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Abstract

Following the estimated parameterization of Khamis et al. [2011] such that N4(0) = 50,
N(0) = 50, P(0) = 45, carrying capacities K; = 110 and K, = 100, the migration rate of prey
species in the free zone and the migration rate of prey species in the reserve zone have
precise values of 0.5 and 0.4 respectively. We considered the instance when the duration of
interaction is 180 days. On the basis of sensitivity analysis, we have found that the migration
rate of prey species in the free zone is dominantly a more sensitive parameter than the
migration rate of prey species in the reserve zone when the 1-norm ODE 45 and 2-norm
ODE 45 sensitivity schemes were implemented on our tested Matlab program codes. On the
other hand, a similar infinity-norm ODE 45 sensitivity measures show that the migration
rate of prey species in the free zone and the migration rate of prey species in the reserve
zone can be classified as equally sensitive parameters or equally important parameters of
this aquatic ecosystem. Using a 1-norm ODE 45 when both migration rates are varied by 1
per cent, the cumulative percentage changes in the solution trajectories or model outputs
are 147.37 and 89.17. Other numerical results of sensitivity measures are presented and
discussed.
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1.0 Introduction

The prey-predator interaction with harvesting israportant interdisciplinary active research apgicn area which has
recently been studied by a team of expert Africanegean mathematicians [1]. A model for two fiske@ps and one
predator in a patchy environment was formulatechgisi deterministic model to study the dynamicsisfiery in two
homogeneous patches, a free fishing zone and gerdéu prey reserve in which fishing was prohibitéte system of three
model equations of continuous nonlinear first orokelinary differential equations were analysed atbsteady states while
the criteria for local and global stabilities wexiso established. Next, the existence of bionomjiglérium of the system
was determined and the conditions for their existemere derived.

A particular method of sensitivity analysis wasdise measure the relative change in state variakhes parameters
change [1]. Their sensitivity method is quite diffiet both in principle, philosophy and theory fraur present standard
method of sensitivity which studies the sensitivatyalysis of model parameters over a time intepthkerwise called
parametric sensitivity which is mathematically teddte with a system of continuous nonlinear firstles ordinary
differential equations of the Lotka-Volterra typéiah evolve over time. For the detailed explanatbthis method, see one
of our papers which have been published in thegmtegolume of this journal.

Materials and Methods

The main source of data for this pioneering analisbased on the data provided by Khamis et hlTHeir model is a
system of continuous first order nonlinear ordindifferential equations with the following mathenmaat structure:
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dNy(t)/dt = ry Nq(t)(1-Ny(t)/Kq) + BNy (t) — BiNy(t) — my Ny(t) P(t) —gEN4(t) (1)
dNz(t)/dt = r Na(t)(1-Na(t)/K2) - B2Na(t) + B1Na(t) — mp N()P(t) 2
dP(t)/dt = P(tf—d — oP(t) + a1 Ny(t) + as No(t)) 3)

Here the initial conditions NO) > 0, N,(0) > 0 and P(0) > 0 and other model parameters are denesi as positive
constants. For the purpose of this simulation $eitgianalysis, the precise values of the mignatiate of prey species in the
free zone denoted B4 and the migration rate of prey species in therveseone denoted I3, are 0.5 and 0.fespectively.
The above model formulation describes a prey-poediateraction with harvesting in the context ofuatic ecosystem.
Following Khamis et al. [1], we consider the preygatch 1 denoted by;{) to be free for fishing and preys in patch 2
denoted by M (t) as prey refuge which constitutes a reserve areananfishing is permitted in that area. The predator
population (density P(t)) has no barrier betweentito patches in terms of fishing.

