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                       Abstract 
       

Following the estimated parameterization of Khamis et al. [2011] such that N1(0) = 50, 
N2(0) = 50, P(0) = 45, carrying capacities K1 = 110 and K2 = 100, the migration rate of prey 
species in the free zone and the migration rate of prey species in the reserve zone have 
precise values of 0.5 and 0.4 respectively. We considered the instance when the duration of 
interaction is 180 days. On the basis of sensitivity analysis, we have found that the migration 
rate of prey species in the free zone is dominantly a more sensitive parameter than the 
migration rate of prey species in the reserve zone when the 1-norm ODE 45 and 2-norm 
ODE 45 sensitivity schemes were implemented on our tested Matlab program codes. On the 
other hand, a similar infinity-norm ODE 45 sensitivity measures show that the migration 
rate of prey species in the free zone and the migration rate of prey species in the reserve 
zone can be classified as equally sensitive parameters or equally important parameters of 
this aquatic ecosystem. Using a 1-norm ODE 45 when both migration rates are varied by 1 
per cent, the cumulative percentage changes in the solution trajectories or model outputs 
are 147.37 and 89.17. Other numerical results of sensitivity measures are presented and 
discussed. 
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1.0 Introduction 

 
The prey-predator interaction with harvesting is an important interdisciplinary active research application area which has 

recently been studied by a team of expert African-European mathematicians [1]. A model for two fish species and one 
predator in a patchy environment was formulated using a deterministic model to study the dynamics of fishery in two 
homogeneous patches, a free fishing zone and a refuge for prey reserve in which fishing was prohibited. The system of three 
model equations of continuous nonlinear first order ordinary differential equations were analysed around steady states while 
the criteria for local and global stabilities were also established. Next, the existence of bionomic equilibrium of the system 
was determined and the conditions for their existence were derived. 

A particular method of sensitivity analysis was used to measure the relative change in state variables when parameters 
change [1]. Their sensitivity method is quite different both in principle, philosophy and theory from our present standard 
method of sensitivity which studies the sensitivity analysis of model parameters over a time interval otherwise called 
parametric sensitivity which is mathematically tractable with a system of continuous nonlinear first order ordinary 
differential equations of the Lotka-Volterra type which evolve over time. For the detailed explanation of this method, see one 
of our papers which have been published in the present volume of this journal.  

Materials and Methods 
The main source of data for this pioneering analysis is based on the data provided by Khamis et al. [1]. Their model is a 

system of continuous first order nonlinear ordinary differential equations with the following mathematical structure: 
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dN1(t)/dt = r1 N1(t)(1-N1(t)/K1) + β2N2(t) – β1N1(t) – m1 N1(t) P(t) –qEN1(t)        (1) 

 

dN2(t)/dt = r2 N2(t)(1-N2(t)/K2) - β2N2(t) + β1N1(t) – m2 N2(t)P(t)                          (2) 
 

dP(t)/dt  = P(t)(−d – σP(t) + α1 N1(t) + α2 N2(t) )                                               (3) 
 
Here the initial conditions N1(0) > 0, N2(0) > 0 and P(0) > 0 and other model parameters are considered as positive 

constants. For the purpose of this simulation sensitivity analysis, the precise values of the migration rate of prey species in the 
free zone denoted by β1 and the migration rate of prey species in the reserve zone denoted by β2 are 0.5 and 0.4 respectively. 
The above model formulation describes a prey-predator interaction with harvesting in the context of aquatic ecosystem. 
Following Khamis et al. [1], we consider the prey in patch 1 denoted by N1(t) to be free for fishing and preys in patch 2 
denoted by N2 (t) as prey refuge which constitutes a reserve area and no fishing is permitted in that area. The predator 
population (density P(t)) has no barrier between the two patches in terms of fishing. 

