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Abstract 
 

In this work the analytical solutions for the time-dependent MHD two phase flows in 
parallel plate channel are obtained using the Green’s function approach. The time dependent 
flow formation inside the channel is due to either by a sudden change in the imposed 
pressure gradient or (and) by a sudden change in the velocity of the channel boundaries. The 
two conducting regions are coupled by equating the velocity and stress at the interface. The 
mathematical model relevant to the problem is solved using the Green’s function approach. 
Expressions for velocity in both regions are derived for general class of time dependent 
movement of boundaries or time dependent pressure gradient. As a special case, expressions 
for velocities in both the conducting phases are obtained due to sudden change in the 
constant pressure gradient.  
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1. 0  Introduction 

The study of two-phase MHD flow is of great importance because of its applications in several industrial and 
physical fields. These applications abide in the petroleum industries especially in petroleum extraction from crude oil. 
The interest in MHD (magneto-hydrodynamic) flow began in 1937, when Hartman [1] studied the influence of a 
transverse magnetic field on the flow of conducting fluid between two infinite parallel, stationary, and, insulated plates. 
Since then a lot of research work concerning the Hartmann flow was conducted under different physical situations [2-
9].In recent past years there has been some theoretical and experimental work on the stratified laminar flow of two 
immiscible liquids in horizontal pipe. The interest in these types of problems stems from the possibility of reducing the 
power required to pump oil in a pipe line by suitable addition of water. Hartmann flow of conducting fluid in a channel 
between two horizontal insulating plates of infinite extent with a layer of non-conducting fluid between upper channel 
wall and conducting fluid has been studied by Shail [10]. He found that an increase of order 30% can be obtained in the 
flow rate for suitable ratios of depths and viscosities of the two fluids and realistic values of the Hartmann number. 
Lohrasbi and Sahai [11] studied the heat transfer aspect of problem [10] by taking in to account the effects of viscous and 
Joule dissipations. Malashetty and Leela [12-13], further extended the problem [11] by considering both phases as 
electrically conducting having different viscosities and electrical conductivities. They found that the effect of increasing 
the Hartmann number is to accelerate the velocity and to increase the  temperature in case of open circuit case while the 
result is just reverse in case of short circuit case. Chamkha[14] discussed the flow of two-immiscible and electrically 
conducting fluids in porous and non-porous channels. He observed that increase in Hartmann number reduced flow 
velocities. Furthermore Umavathi et al [15] investigated the unsteady two-fluid flow and heat transfer in a horizontal 
channel. In another article Umavathi et al [16] investigated the unsteady Hartmann flow of two immiscible fluids through 
a horizontal channel with time dependent oscillatory wall transpiration velocity. Recently Zivojin et al [17] studied the 
MHD flow and heat transfer of two immiscible electrically conducting fluids between moving plates in the presence of an 
applied electric field.   
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In all the above discussed works the momentum and energy equations were solved under steady state operating condition. 
The lack of analytical solutions for time dependent fully developed MHD two phase flows in horizontal parallel plate 
channel, with different operating conditions, motivated the present work.  

The purpose of this work is to present, in closed forms, transient fully developed MHD two phase flow solutions, 
corresponding to open circuit case, in a horizontal channel filled with different conducting fluids in the presence of 
uniform transverse magnetic field. The study of such flow gives the limiting conditions for MHD two phase developing 
flows and provides an analytical check on numerical solutions    
 
2. GOVERNING EQUATIONS AND SOLUTIONS 

A schematic diagram of problem under consideration is exhibited in Fig.1.The problem considers unsteady two phase 
MHD flow between two infinite horizontal parallel plates filled with two conducting fluids. The direction of the flow is 
taken along the x′ -axis coinciding with the lower horizontal plate while y′ -axis is taken normal to the flow direction. 

The regions dy ≤≤0 and hyd ≤≤  are occupied by two different conducting fluids having different densities , 1ρ
and 2ρ ,  viscosities, 1µ and 2µ , and electrical conductivities, 1σ and

2
σ respectively. An external magnetic field of 

uniform strength 0B , is applied parallel to y′ -axis. The magnetic field is assumed to be small so that the induced 

magnetic field can be neglected compared to the applied magnetic field. The unsteadiness in the fluid motion is caused 
either by a sudden change in the imposed pressure gradient along x′ -axis or (and) by a sudden change in the velocity of 
the channel boundaries. 
 

 

 

Fig.1 Physical configuration of the flow. 

