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Abstract 
 

 
The rate of spread of sexually transmitted diseases like gonorrhea, syphilis and 

Chlamydia in the third world countries is so alarming. Hence, in this paper, we present 
SIS epidemic model using deterministic approach in a closed population. It was shown 
that the dynamics of the model are determined by the basic reproduction ratio RO (with 
brief biological interpretation). It was also shown that the asymptotic dynamics of the 
model are well determined for a disease free equilibrium and for an endemic 
equilibrium. 
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. 
1.0 Introduction 

The issue of sexually transmitted disease (STD) such as gonorrhea, syphilis and Chlamydia is a global problem that has 
plagues the human race for a very long time now. In this work, we present the SIS epidemic model from a deterministic 
perspective. In an SIS epidemic model, a susceptible individual, becomes infected and infections, but does not develop 
immunity to the disease. Hence, after recovery, infected individuals return to the susceptible class. 

Many models and methods have been devised for the study of SIS epidemic model. Allen [1] considered differential 
equations describing the dynamics of an SIS epidemic model 

( ) andIbSI
Ndt

ds γβ ++−=  ( ) )1......(..............................IbSI
Ndt

dI γβ +−=  

With 
,γ

β
+

=
b

Ro  

Neal [2] analysed both deterministic and stochastic models.  
Enatsu et. al [3] proposed a discrete-time SIS epidemic model with immigration of infective by the back-ward Euler’s 

method. Reluga [4] analysed the rational expectation equilibrium in an epidemiology game with two interacting 
subpopulations of equal size where decisions change the prevalence and transmission patterns of an infectious disease. 

Marva et. al [5] consider a spatially distributed periodic multi-strain SIS epidemic model. They allow susceptible and 
infected individuals migrate between patches with periodic migration rate. 

Gray et. al [6] discussed the effect of telegraph noise in the well known SIS epidemic model and also established the 
explicit solution of the stochastic SIS epidemic model which is useful in performing computer simulations. 

Artalejo et. al [7] Developed computational schemes for the corresponding distributions in a transient regime and still 
absorption. 

Jianquan al [8] analysed the SIS epidemic model with a single vaccination was investigated and the efficiency of 
vaccine. The disease related death rate and vague population dynamics were also considered. 

Lijun and Xiao-Diang [9] investigated the global dynamics of a periodic SIS epidemic model with maturation delay. 
They also analysed and obtained sufficient conditions for the single population growth equation to admit a globally attractive 
positive periodic solution. 

Iggidr. et. al [10] consider an SIS epidemiological model with demographic effects, births, mortality and mortality 
caused by infection. 
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2.0 The Model Formulation 
We shall adopt the epidemic model [11] for the purpose of formulating this model. The SIS model is a model where there is 
movement from classes (1). Hence, the figure below. 

 
Figure 1: SIS compartmental diagram (1) 

We assume that the probability that an infective recovers during time t∆  is given by t∆τ . Then, the total number of 

infective people that recover during timet∆  is given by t∆τ ( )tI . The expected number of newly infected people in the 

total population during time t∆  is ( ) ( )tItts∆β . 

Thus  

( ) ( ) ( ) ( ) )2.....(............................................................tIttstIttI ∆+=∆+ β  
 

( ) ( ) ( ) ( ) ( ) )3....(..................................................ttIItIttstIttI ∆−∆=−+ β   

( ) ( ) ( ) ( ) ( ) )4.(..................................................tItIsItttIttI τβ −∆=−∆+  

Dividing equation (4) by t∆ , then take limit as t∆ → 0 
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Similarly, 

( ) ( ) ( )tItIts
dt

ds τβ +−= ……………………………………………………(7) 

Therefore, our model is 

( ) ( ) ( ) ( ) ( ) ( ) )8.........(....................tItItS
dt

dI
andtItItS

dt

dS τβτβ −=+−=    

2.1 Parameters and Symbols 
S (t) = susceptible class (individuals) at time t 
I (t) = infected class (individuals) at time t 
Z (t) = probability that an individual is infected at time t = 0 is still infected at time t 
β   = contact rate (or transmission rate) 
τ  =   recovering rate 
N = total population size 

2.2 Assumptions  
i. We assume that the disease does not confer – long lasting immunity. Hence, after recovering infected individuals 

returns to the susceptible class. 
ii.  There are no birth and death, and so the population size N is constant. 
iii.  The population is well mixed 

2.3 The model  

Recall from (8) ( ) ( ) ItItS
dt

dS τβ +−=  and ( ) ( ) ItItS
dt

dI τβ −=  
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Therefore     ( ) ( ) NtIts =+      ………………………………         .(9)  

If  0=+
dt

dI

dt

ds      therefore,   0=
dt

dN ………………………                                            …(10)                    

the initial conditions satisfy 

( ) ( ) 00,00 >> IS  and ( ) ( ) NIs =+ 00   …………………   ……………(11)                      

The dynamics of the model (8) are determined by the basic reproduction ratio (Ro). The basic reproduction ratio is the 
number of secondary infection caused by one infected individuals in an entirely susceptible population [1]. The basic 
reproduction ratio for model (8) is defined as  

    )12.(..............................................................................................................
τ

βN
Ro =  

this can be obtained from (8) 
The asymptotic dynamics of the model (8) are summarized in the theorem below. 
Theorem: Let S(t) and I (t) be a solution to model (8) 

Case 1: if 10 ≤R , then ( ) ( ){ } ( )0,,lim NtItS
t

=
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 is a disease free equilibrium. 