The method of sensitivity as proposed by Ekaka-a and Nafo [2] is as follows: vary a model parameter a little one-at-a-
time and observe its impact on the solution trajectories. This variation will either produce a big effect on the solution 
trajectories or a small effect on the solution trajectories. The parameter which is associated with a big effect on the solution 
trajectories is called a sensitive parameter whereas the parameter which is associated with a small effect on the solution 
trajectories is called a least sensitive parameter. While a least sensitive parameter is considered as a rough estimate, the 
sensitive parameter should be estimated efficiently to minimise error in model predictions. These two outcomes of sensitivity 
characterizations are integral components of parameter estimation and model validation. In few scenarios, model parameters 
can be classified as both equally most sensitive and equally least sensitive.  

The 1-norm calculation of the sensitivity of a model parameter is based on the theory of the sum of the data points of the 
difference between the solution trajectories when that parameter is not varied and the solution trajectories when that 
parameter is varied. The 2-norm calculation of the sensitivity of a model parameter is based on the theory of the square root 
of the data points of the difference between the solution trajectories when that parameter is not varied and the solution 
trajectories when that parameter is varied. The infinity-norm of the sensitivity of a model parameter is based on the theory of 
the maximum of the data points of the difference between the solution trajectories when that parameter is not varied and the 
solution trajectories when that parameter is varied. According to Ekaka-a [3], for each solution trajectory, the 1-norm value is 
expected to be bigger than its 2-norm value while the 2-norm value is expected to be bigger than its infinity-norm value. In 
summary, the value of the 1-norm is expected to be bigger than the values of the 2-norm and infinity-norm. 

The core part of our algorithm which we have utilized to calculate the sensitivity of a model parameter is hereby 
described by the following steps: 

 
• Identify and code the control system of model equations of continuous nonlinear first order ordinary differential 

equations in which the model parameter is not varied. For the purpose of this analysis, the three solution trajectories 
are denoted by N1, N2 and P ([3]). 
 

• Identify and code a sub-model of the control system of model equations of continuous nonlinear first order ordinary 
differential equations in which the model parameter is varied one-at-a-time. In this scenario, the three solution 
trajectories are denoted by N1m, N2m and Pm ([3]). 
 

• Code a Matlab program which runs the control model equations and the varied model equations ([3]). 
 

• Under chosen initial conditions and a time range, the coded program will produce the solution trajectories for the 
control model equations and the varied model equations ([3]). 
 

• Next, specify the difference between the solution trajectories of the control model equations and the varied model 
equations as F1 = N1-N1m, F2 = N2-N2m and P3 = P-Pm ([3]). 
 

• Calculate the 1-norm, 2-norm and infinity-norm for the three solution trajectories of the control model equations and 
similarly for the solution trajectories for the difference between the solution trajectories. For example, for the N1 and 
N1m solution trajectories which assume precise data points such as N1j and N1jm where the sub-script j takes on the 
values of 1, 2, 3, 4, 5, …n, the 1-norm for the N1 solution trajectory is defined by the sum of the absolute values of 
N11, N12, N13, N14, N15, up to the nth data point N1n. In the same manner, the 2-norm for the N1 solution trajectory is 
defined by the positive square-root of  the sum of the squares of absolute values of N11, N12, N13, N14, N15, up to the 
nth data point N1n. The infinity-norm is defined by the maximum value of the set of the absolute values of N11, N12, 
N13, N14, N15, up to the nth data point N1n. The same procedure can be applied to calculate the 1-norm, 2-norm and 
infinity-norm of the N2 and P solution trajectories ([3]). 
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• Having specified the difference between the solution trajectories of the control model equations and the varied 
model equations by F1 = N1-N1m, F2 = N2-N2m and F3 = P-Pm, for the given range of data points when j = 1, 2, 3, 4, 5, 
…n, the difference between the solution trajectories of the control model equations and the varied model equations 
will be F1 = N1j – N1jm, F2 = N2j – N2jm and F3 = Pj – Pjm. 
 