The method of sensitivity as proposed by Ekakaéhafo [2] is as follows: vary a model parametdittle one-at-a-
time and observe its impact on the solution trajées. This variation will either produce a bige#f on the solution
trajectories or a small effect on the solutiondcépries. The parameter which is associated wiitg &ffect on the solution
trajectories is called a sensitive parameter wietka parameter which is associated with a smédcebn the solution
trajectories is called a least sensitive paramétérile a least sensitive parameter is considered asugh estimate, the
sensitive parameter should be estimated efficigntiyinimise error in model predictions. These tmutcomes of sensitivity
characterizations are integral components of paemestimation and model validation. In few scemgrimodel parameters
can be classified as both equally most sensitizdeegiually least sensitive.

The 1-norm calculation of the sensitivity of a mbgarameter is based on the theory of the sumeotidtia points of the
difference between the solution trajectories whleat tparameter is not varied and the solution ttajexzs when that
parameter is varied. The 2-norm calculation ofgéssitivity of a model parameter is based on teerthof the square root
of the data points of the difference between thetsm trajectories when that parameter is noterand the solution
trajectories when that parameter is varied. Thiaitgfnorm of the sensitivity of a model parameitebased on the theory of
the maximum of the data points of the differenceveen the solution trajectories when that paranistaot varied and the
solution trajectories when that parameter is varextording to Ekaka-a [3], for each solution td@y, the 1-norm value is
expected to be bigger than its 2-norm value wihi& 2-norm value is expected to be bigger thamitaify-norm value. In
summary, the value of the 1-norm is expected tbipger than the values of the 2-norm and infinigrm.

The core part of our algorithm which we have u#itizto calculate the sensitivity of a model parametehereby
described by the following steps:

» ldentify and code the control system of model eignat of continuous nonlinear first order ordinaiffedential
equations in which the model parameter is not dafi®r the purpose of this analysis, the threetswiurajectories
are denoted by NN, and P ([3]).

» ldentify and code a sub-model of the control systémnodel equations of continuous nonlinear finstew ordinary
differential equations in which the model parameatervaried one-at-a-time. In this scenario, thee¢hsolution
trajectories are denoted by NN,nand R, ([3]).

» Code a Matlab program which runs the control medglations and the varied model equations ([3]).

* Under chosen initial conditions and a time ranfe, ¢oded program will produce the solution trajgetofor the
control model equations and the varied model eqoat{[3]).

* Next, specify the difference between the soluti@jettories of the control model equations andwviréed model
equations as;= N;-Ny,, F> = No-No and B = P-R, ([3]).

e Calculate the 1-norm, 2-norm and infinity-norm tbe three solution trajectories of the control magiations and
similarly for the solution trajectories for the fdifence between the solution trajectories. For gienfor the N and
N1 solution trajectories which assume precise datatpsuch as hand N;, where the sub-script j takes on the
values of 1, 2, 3, 4, 5, ...n, the 1-norm for thesWlution trajectory is defined by the sum of thsaute values of
N11, Nio, N1z Nig4 Nis, up to the nth data point;N In the same manner, the 2-norm for theshlution trajectory is
defined by the positive square-root of the surthefsquares of absolute values @f,WNj,, Ni3 Nig4 Nis, up to the
nth data point i, The infinity-norm is defined by the maximum valokthe set of the absolute values qQfi,\N;,,
Ni3, Ni4, Nis, up to the nth data point;N The same procedure can be applied to calculaté-#horm, 2-norm and
infinity-norm of the N and P solution trajectories ([3]).
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» Having specified the difference between the sofuti@jectories of the control model equations amel varied
model equations by;= N;-N;,, F, = N,-No and B = P-R,, for the given range of data points when j = 13,24, 5,
...n, the difference between the solution trajectooiethe control model equations and the varied rhedeations
will be Fl = Nlj - Nljma Fz = Ngj - Ngjm and E = PJ — ij-

