms in the unit cdtl,, is the energy of the isolated
atom calculated above.

In order to compare the pressure dependence oéstaiilities we need to express the lattice condtahavior of all
phases on equal footing. One possibility to dosstoiexpress the lattice constant in terms of thlerae per atom. This
atomic volume can be calculated quite easily fromlattice constard. The simple cubic (super-)cell has the voluvie=
a’. This number has to be divided by the number ofatNsc in this celVaom = a/Ns Note that there are two, and eight
atoms in the simple cubic supercell in the cagh@bcg and the zincblende structure, respectively.

A file energy.datcontaining the lattice constants and total energier atom was converted to a fdehesive.dat
containing atomic volume¥,., and (negative) cohesive energie€s.qgr by the use of the scrionvert-coh.awkwhich is
provided in the code.

2.4.3  Calculation of cohesive properties at equilium.

An important equilibrium quantity we can calcul&étem our data is the equilibrium lattice constagtin principle, this
can be done with a quadratic ansatzE¢a) or E(V ). Here we will use a thermodynamically motivatex anore accurate
fitting function, the Birch-Murnaghan equation ¢&tes[22]. The energy per atoa £ —E..p) is expressed as a function of
the atomic volume\( = Vo) as in equation (7).

The cohesive energy data for the zincblende pha&@As calculated above was fitted to the Birch-NMaghan equation
of states using the programurn.py. The lattice constarg, the bulk modulug,, and the cohesive energy per atBg, at
equilibrium are determined. The calculated cohepraperties in this work are compared with the expental values and
those determined in other theoretical works.

25 Convergence Test and Calculations of Cohesivedperties Using fine-tuned Lattice constants.

From the plots of sectio®.2 the lattice constant that give the minimum totaérgy was determined for both bcc and
zincblende GaAs crystal structure up to four detiptaces of accuracy. The same was repeated fok-tivels of 8x8x8,
10x10x10, 12x12x12 and 16x16x16 of zincblendecstme. The FHI-aims was run to calculate the tetargies for, seven
different values of in steps 0.0001 A around the lattice constantadcabove for each structure. The resultant k-giag w
used to carried-out the basis convergence test asdtion2.2. The result obtained for the basis convergence usas to
calculate the cohesive properties suckipathe equilibrium molecular volumef, the molecular energy,the equilibrium
lattice constand, the bulk modulusB, andB’, derivative with respect to pressure of bulk moduds in sectio.3.2.

3.0 Results

3.0 Introduction

The the output files of the computationswere usgetduce the tables of lattice constants againgbthéenergies and graphs
were plotted to obtain the optimized parametersdaAs structures within both LDA and GGA. The optied parameters
were then used to obtained the equilibrium grouategproperties of GaAs.

3.1 Graphical Representation of Data

The following graphs summarize the output data iobth during the convergence test, and are usedbiaining the
optimized values of the parameters investigated.
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Fig.12 Plots of cohesive energies virsus molecular velsiof bcc (top) and zincblende (down) structureSafs within
LDA xc functional arrived at using fine-tuned la#ticonstant.

3.2 Tabular Representation Results

TABLE 1 List of minimum total energy and total time agailadtice constant for determination of the mo$tiegphase of
GaAs structure.

Phase XC Lattice-constant E,(EV) Total time (s)
(A%)
LDA 5.3 -114913.184762136 363.551
BCC GGA 5.4 -115074.789260061 582.403
LDA 5.6 -114915.256440864 797.029
ZINCBLENDE GGA 5.8 -115076.549135505 1435.836
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TABLE 2: COHESIVE PROPERTIES OF GaAs Zincblende crystal