• For the purpose of this analysis, we will also calculate the 1-norm, 2-norm and infinity-norm of F1, F2 and F3. For 
example, the 1-norm of F1 will be the sum of the absolute values of the data points (N11 – N11m), (N12 – N12m), (N13 – 
N13m), (N14 – N14m), (N15 – N15m), … (N1n – N1nm) where N11 and N11m stand for the first data point of the N1 solution 
trajectory and the first data point of the modified N1m solution trajectory, N12 and N12m stand for the second data 
point of the N1 solution trajectory and the second data point of the modified N1m solution and so forth. The 1-norm 
of F2 will be the sum of the absolute values of the data points (N21 – N21m), (N22 – N22m),  
(N23 – N23m), (N24 – N24m), (N25 – N25m), … (N2n – N2nm) where N21 and N21m stand for the first data point of the N2 
solution trajectory and the first data point of the modified N2m solution trajectory, N22 and N22m stand for the second 
data point of the N2 solution trajectory and the second data point of the modified N2m solution and so forth. 
Similarly, the 1-norm of F3 will be the sum of the absolute values of the data points (P1 – P1m), (P2 – P2m), (P3 – P3m), 
(P4 – P4m), (P5 – P5m), … (Pn – Pnm) where P1 and P1m stand for the first data point of the P solution trajectory and the 
first data point of the modified Pm solution trajectory, P2 and P2m stand for the second data point of the P solution 
trajectory and the second data point of the modified Pm solution and so forth. The 2-norm and infinity-norm can be 
similarly calculated for the differences of the three solution trajectories F1, F2 and F3. 

 
• To calculate the percentage variation in N1 solution trajectory of a model parameter one-at-a-time when other 

parameters are fixed, we will calculate the following values: (1-norm of F1 divided by the 1-norm of N1) times 100; 
(2-norm of F1 divided by the 2-norm of N1) times 100; (infinity-norm of F1 divided by the infinity-norm of N1) times 
100 ([3]).  

 
• To calculate the percentage variation in N2 solution trajectory of a model parameter one-at-a-time when other 

parameters are fixed, we will calculate the following values: (1-norm of F2 divided by the 1-norm of N2) times 100; 
(2-norm of F2 divided by the 2-norm of N2) times 100; (infinity-norm of F2 divided by the infinity-norm of N2) times 
100 ([3]).  

 
• To calculate the percentage variation in P solution trajectory of a model parameter one-at-a-time when other 

parameters are fixed, we will calculate the following values: (1-norm of F3 divided by the 1-norm of P) times 100; 
(2-norm of F3 divided by the 2-norm of P) times 100; (infinity-norm of F3 divided by the infinity-norm of P) times 
100 ([3]).  

 
• Due to the unstable changing values of the 1-norm, 2-norm and infinity-norm specifications, we adopt to use a 

compact value for related percentage values of these norms. For example, the cumulative percentage value of 1-
norm sensitivity in terms of the difference in solution trajectories involves the sum of the 1-norm value due to F1 
solution trajectory, 1-norm value due to F2 solution trajectory and 1-norm value due to F3 solution trajectory. The 
same procedure can be followed to calculate the cumulative percentage values of 2-norm and infinity-norm 
sensitivities in terms of the F1 solution trajectory, F2 solution trajectory and F3 solution trajectory ([3]). 

 
• The final test is to check if the 1-norm of the N1 solution trajectory, N2 solution trajectory and P solution trajectory 

satisfy the condition that the precise value of the 1-norm of N1 solution trajectory (or N2 solution trajectory or P 
solution trajectory) is bigger than the 2-norm of N1 solution trajectory (or N2 solution trajectory or P solution 
trajectory), followed by the condition that the precise value of 2-norm of N1 solution trajectory (or N2 solution 
trajectory or P solution trajectory)  is bigger than the infinity-norm of N1 solution trajectory(or N2 solution trajectory 
or P solution trajectory) and the condition that the precise value of 1-norm of N1 solution trajectory (or N2 solution 
trajectory or P solution trajectory) is bigger than the infinity-norm of N1 solution trajectory (or N2 solution trajectory 
or P solution trajectory) ([3]).  

 
What are we looking for? We want to find the migration parameter which when varied will have a big effect on the 

solution trajectory. On the basis of this computational technique, we can calculate the sensitivity of each migration parameter 
and differentiate their extent of sensitivity when the precise values of other model parameters are fixed. 