» For the purpose of this analysis, we will also gkdte the 1-norm, 2-norm and infinity-norm of, F, and k. For
example, the 1-norm of;Rvill be the sum of the absolute values of the gaiats (N1 — Nizn), (Ni> — Niom), (Niz—
N13m)y (Niza — Niar), (Nis — Nisp), ... (Nin— Ninm) Where N and Nj, stand for the first data point of the Bblution
trajectory and the first data point of the modifidgl, solution trajectory, b and N, stand for the second data
point of the N solution trajectory and the second data poinhefrhodified N,, solution and so forth. The 1-norm
of F, will be the sum of the absolute values of the gaiats (N — No1r), (No2 — Noop),

(N23 — Nogm), (Nog — Nogm), (Nos — Nosr), - (Non — Nop) Where N; and Ny, stand for the first data point of the N
solution trajectory and the first data point of thedified Ny, solution trajectory, by and N,, stand for the second
data point of the N solution trajectory and the second data pointhef modified N, solution and so forth.
Similarly, the 1-norm of Fwill be the sum of the absolute values of the gatats (R — P, (P, — P, (Pz — Pan),
(Ps— P, (Bs— R, ... (B — P where R and Ry, stand for the first data point of the P soluticajectory and the
first data point of the modified,Psolution trajectory, Pand B,, stand for the second data point of the P solution
trajectory and the second data point of the madiiRg solution and so forth. The 2-norm and infinity-mocan be
similarly calculated for the differences of theahrsolution trajectories - and k.

e To calculate the percentage variation in $blution trajectory of a model parameter one-titree- when other
parameters are fixed, we will calculate the follogvivalues: (1-norm of /divided by the 1-norm of N times 100;
(2-norm of R divided by the 2-norm of N times 100; (infinity-norm of Fdivided by the infinity-norm of } times
100 ([3]).

* To calculate the percentage variation ip $olution trajectory of a model parameter one-ttre when other
parameters are fixed, we will calculate the follogvivalues: (1-norm of F/divided by the 1-norm of N times 100;
(2-norm of k divided by the 2-norm of N times 100; (infinity-norm of fdivided by the infinity-norm of B times
100 ([3]).

e To calculate the percentage variation in P soluti@jectory of a model parameter one-at-a-time whérer
parameters are fixed, we will calculate the follogvivalues: (1-norm of Fdivided by the 1-norm of P) times 100;
(2-norm of K divided by the 2-norm of P) times 100; (infinitpnm of F; divided by the infinity-norm of P) times
100 ([3]).

* Due to the unstable changing values of the 1-n@&morm and infinity-norm specifications, we adoptuse a
compact value for related percentage values ofetimesms. For example, the cumulative percentagaevef 1-
norm sensitivity in terms of the difference in daua trajectories involves the sum of the 1-nornueadue to I
solution trajectory, 1-norm value due tg $6lution trajectory and 1-norm value due tpsBlution trajectory. The
same procedure can be followed to calculate theutatime percentage values of 2-norm and infinitymo
sensitivities in terms of the, Bolution trajectory, fsolution trajectory andsFolution trajectory ([3]).

e The final test is to check if the 1-norm of the $blution trajectory, Blsolution trajectory and P solution trajectory
satisfy the condition that the precise value of theorm of N solution trajectory (or Nsolution trajectory or P
solution trajectory) is bigger than the 2-norm of $blution trajectory (or Nsolution trajectory or P solution
trajectory), followed by the condition that the @ee value of 2-norm of Nsolution trajectory (or Nsolution
trajectory or P solution trajectory) is biggerrthe infinity-norm of N solution trajectory(or Nsolution trajectory
or P solution trajectory) and the condition that tirecise value of 1-norm of;Nolution trajectory (or Nsolution
trajectory or P solution trajectory) is bigger ttthe infinity-norm of N solution trajectory (or Nsolution trajectory
or P solution trajectory) ([3]).

