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Abstract

Mathematical models have played a significant role in understanding the spread and
control of diseases. In thiswork, we used the SEIR model based on differential equationsto
propose the viral dynamics of HBV. The existence and stability of the disease-free
equilibrium is analyzed and found that the characteristic roots are all negative, hence the
disease free equilibrium state is stable by Routh-Hurwitz Criteria.

Keywords: Hepatitis B, thresholds, Mathematical model, Routh-Hurwitz Criteria, Stability
1. Introduction

Hepatitis B is a life-threatening liver infectioawsed by the hepatitis B virus. It is a major tepltoblem and the
most serious type of viral hepatitis. It can cacismnic liver disease and puts people at highafstteath from cirrhosis
of the liver and liver cancer. Worldwide, estimat®eb billion people have been infected with the dtéfs B virus
(HBV), and more than 350 million have chronic liverfections. In the past decade, therapy for HB\S leeen
revolutionized by the advent of drugs that diredtlgck replication of the HBV genome. All these glsu(to date) are
nucleoside or nucleotide analogues that selectivaiget the viral reverse transcriptase. The fstcessful drug,
lamivudine, emerged from screening for inhibitofsttee HBV reverse transcriptase and was introduogal clinical
practice for the management of HBV infection.

Recently, mathematical models have been used fnlgute study the transmission dynamics of HBV [0}:1n [1],
Anderson and May used a simple mathematical madi#lustrate the effects of carriers on the trarssian of HBV. In
an effort to model HBV infection dynamics and iteatment with the reverse transcriptase inhibikdost infectious
diseases could be driven towards eradication, éfjadte and timely steps (e.g. vaccination, treatnestucational and
enlightenment campaign, etc.) are taken in theseoaf the epidemic.

However, many of these diseases eventually becaomendc in our society due to lack of adequate pedi@nd
timely interventions to mitigate the spread of tiseases. Consequently, there is the need for fpreasteps towards
controlling the spread of infectious diseases,i@adrly those ones for which both vaccine and care available.
Moreover, it is often cheaper to prevent the o@nee of a disease than to cure it. For a few allsases, there is no
cure but individuals can be vaccinated againstrgeibfected (e.g. Polio).

Surprisingly, it remains a puzzle why diseasesnbich both treatment and vaccine are availablestiteendemic in
some of our societies.

Mathematical models have become important toosnialyzing the spread and control of infectious akes. Some
examples on the use of mathematical model for tia¢dyaes of treatment and control of infectious assecan be found in
[4, 5, 8-10, 13], etc. For instance, Nelson eBhlthased on results from the analysis and sinaratof their HIV model,
suggested universal HBV testing followed by an irdiate commencement of antiretroviral therapy fasthinfected as
a strategy to drive HBV epidemic towards eliminatio

Also, Kuang et al. [5] proposed an improved HesaBtvirus (HBV) model for the treatment of theehse and they
claimed that their model control strategy couldohelduce death due to HBV remarkably.

Corresponding authoBotonwa E. Olawale, E-mail: walexymaths@yahoo.com, Tel.: +23480978@024

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 171 - 176
171



Mathematical Dynamics For Controling Hepatitis B Virusa. Sotonwa and Anige J. of NAMP

In this paper, we address the question of how tomafly combine the vaccination and the treatmérstsgies such
that the cost of the implementation of the two méations is minimized while the disease is eraditavithin specified
period. It is important to mention here that ourkvis different from some of the other related weodited in this paper
because the model uses bilinear incidence withriabla size total population which tends to an gstatic limit. Note
that in this paper, we shall deal with the mathacahfinalysis of the model . This approach is défe from the ones in
most of the papers cited which concentrate on eitfiehe two parts. Also, most of the papers citsgd constant
population size but we are considering a variableufation size (tending to a limit) which is mogalistic.

The paper is organized as follows. In section 2pvesent the SEIR model to be investigated. In@e&, we carry
out local stability analysis on the model equilitim. In section 4,we discuss and conclusion.