Property Present using GGA xc Present using LDA xc Experimental Others
Lattice constant 5.7637368756 (fine-tuned) |5.621534223 (fine-tuned) 5.56 [23]
A) 5.766708068 5.622386712 5.65 [2]
(coarse (coarse 5.51 [24]
5.6542 [5]
Cohesive energy -4.06424031869 (fine-tuned) |-5.26719923473 (fine-tuned)
(eV/atom) -4.06495344279 -5.26680811664cparse - 6.52 [25] - 6.21, - 6.51 [23]
(coarse , - 6.50 [5].
Bulk modulus 69.397467  (fine-tuned) [71.907912
Bo(GPa) 59.69468 (fine-tuned) 74.7 2] 75.4, 60.4 [23] ,
(coarse 71.627694 79.8 [5].
(coarse
3.45736985952 (fine-tuned) |4.7089724784 (fine-tuned)
B' 4.18661338312 4.5768243934 3.36 [26] 3.686 [5].
(coarse (coarse
-115077.040345860 at (5.76€-114915.806788347 at(5.621
Enux(€V) A) -114915.805441952 at (5.6 Al
-115077.037268923 at (5.8 A

4.0 Discussion

From Fig.2and Fig.3 it could be seen that the tetargy for zincblende phase of GaAs is much Iaven that of body
centred cubic phase calculated within both LDA &®A. Thus, the zincblende phase seem to be mdoéedtzan the bcc
phase and therefore is chosen to be the unit ¢efiterest in this work as in agreement with thg@exment and other
theoretical works.

From Fig. 4 and Fig. 5 you can see, the total gneaiculated within LDA of the 3x3x3 calculationfféirs by about
0.62 eV from the most accurate (16x16x16) calautatl he larger part of this error is already fixeitiie3x8x&-grid,which
is still off by about 5.8 meV.Thel0x10x10 k-grid, on the othendj is converged within about 1.5 meV. Lastly the
12x12x12 k-grid converges within only 0.43meV.

Looking at the computational times you see two ganeends in FHI-aims. First, the times strongfcrbase towards
larger lattice constants. This is because thelessoverlap between atoms and so less integradi@enseeded. The approach
of FHI-aims is particularly fficient for“open”structures where the atoms occupyeargpace and thus have less neighbors.
Second, increasing the numbek-pbints does notffect the calculation all times significantly up toqmarablydendegrids.
A total energy calculation with a10x10x10 grid st $0 much more expensive than a3x3x3 calculatioiy with even
densek-grids computational times increase note worthy.

Inconclusion,weshoulduseal0x10x4&Qrid for zincblende GaAs is a good compromisaigh accuracy and
reasonable computational time.

From Fig 6. and Fig. 7. we can see that the minibzais gives completely unphysical results; ther@at even a
energetic minimum within the calculated range ttide constants. The minimal basis lacks the fldigyhio give reasonable
geometries. On the other hand, the binding cunasdmt change significantly from minimal+spdto thi fierl basis set
whereas the computationdf@rt increases significantly by adding thfenctions from minimal + spd to full tierl.

While the total energy ffierence of 70meV between minimal + spd and tiegtilidarger than what we were aiming for
in the case of thie-grid, we can make use of the fact that the tatargy is variational so that a large part of theidaet
error actually cancels nicely in energyfdiences.

After finding “converged” computational settings, n@w revisit the phase stability check of bulk Ga&sin section 3.1
before proceeding to calculate the basic cohesivpepties avoid false conclusions. There resultiimgling curves shown in
Fig.8 clearly show that the experimentally obserzietblende structure of GaAs is most stable in L& GGA among the
crystal structure studied in this work.

From the ground state cohesive properties of GdAaimed as compared with the experimentally obthivedues and
other

theoretically computed results,the lattice-constastitained is under estimated by about 0.§3ck LDA and over
estimated by about 0.11°4or GGA calculation. The cohesive energy of Gadmputed in this work is over estimated by
about 1.25 eV and 2.45 eV for LDA and GGA respatyivThe bulk-modulus is under estimated for boBbALand GGA
with error of 2.79 GPa and 5.30 GPa respectively.

Conclusion

The ground state cohesive properties such as ttiwelaonstant, cohesive energy and bulk modulusaAs zinchlende
crystal within LDA and GGA were calculated. The ued obtained are in agreement with the availatdergtical and
experimental values reported within some reasonpdteentage errors.It could be concluded that tthes)attice constant
calculated for LDA and GGA are respectively -0.53¥d +1.95% of the experimentally reported resulsoAthe Bulk
modulus computed in this work for LDA and GGA aBe7% and -7.1 % of the reported result.
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