What are we looking for? We want to find the migmtparameter which when varied will have a bigeeffon the
solution trajectory. On the basis of this compuotadil technique, we can calculate the sensitivitgaath migration parameter
and differentiate their extent of sensitivity whie precise values of other model parameters xaed.fi

Our computational method of calculating the sewisjtiof the migration rate of prey species in theef zone and the
migration rate opreyspecies in the reserve zone is based on the prdpostnod of Ekaka-a and Nafo [2] and Ekaka-a [3]
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which has been fully described above. This cangfigibted numerical method is based on the hypalodsiarying a model
parameter a little one-at-a-time and observingcumulative effect on the solution trajectories ood®l outputs. These
sensitivity values can be calculated by using linee popular mathematical norms of 1-norm, 2-namchiafinity-norm.

The current method which we have proposed in tesarch is more beneficial and attractive when evetpwith other
formulae of one-at-a-time sensitivity analysis addal parameters. The difference between our presmsitivity analysis
method and other methods of calculating the seitginf model parameters can be read in the wofKd,0b, 6, 7, 8, 9]. The
results which we have obtained upon the implemiemtatf our numerical technique are presented ascudsed next.

Results and Discussions

When the model parametfr whose original precise value is 0.5 is varied kpelcent, 2 per cent, 3 percent, 4 percent
and 5 percent, the new values of paramgtere 0.005, 0.010, 0.015, 0.020, and 0.025. A Icpat variation in the model
parametep; will produce 147.37 cumulative percentage changheé solution trajectories using 1-norm sensitivitethod,
105.94 cumulative percentage change in the solut@jectories using 2-norm sensitivity method and3& cumulative
percentage change in the solution trajectoriesguinorm sensitivity method using infinity-norm séivity method. These
results are displayed at the top values of the ficdumn of Table 1. Similarly, when the precisdueaof 0.4 for model
parametei, is varied by 1 percent, 2 percent, 3 percent, régue and 5 percent, its new values are 0.004,80.0012,
0.016, and 0.020. In this scenario, a 1 per centituan of B, will produce 89.17 cumulative percentage changéhen
solution trajectories using a 1-norm sensitivitytihoel, 61.24 cumulative percentage change in thdisaltrajectories using
a 2-norm sensitivity method and 90.80 cumulativec@etage change in the solution trajectories usirignity-norm
sensitivity method. In the same manner, these teaut displayed at the bottom values of the fisdtimn of Table 1. The
sensitivity values for the 2 percent, 3 per cempefcent and 5 percent variations of paramgteendf, in terms of the 1-
norm, 2-norm and infinity-norm are also displayedTiable 1. It is worth mentioning that these one-&ime sensitivity
values in terms of the three popular mathematiocaihs are statistically verified as shown in Tahle 1

On the basis of our chosen sensitivity method sthesitivity values which we have calculated whenrttigration rate of
prey species in the free zone and the migratiom oprey species in the reserve zone are varied a btte-at-a-time as
other model parameters are fixed are presentedlifeTL. Without loss of generality, it is cleartttfee migration rate of prey
species in the free zone and the migration raferey species in the reserve zone whose sensitigityes are calculated in
this study can be classified as relatively equsdigsitive or relatively equally important.

Table 1: Calculating the sensitivity values of thigiration rate of prey species in the free zonetardnigration rate of
prey species in the reserve zone

mn Sensitivity values of migration rates with petage| rsv Wh var std
variations
f;=0.005 | p.=0.010 | B;=0.015 | B,=0.02 | p;=0.025
$2=0.004 | p,=0.008 | B,=0.012 | B,= $,=0.02
0.016
1-norm 147.37 143.30 139.52 136.00 |132.67 14.7 137.3 |33.7 | 5.8
89.17 87.54 85.94 84.38 82.84 6.3 84.9 6.3 25
2-norm 105.94 103.13 100.52 98.07 95.76 10.2 98.9 16.2 | 4.02
61.24 60.15 59.08 58.04 57.01 4.2 58.4 2.8 1.67
Infinity- | 87.31 86.04 84.80 83.57 82.36 4.95 83.99 | 3.83 1.96
norm 90.80 88.99 87.23 85.52 83.87 6.93 86.13 | 7.51 | 2.74
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rsv represents the range of sensitivity valugsyrepresents the weighted mean of sensitivity valuas represents the
variance of sensitivity values; std represents stendard deviation of sensitivity values; mn repnés each type of
mathematical norm.