2. Methodology

There are several variations of models for desugilEpidemics with different properties with respecimortality,
immunity, and time horizon. In this paper, onelafde variations is examined. Precisely, we consitlarstandard SEIR
model with bilinear incidence and variable totapplation. Supposs represents the number of SusceptiBlagpresents
the number of Exposed Individualsyepresents the number of individuals who arectef@, andR represents the number
of individuals who are removed due to vaccinatiomerovery from the disease which confers permamemtunity to
reinfection. It is important to note that this mbideapplicable to a class of diseases that i3, fdé&spite the availability of
treatment and vaccination. Also, individuals caguae immunity against the disease either througbcination or
recovery after treatment for the disease.

We now consider the SEIR model below:

Let® represent the incoming individuals are immunizediast infection

u represents the Natural death

d represents the Artificial death

a represents the contact rate of infection from Spsble to Exposed

B represents the contact of Infection

p represents the contact rate of Infection from Eegloclass to Infected class

o represents the successful cure of infections rate

u, is the proportion of the susceptible that is vaat@d per unit time,

u, is the proportion of the infective that is treapd unit time.
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Figure 1: Schematic representation of the model
Then the equation of the dynamics are given as

ds
a=®+BI—QSI—uS—u1$ (2.1)
dE
i aSI — uE — pE — 6E (2.2)
dI
asz—uI—BI—GI—SI—uZI (2.3)
dR
P ol — uR = 8R + u; S + u,l (2.4)

St) >0, E(t)>0, I(t)>0,R(t) >0
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where the total population is
N(t) = S(t) + E(t) + I(t) + R(v)
Then the equilibrium (Critical) point is obtainedin :
dS dE dI dR

By rescaling equations (2.1),(2.2), (2.3), and)2.4
we setS(t) =a, E(t) =D, It) =¢ R() =d
Therefore, equation (2.1) to (2.4) becomes
@+ Bc—oac—pa—ua=0 (2.6)
gac —pub —pb—0b =0 2.7)
pb—puc—pBc—oc—d8c—u,c=0 (2.8)
oc—pud—06d+u;a+u,c=0 (2.9)

Then to obtain the existence of disease free dqjuith state, we look into equation (2.8) and get
pb=(Qu+B+o+5+uy)c
_ ((u+PB+o+3+uy)c)

b 5 (2.10)
Substituting equation (2.10) into equation (2.7, get
+B+o0+8+uy)c
0tac—(u+p+8)(H P cp 1) =0
+B+c+8+
c[aa—(p+p+5)(” P °p uZ)]:o 2.11)
This implies
+B+c+8+
c=0, or [aa —(u+p+9) (utp (; uZ)] =0 (2.11a)

Substitutingc = 0 into equation (2.9), we get
u;

d=——"7F7——
(L+3)(n+uy)
Also, substituting: = 0 into equation (2.10), we get

b=0
Substitutingb = 0,and ¢ = 0, into(2.6),we get
?
Sty
Hence, the disease free equilibrium state is gasefollows:
() u; ¢
M = (a,b,c,d) = ( ,0,0, ) 2.12
( ) Bt uy (n+d)(n+uy) (212)
Then to obtain the existence of epidemic equilibrigtates, we look into (2.11a) and get
(W+p+o+3d+uy)
aa—(u+p+9) =0
+B+oc+d+u
az (utpt sy BtP - ) (2.13)
substituting forequation (2.13) in equation (2.6) ,we get
_p(pt+p+)p+p+o+d+u)—Qop 2.14)
T Pop—alptp+d@F+P+o+d+uy) '
Substituting equation (2.14) into (2.8) ,we get
b= (p+B+o+d+u)lp(p+p+)@+p+o+35+u)— dapl 2.15)

o _ p(opp —a(u+p+8)(n+p+o+8+u))
Substituting equations (2.13), (2.14) into equat@®), we get
_ (o+up) (n(utp+3) (u+p+o+d+ug)—0 ap) (ul((u+p+8)(u+B+G+8+u1)))

d= (u+8) (eBp—a(u+p+8) (ut+p+o+d+uy)) + (u+d)ap (2.16)
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Hence the epidemic equilibrium state is given by:
M* — (a*‘ b*, C*, d*)