Under the assumptions discussed above the one dimensional time dependent flow for both phases in open circuit case are 
governed by the following equations:  
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The Initial, boundary and interface conditions are: 
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Equations (1) - (4) can be written in a dimensionless form by using the non-dimensionless quantities 
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And the Initial, boundary (3) and interface conditions (4) in dimensionless form are: 
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Equations (7) and (8) represent the general nature of initial and boundary conditions. A specific situation can be handled 
by proper selection of initial and boundary conditions. 
It is more convenient to solve the problem with homogeneous boundary conditions. To attain this let
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This relation transforms the governing equations (5) and (6) with the initial and boundary conditions (7) and (8) in to the 
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With the initial and Boundary conditions 
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The solutions of equation (10 -11) are 
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where ,,, 321 AAA and 4A  are found from the solution of the following set of equations: 
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Also, the solutions of equation (13-14) are 
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Using Green’s function approach, Equation (16) and (17) assumes the following form: 
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Where ijG is the appropriate Green’s function found from the homogeneous version of the governing equations (12-15) 

are: 
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The values of constant nn BA 22  and  are found from the solution of following set of equations 
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The eigen-values nn βλ  and  are found as the roots of 
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3. Particular Case 

The physical situation, in which flow inside the channel is solely caused by uniform pressure gradient, i.e.,
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Using these values in equations (22) and (23) the dimensional velocity in both phases are: 

( ) ( ) ( ) ( )( ) '2'
11

''
1

0

11
'

1 Re,/,,
'

dYMPYYtYtYGdttYU nn

t

t

+−= ∫∫ ψψ
 

( ) ( ) ( )( ) '2'
21

''

1

12
' Re,/,              

'

dYMPYYtYtYGdt nn

Ht

t

δψψ +− ∫∫          (36) 

 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), pp 215 – 224 
 

[ ] [ ] .2,1, and Re,Re 2
2

2
1 ==+=+= iVUMPPMPP iiαδα



221 

 

Mathematical Modeling and Exact Solution for Unsteady…    Basant  and Haruna   J. of NAMP 
 

( ) ( ) ( ) ( )( ) '2'
12

''
1

0

21
'

2 Re,/,,
'

dYMPYYtYtYGdttYU nn

t

t

+−= ∫∫ ψψ
 

( ) ( ) ( )( ) '2'
22

''

1

22
' Re,/,              

'

dYMPYYtYtYGdt nn

Ht

t

δψψ +− ∫∫
             (37)  

( ) ( ) ( )[ ] ( ) ( )[ ]nn
n nnn

n CCosYCSin
CN

tExp
MPtYU −−−+−= ∑

∞

=

.1
.1

Re,
1

2

2
2

1 β
β

 

( ) ( )[ ] ( )YCSin
N

tExp
MP n

n nnn

n∑
∞

=

−−+−
1

2

2
2 .1
Re

λβ
βδ

 

( ) ( ){ } ( ) ( ){ }[ ]nnnnnn CosHCosBSinHSinA λλλλ −−− 22               (38) 

( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]
∑

∞

=

−+−−+−=
1

2
22

2
2

2

.1.1
Re,

n nnn

nnnnnn

CN

CCosYCSinBYCCosAtExp
MPtYU

β
β

 

( ) ( )[ ] ( ) ( )[ ]
∑

∞

=

+−−+−
1

2
22

2
2 .1
Re 

n nnn

nnnnn

N

YCSinBYCCosAtExp
MP

λβ
βδ

 

( ) ( ){ } ( ) ( ){ }[ ]nnnnnn CosHCosBSinHSinA λλλλ −−− 22   
     (39) 

               

( ) ( ) '

1

'2
2

1

0

''2
1

.1
dYYdYYN

H

nnn ∫∫ 






+= ψ
α

ψ
 

       

( ) ( ) H

n

nnn YSinYAYCSinY

1

''2
2

1

0

''

4

2

24

2

2 







−








+








−=

λ
λ

α
 

( ) ( )[ ]H

n
n

nn

H

n

nn YCos
BAYSinYB

1
'22

1

''2
2 2

4

2

2
   λ

αλλ
λ

α 







−








−








+                (40)  

 

4. STEADY STATE SOLUTION 
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found are  and  , 321 CCC from the solution of following set of equations: 
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5. Concluding Remarks 

The novel feature of the work is to present an analytical solution of unsteady MHD two phase flows in an open circuit 

case where both phases are electrically conducting using Green’s function approach. 
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Nomenclature 
 
d      = width of the non-conducting fluid in phase1 
h      = total width of channel 
H     = dimensionless total width of the channel 
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Constant electric field along z -direction 
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  = velocity field of conducting fluid in phase II 
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 = dimensionless velocity field of conducing fluid in phase I 
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Greek Symbols 
 
τ = time 
µ

=dynamic viscosity 
ν = kinematic viscosity 
ρ

=density of fluid 
σ =electrical-conductivity of conducting fluid 
γ

=ratio of dynamic viscosities
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α =ratio of densities of fluids 
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Subscripts 
1 =  conducting fluid domain phase I 
2 = conducting fluid domain  phase II 
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