What do we learn from Table 1? Based on our chofcgensitivity hypothesis, our calculations demmatst that both
migration rates produce equally high values ofdheulative effects on the solution trajectoriesnmdel outputs when
these parameters were varied a little one-at-a-timhde other model parameters are fixed. These rghtens are
consistently the same irrespective of the valueth@fl-norm, 2-norm and infinity-norm ODE 45 seingi values. In each
row of the sensitivity values for each type of neattatical norm, the top row represents the ODE #4Sigeity values of the
B, migration rate while the bottom row represents@iE 45 sensitivity values of tifig migration rate.

Khamis et al. [1] used a deterministic model tolgsgthe interaction between two fish species amel gredator in a
patchy environment and formulated the dynamicdgbfefy in two homogeneous patches namely a fréénfiszone and a
refuge for prey reserve where fishing was prohibifehe technique of sensitivity index at a pointickhhwas proposed by
Khamis et al. [1] did not look into the alternatimeethod of tackling the parametric sensitivity o€ tmigration rates over a
time interval especially for a system of continuaslinear first order ordinary differential equats which evolve over
time. Although, Khamis et al. [1] have also repdrtin the basis of their sensitivity index that gapulations were more
sensitive to growth, dispersal and predation ratedeast sensitive to the catchability coefficjehis also important to apply
the alternative method of sensitivity analysis ca¢ime interval to quantify the extent of the sewvity of the migration rate
parameters which Khamis et al. [1] did not analys¢heir own work. Therefore, our present contribnitto knowledge
complements and extends the current mathematieftsie of Khamis et al. [1].

Within the mathematical sensitivity analysis literas and as far as we know, our proposed sefmgitivethod over a
time interval makes another useful contributionakhive have not seen elsewhere. This useful reshktrie stated as: the 1-
norm calculation of the statistical coefficientvairiation (CV) which is defined as the value of #t@endard deviation divided
by the value of the weighted mean shows that theo€¥higration rate3, is 0.0294 while the CV of migration rafg is
0.0422. Therefore, the 1-norm sensitivity for theynation ratef, is a better estimate than the 1-norm sensitivatythe
migration rateB;. The 2-norm calculation of CV shows that the C\frogration rate, is 0.0286 while CV of migration rate
B, is 0.0406. Therefore, the 2-norm sensitivity fog migration ratf, is a better estimate than the 2-norm sensitiatytltie
migration ratef;. Using the same procedure, the infinity-norm clalton of CV shows that the CV of migration rdtgeis
0.0233 while the CV of migration raf is 0.0318. In this scenario, the infinity-norm siinity for the migrationp; is a
better estimate than the infinity-norm sensitiviily the migration ratg,. On the basis of these calculations, we repott tha
the infinity-norm sensitivity measure is a bettstimate for the migration rat than the 1-norm and 2-norm sensitivity
measures whereas the 2-norm sensitivity measwadetter estimate for the migration rfitethan the 1-norm and infinity-
norm sensitivity measures.

Conclusion

In this study, we have used the technique of seitgiinalysis to select the migration rate of pspecies in the free
zone and the migration rate of prey species inréiserve zone as two equally sensitive or equallyoiant parameters
which satisfy some standard statistical measurek as the range, weighted mean, variance and sthd@aiation of the
sensitivity values. In respect of a further reskamd strengthening of knowledge-base, we recommnigidhese two model
parameters of a prey-predator interaction with éstimg need to be estimated efficiently in ordemiaimise prediction
uncertainty. The precise parameter values of th@eeparameters cannot be necessarily consideredugh estimates in
terms of a further model validation analysis. Besawf the significant role of the carrying capaditifor this aquatic
ecological model, we will be attempting to condilnet sensitivity analysis of the carrying capacitiesur next study which
we did not conduct in this paper.
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