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Abstract 
 
Smouldering combustion, the slow burning process associated with porous solid 

have been studied by mathematical point of view. We assume that there is a perfect 
contact between gas and solid phases. We examine the properties of solution of the 
steady-state problems under certain conditions. The equations are solved analytically 
using asymptotic expansions. The steady-state temperature distribution and species mass 
fraction profiles are presented and discussed. It is discovered that the Frank-
Kamenetskii number plays a crucial role in the slow burning process and the 
temperature is decreased and species is consumed in the spatial direction. 
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1.0 Introduction 
Combustion is the exothermic oxidation of a fuel. In the case of a carbon-based compound, the products are primarily carbon 
dioxide, water and energy. 
Smouldering phenomenon is a flameless form of combustion, deriving its heat from heterogeneous reactions occurring on the 
surface of a solid fuel when heated in an oxidizer environment [1]. It is of interest both as a fundamental combustion problem 
and as a practical fire hazard.  
Smouldering is limited by the rate of oxygen-transport to the fuel’s surface (see Figure 1), resulting in a slower and lower 
temperature reaction than flaming. Importantly, smouldering can be self-sustaining (i.e., no energy input required after 
ignition) when the fuel is (or is embedded in) a porous medium. Self-sustaining smouldering occurs because the solid acts as 
energy sink and then feeds that energy back into the unburnt fuel, creating a very energy efficient reaction [2]. Solid porous 
fuels such as polyurethane foam [3], cellulose [4] and charcoal are typical media that exhibit self-sustained smouldering. 

 
 
Figure 1: Computational domain for opposed and forward smouldering combustion. 
While most research focuses on smouldering of solid fuels, there are several examples of combustion of a liquid fuel 
embedded in a porous matrix. Lagging fires occur inside porous insulating materials soaked in oils and other self-igniting  
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liquids (Drysdale [5]). To enhance oil recovery, combustion fronts are initiated in petroleum reservoirs to drive oil toward 
extraction points (Greaves et al. [6]). The reactions involved in enhanced oil recovery through in situ combustion are 
described as heterogeneous gas-solid and gas-liquid between oxygen and the heavy oil residue (Sarathi [7]). 
Rein et al. [8] carried out a computational study to investigate smouldering ignition and propagation in polyurethane foam. 
Forward and opposed smouldering configurations are examined with the numerical model and new kinetics.  
In this paper, one-dimensional, steady, governing equation for smouldering combustion in a porous fuel is considered. We 
assume that there is a perfect contact between gas and solid phases. We consider the presure gradient to be parabolic. We 
examine the properties of solution under certain conditions. To simulate the flow analytically, we use asymptotics 
expansions.  
 
2.0  Mathematical Model  
The steady, one-dimensional governing equations for smouldering combustion in a porous fuel is given by the equation of : 
Conservation of energy of solid 
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The boundary conditions were formulated as follows: 
Boundary conditions: 
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where  

V

Ags
  is the ratio of surface area between gas and solid to volume, 

V

AL   is the ratio of lateral area to volume, E  is activation 

energy, R  is the perfect gas constant, L  is sample length, k  is thermal conductivity, D  is the diffusion coefficient, h∆  is 

the enthalpy of reaction, C  is specific heat, eU  is the global heat-loss coefficient to exterior, T  is temperature, y  is the 

mass fraction of gas species, x  is position, gsh  is the heat transfer coefficient between gas and solid, K  is permeability of 

the medium, µ  is dynamic viscosity, P  is pressure, ρ  is density, φ  is the porosity of the medium. 