Our computational method of calculating the sensitivity of the migration rate of prey species in the free zone and the 
migration rate of prey species in the reserve zone is based on the proposed method of Ekaka-a and Nafo [2] and Ekaka-a [3]  

 
Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 177 – 182     



180 

 

A Matlab Programming Approach for...  Enu, Olowu, Eze, Abubakar, Agwu, and Nwachukwu  J. of NAMP  

which has been fully described above. This carefully tested numerical method is based on the hypothesis of varying a model 
parameter a little one-at-a-time and observing its cumulative effect on the solution trajectories or model outputs. These 
sensitivity values can be calculated by using the three popular mathematical norms of 1-norm, 2-norm and infinity-norm.  

The current method which we have proposed in this research is more beneficial and attractive when compared with other 
formulae of one-at-a-time sensitivity analysis of model parameters. The difference between our present sensitivity analysis 
method and other methods of calculating the sensitivity of model parameters can be read in the works of [4, 5, 6, 7, 8, 9]. The 
results which we have obtained upon the implementation of our numerical technique are presented and discussed next. 

 
Results and Discussions 
When the model parameter β1 whose original precise value is 0.5 is varied by 1 percent, 2 per cent, 3 percent, 4 percent 

and 5 percent, the new values of parameter β1 are 0.005, 0.010, 0.015, 0.020, and 0.025. A 1 per cent variation in the model 
parameter β1 will produce 147.37 cumulative percentage change in the solution trajectories using 1-norm sensitivity method, 
105.94 cumulative percentage change in the solution trajectories using 2-norm sensitivity method and 87.31 cumulative 
percentage change in the solution trajectories using 2-norm sensitivity method using infinity-norm sensitivity method. These 
results are displayed at the top values of the first column of Table 1. Similarly, when the precise value of 0.4 for model 
parameter β2 is varied by 1 percent, 2 percent, 3 percent, 4 percent and 5 percent, its new values are 0.004, 0.008, 0.012, 
0.016, and 0.020. In this scenario, a 1 per cent variation of β2 will produce 89.17 cumulative percentage change in the 
solution trajectories using a 1-norm sensitivity method, 61.24 cumulative percentage change in the solution trajectories using 
a 2-norm sensitivity method and 90.80 cumulative percentage change in the solution trajectories using infinity-norm 
sensitivity method. In the same manner, these results are displayed at the bottom values of the first column of Table 1. The 
sensitivity values for the 2 percent, 3 per cent, 4 percent and 5 percent variations of parameters β1 and β2 in terms of the 1-
norm, 2-norm and infinity-norm are also displayed in Table 1. It is worth mentioning that these one-at-a-time sensitivity 
values in terms of the three popular mathematical norms are statistically verified as shown in Table 1. 

On the basis of our chosen sensitivity method, the sensitivity values which we have calculated when the migration rate of 
prey species in the free zone and the migration rate of prey species in the reserve zone are varied a little one-at-a-time as 
other model parameters are fixed are presented in Table 1. Without loss of generality, it is clear that the migration rate of prey 
species in the free zone and the migration rate of prey species in the reserve zone whose sensitivity values are calculated in 
this study can be classified as relatively equally sensitive or relatively equally important. 

 
Table 1: Calculating the sensitivity values of the migration rate of prey species in the free zone and the migration rate of 

prey species in the reserve zone 
 

mn Sensitivity values of migration rates with percentage 
variations 

rsv   wm var std 

β1 = 0.005 
β2 =0.004 

β1 =0.010 
β2=0.008 
 

β1= 0.015 
β2 =0.012 
 

β1 =0.02 
β2= 
0.016 
 

β1=0.025 
β2=0.02 
 

1-norm 147.37 
89.17 

143.30 
87.54 

139.52 
85.94 

136.00 
84.38 

132.67 
82.84 

14.7 
6.3 

137.3 
84.9 

33.7 
6.3 

5.8 
2.5 

2-norm 105.94 
61.24 

103.13 
60.15 

100.52 
59.08 

98.07 
58.04 

95.76 
57.01 

10.2 
4.2 

 

98.9 
58.4 

16.2 
2.8 

4.02 
1.67 

Infinity-
norm 

87.31 
90.80 

86.04 
88.99 

84.80 
87.23 

83.57 
85.52 

82.36 
83.87 
 

4.95 
6.93 

83.99 
86.13 

3.83 
7.51 

1.96 
2.74 
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rsv represents the range of sensitivity values; wm represents the weighted mean of sensitivity values; var represents the 
variance of sensitivity values; std represents the standard deviation of sensitivity values; mn represents each type of 
mathematical norm. 