Where
+B+o+d+u
A Gl - ) 2.17)
b = (u+B+to+d+u)[pu+p+3)(+p+o+3+u)— Gap] 2.18)
p(afp —a(u+p+H@+P+o+35+uy)) '
C*_u(u+p+8)(u+ﬁ+c+6+u1)—®ap 2.19)
T Bap—oa(ut+p+d)(+Pp+o+d+uy) '
. (otu) (ulurp+d) (utprotstu)—-gap) | ((Ur((erp+d) (u+po+d+uy)))
"= (u+3) (app—a(ut+p+05) (p+p+o+d+uy)) + (w+d)ap (2:20)
a
R, pocp 2.21)

(w+u)p+d+p)(u+B+o+35+uy)
The basic reproduction numb&;, is indeed a threshold quantity that helps to deitee whether an outbreak of
infectious disease dies out or spreads in a contjuihenR, < 1, the
disease dies out without any medical interventiomswhenR, > 1, the disease becomes endemic and this nextessit
the introduction of some control measures in otdewurtail the situation.

3.Dynamical behavior of the system

We have already established that the system (26§), (2.8) and (2.9) has disease free equilibreumd epidemic
equilibrium.

3.1. Local Stability of the Equilibrium:

Theorem 1: The disease free equilibrium is locatlymptotically stable iR, < 1

Proof: The Jacobean matfixf the system Equation (2.6) to (2.9) is given as

/ —(oc+p+uy) 0 (B —aa) 8 \

_ ac —(u+p+3) aa
]_\0 p —(u+PB+o+d+uy) 0 / (1)
u, 0 (c+u) —(u+9)
Evaluating matrix J at the disease free equilibrgines
()
( (1 +up) 0 ® “;+u1’ .
0
Jo = 0 —(n+p+9) au+u1 0 3.2)
0 p —(u+p+o+d+uy)
uy 0 c+u, —(u+9)
The matrix], has eigenvalues
Jo—IM =0
—(u+u, +2) 0 (B—a ¢ )
ptuy 0
0 —(u+p+d+1) a ¢ 0 =0 (3.3)
nLrp L+ 0 .
0 p —(u+B+o+d+u, +4)
u, 0 6+ u, —(u+d86+10)

(u-l-ul+k)(u+8+k)((u+p+8+k)(u+[3+c+6+u2+k)—pa il >=O (3.4)

ptug
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Then we have,
(H+u1+7b)=0
(W+d+2)=0

(W+p+8+)(Q+B+oc+d+u, +M_pap+u =0
1
which implies that
M=—(p+u) (3.5)
Ay =—(n+9) (3.6)
et F
hag = 3.7)

Where
g=Q2u+20+p+oc+p+uy)
h = 28u + 8 + p? + pd + po + po + 86 + 3P + pp + B + ou, + pu, + du, + pu, — pa il

ptug

Then the matri}, has the following eigenvalues ;
M=—u<0,=—(QE+3<0

—-g+./g2—4h
2e
Thus for local asymptotic stability to hold, wejtérel; , < 0 (i.e.g —h < 0) which is equivalent to

7\3,4 =

pod
(mt+u)@+d+p)(utp+o+d+uy)

=R0<1

Thus, the disease free equilibrium M is locallyrapyotically stable iR, < 1.

Remark 1: The casB, =1 is a critical threshold point where the diseas® fequilibriumM, loses its asymptotic
stability and simply becomes (neutrally) stable.réuer, it becomes unstable immediatRly> 1 and this will lead to
the existence of a stable endemic equilibriM Note thatR, = 1 can literarily be viewed as a transcritical bifation
point where stability is exchanged betwééand M*

4. Conclusion

In this paper, we studied the mathematical dynacoictrol of HBV treatment strategies for driving ecfious
diseases with cure and vaccine towards eradicatits.considered an SEIR model with varying size tmn using
vaccination and treatment as control measures. ¥fablshed the condition for the local stability tife model
equilibrium. The existence and stability of theedise-free is analyzed and found that the charsiiterbots are all
negative, i.e the disease free equilibrium is lycasymptotically stable R, < 1
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