If Case 2: then ,1>oR  ( ) ( ){ } 
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1,,lim   is an endemic equilibrium. 

3.0      Solution of the model                                                                                 

We consider the infections case (from equation (8)) ISI
dt

dI τβ −=  

this can also be written as 
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Integrate both sides of (15) we have 
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Decomposing the left hand side of (16) using partial fraction, then we shall have 
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Therefore, the solution for )(tI  and ( )tS  are equation (21) and (22) respectively.  

 
4.0 Analysis of the model 
From (11), when t=0 at initial time 
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S(0) + I(0)  =  N. 

We can give a biological interpretation to the basic reproduction ratio oR . Let ( )tZ  be the probability that an individual 

initially infected at t = 0 is still infected at time, t. Since, the probability of being infective at time tt ∆+  is equal to the 

probability of being infective at time t times the probability of not being recovering during timet∆ , we have 

( ) ( )( ) )25..(................................................................................1 ttZttZ ∆−=∆+ τ  

 ( ) ( ) ( ) )26(............................................................lim
0

tZ
dt
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t
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With initial condition ( )0Z . Then,  

( ) )27...(......................................................................tetZZ
dt

dZ ττ −=⇒−=  

Now,  the expected number of secondary infections produced by a single primary infection over the time period, ( )dttt +,  

is given by probability that the primary infective is still infectious at time t multiplied by the expected number of secondary 

infections produced by a single infective during time dt , is ( ) ( ) dttStZ β× . We assume that the total number of secondary  
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infections from a single infective individual is small relative to the population size N. Therefore, the expected number of 
secondary infective produced by a single primary infective introduced into a completely susceptible population 

( ) ( ) ( ) ( ) NtSdttZNdttStZ ≈≈ ∫∫
∞∞

,
00

ββ
 

 
 
 
 
 
 
 

If a single infected individual introduced into a completely susceptible population produces more than one secondary 

infection before recovering, then 1foR and the disease becomes endemic (Chasnov [11]. But, when 1≤oR is a disease 

free population. 
 
Case 1. 
If 1≤oR  as ∞→t from equation (21) and (22), we have ( ) ( ){ } ( )oNtItS

t
,,lim =

∞→
as a disease free equilibrium which 

inform with our therein above. The implication of this as that the entire population (N) is susceptible to the disease as t  
becomes very large. Numerical analysis of case 1: We assume values for the parameters at different time.   
R0 = 0.5, N = 500, 005.0=β  and 5=τ  

Table 1: Disease free equilibrium ( 1≤oR   )  

( )ts
 oR

 
t  β

 
τ  N  ( )ts

 
( )tI

 
S(0) 0.5 0 0.005 5 500 499 1.002 

S(1) 0.5 1 0.005 5 500 499.9 0.082 

S(2) 0.5 2 0.005 5 500 500 0.007 

.  .     . 

.  .     . 

.  .     . 

S(50) 0.5 50 0.005 5 500 500 0 

 
Case 2. 
If 1>oR  as ∞→t from equation (21) and (22), we have ( ) ( ){ } 
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  is an endemic equilibrium.                                                 

The implication of this is that the entire population (N) becomes infective to the disease as t  becomes very large.  
Numerical analysis of case 2: We assume values for the parameters at different time.  
R0 = 5, N = 500, 003.0=β  and 25.0=τ  

Table2:An endemic equilibrium.    (oR >1)                                                              

 

 
Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 165 – 170   

 
 
 

( )tS  oR  t  β  τ  N ( )tS   

S(0) 0.5 0 0.003 0.25 500 499.0024938 
≈ 499 

1 

S(1) 0.5 1 0.003 0.25 500 497.3000661 
≈ 497 

3 

S(2) 0.5 2 0.003 0.25 500 492.7449636 
≈493 
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4.1 Discussion 
 In this paper we have been able to formulate the SIS epidemic model by considering both the infectious class ( )tI  and the 

susceptible class. The solution of the model at t=0 shows that ( ) ( ) NIS =+ 00 , signifying a constant population size 

(satisfying the initial conditions of the model). The model is analysed. It was shown that the dynamic of model (8) are 
determined by basic reproduction ratio Ro. 
The model was further analysed by considering the asymptotic dynamics of the model. 
 
Case 1: 
   It was shown that when 1≤oR  at the initial stage an individual is infected with the disease but as t increases the 

population N becomes entirely free from the disease (susceptible) 
 
Case 2: 
It was also shown that when Ro > 1 at the initial stage an individual is infected with the disease and as t increases the number 
of individual infected with disease become very large and approaches the population size (N). Signifying that infected 
individuals produces more than one secondary infection before recovering. 
 
5.0 Summary and Conclusion 
We have been able to established that from the above model  

Case 1.If 1≤oR  we have ( ) ( ){ } ( )oNtItS
t

,,lim =
∞→

 as a disease free equilibrium signifying that the entire population N 

becomes susceptible. 

Case 2.If 1>oR  we have ( ) ( ){ } 
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t R
N

R

N
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1
1,,lim   is an endemic equilibrium, also signifying that as t 

becomes very large, the entire population becomes infective.    
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