What do we learn from Table 1? Based on our choice of sensitivity hypothesis, our calculations demonstrate that both 
migration rates produce equally high values of the cumulative effects on the solution trajectories or model outputs when  
these parameters were varied a little one-at-a-time while other model parameters are fixed. These observations are 
consistently the same irrespective of the values of the 1-norm, 2-norm and infinity-norm ODE 45 sensitivity values. In each 
row of the sensitivity values for each type of mathematical norm, the top row represents the ODE 45 sensitivity values of the 
β1 migration rate while the bottom row represents the ODE 45 sensitivity values of the β2 migration rate. 

Khamis et al. [1] used a deterministic model to analyse the interaction between two fish species and one predator in a 
patchy environment and formulated the dynamics of fishery in two homogeneous patches namely a free fishing zone and a 
refuge for prey reserve where fishing was prohibited. The technique of sensitivity index at a point which was proposed by 
Khamis et al. [1] did not look into the alternative method of tackling the parametric sensitivity of the migration rates over a 
time interval especially for a system of continuous nonlinear first order ordinary differential equations which evolve over 
time. Although, Khamis et al. [1] have also reported on the basis of their sensitivity index that the populations were more 
sensitive to growth, dispersal and predation rates but least sensitive to the catchability coefficient, it is also important to apply 
the alternative method of sensitivity analysis over a time interval to quantify the extent of the sensitivity of the migration rate 
parameters which Khamis et al. [1] did not analyse in their own work. Therefore, our present contribution to knowledge 
complements and extends the current mathematical analysis of Khamis et al. [1].  

Within the mathematical sensitivity analysis literatures and as far as we know, our proposed sensitivity method over a 
time interval makes another useful contribution which we have not seen elsewhere. This useful result is here stated as: the 1-
norm calculation of the statistical coefficient of variation (CV) which is defined as the value of the standard deviation divided 
by the value of the weighted mean shows that the CV of migration rate β2 is 0.0294 while the CV of migration rate β1 is 
0.0422. Therefore, the 1-norm sensitivity for the migration rate β2 is a better estimate than the 1-norm sensitivity for the 
migration rate β1. The 2-norm calculation of CV shows that the CV of migration rate β2 is 0.0286 while CV of migration rate 
β1 is 0.0406. Therefore, the 2-norm sensitivity for the migration rate β2 is a better estimate than the 2-norm sensitivity for the 
migration rate β1. Using the same procedure, the infinity-norm calculation of CV shows that the CV of migration rate β1 is 
0.0233 while the CV of migration rate β2 is 0.0318. In this scenario, the infinity-norm sensitivity for the migration β1 is a 
better estimate than the infinity-norm sensitivity for the migration rate β2. On the basis of these calculations, we report that 
the infinity-norm sensitivity measure is a better estimate for the migration rate β1 than the 1-norm and 2-norm sensitivity 
measures whereas the 2-norm sensitivity measure is a better estimate for the migration rate β2 than the 1-norm and infinity-
norm sensitivity measures. 

 
Conclusion 
In this study, we have used the technique of sensitivity analysis to select the migration rate of prey species in the free 

zone and the migration rate of prey species in the reserve zone as two equally sensitive or equally important parameters 
which satisfy some standard statistical measures such as the range, weighted mean, variance and standard deviation of the 
sensitivity values. In respect of a further research and strengthening of knowledge-base, we recommend that these two model 
parameters of a prey-predator interaction with harvesting need to be estimated efficiently in order to minimise prediction 
uncertainty. The precise parameter values of these two parameters cannot be necessarily considered as rough estimates in 
terms of a further model validation analysis. Because of the significant role of the carrying capacities for this aquatic 
ecological model, we will be attempting to conduct the sensitivity analysis of the carrying capacities in our next study which 
we did not conduct in this paper.  
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