We assume that there is a perfect contact between gas and solid phases so that one can make the hypothesis of local thermal 
equilibrium between the phases: 

TTT sg ==                                                                                                                                     (7) 

Adding (1) and (2), we obtain 
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3.0  Method of Solution 

Here, we make the additional assumptions that 
,gρ ,,, Dλφ  xKK ,  and µ  are constant, and we 

consider the pressure gradient to be parabolic i.e. 
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These assumptions could be relaxed in the future. 
By introducing the following dimensionless variables:  
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Equations (3), (4) and (8) after dropping prime become 

( ) ( ) 0211 1
112

2

=−−−+−+ ∈+ θ
θ

δαθθθθλ exk
dx

d
xxk

dx

d

                                       (11) 

( ) ( ) 0211 1
222

2

=−−+−+ ∈+ θ
θ

β eYxk
dx

dY
xxk

dx

Yd
D

                                              (12) 

( ) ( ) 0211 1
222

2

=+−+−+ ∈+ θ
θ

σ eZxk
dx

dZ
xxk

dx

Zd
D

                                                 (13) 
together with the boundary conditions 
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3.1 Existence and Uniqueness of Solution  
Theorem 1 

 Let 0=α , kkk == 21 , 1== λD  and δσβ == . Then there exists a unique solution of 
problem (11), (12) and (13) satisfy (14). 
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Proof: 

Let 0=α , kkk == 21 , 111 == λD , δσβ ==  and ( )
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Using Frobenius method, we obtain the solution of problem (15) and (16) in series form as (using the 
first few terms of the series)  
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Then, we can write  

( ) ( ) ( )( ) ( )xYxZxx −−= φθ 2                                                                                       (18) 

( ) ( ) ( )( ) ( )xxZxxY θφ −−= 2                                                                        (19)  

( ) ( ) ( ) ( )( )xYxxxZ +−= θφ
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Hence, there exists a unique solution of problem (11) - (14). This completes the proof. 
3.1 Properties of Solution 
Theorem 2 

 Let 0=α  and 01 =k  in (11). Then ( )xθ  is symmetric about 
2
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Hence θ  is symmetric about 0=y  i.e. θ  is symmetric about 
2

1=x . This completes the proof. 

 
Theorem 3 

 Let 0=α  and 01 =k in (11). Then  0
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3.3 Analytical Solution 

Here, we consider equations (11) - (14) when 1== λD . Ayeni [9] has shown that 
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where ... toh  read “higher order terms in ∈. In our analysis we are interested only in the first two terms.  
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Therefore, we obtain 
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4.0  Results and Discussion 
 
The existence and uniqueness of solution of the Problem is proved by the actual solution. Also, we have shown, under certain 

conditions, that ( )xθ  is symmetric about 
2

1=x  and 0
2

1 =






′θ . Analytical solutions given by equations (39) - (41) are 

computed for the values of ,2.0,12 == βα  ,718.2,01.0 =∈= e  121 == kk . The species mass fraction and 

temperature values are depicted graphically in Figures 2 - 4.  

The temperature distribution behavior along the spatial direction is shown in Figure 2. Figure 2 depicts the graph of ( )xθ
against x  for different values of δ . It is observed that the temperature decreases along spatial direction as Frank-
Kamenetskii number increases. The oxygen mass fraction distribution behavior along the spatial direction is shown in Figure 

3. Figure 3 depicts the graph of ( )xY against x  for different values of δ . It is observed that the oxygen mass fraction does  
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not change much with increase in Frank-Kamenetskii number. The smouldering product mass fraction distribution behavior 

along the spatial direction is shown in Figure 4. Figure 4 depicts the graph of ( )xZ against x  for different values of δ . It 

is observed that the smouldering product  mass fraction does not change much with increase in Frank-Kamenetskii number. 
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It is worth pointing out that the effect of δ  as shown in Figures 2 and 3 physically means that the temperature is decreased 
and species is consumed in the spatial direction. These occur as a result of the oxidizer flux to and the heat losses from the 
reaction zone.  
  
 
 
5.0  Conclusion 
 
For the slow burning process associated with porous solid, analytical solution via asymptotic expansions is obtained for 
steady-state. The governing parameter for the problem under study is the Frank-Kamenetskii number. The analytical method 
is used to search for steady state temperature and species mass fraction profiles. The temperature and species mass fraction 
profiles are significantly influenced by the parameter involved. The analytical solution of the problem may help model 
numerical solutions and codes. It may be used as a preliminary predictive tool to study mathematically the slow burning 
process associated with porous solid.  The work may be extended to more complex cases such as transient state and two-
dimensional cases and therefore, recommended for further research.  
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