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Abstract 
 
A one step continuous hybrid block method derived from Second Derivative 

approach is constructed and used to generate Initial Value Methods ( IVMs) for initial 
value problems of stiff ordinary differential equations. The IVMs are applied as 
simultaneous numerical integrators by assembling them as a single block matrix 
equation called Second Derivative Block Hybrid Method( SDBHM) which is A(α)-
stable. Numerical results produced by the block method show that the method is 
competitive with existing ones in the literature. 
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1.0 Introduction 
Consider the initial value problem of the form                    �� � ���, �	,        ��
	 � �� ,       � � 

, ��                                                                 (1) 
where f satisfies a Lipschitz condition.  [1].  
In the literature, several authors have proposed various techniques including hybrid method for the solution of (1), [2–9] and  
references therein. 
Hybrid method (2) is the modified form of the k-step linear multistep method (LMM) obtained by incorporating off-step 
points in the derivation process in order to overcome the Dahlquist barrier theorem. 
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where h is the step size , k is the step number,v is the number of off-points,r is a rational number for some j, 1=kα ,and 

jα , jrβ , are unknown constant which must be determined.  Gupta [10] noted that the design of algorithms for hybrid 

methods is more tedious due to the occurrence of off-step functions which increase the number of predictors needed to 
implement 
the methods. Second derivative methods proposed by Enright [11], were shown to be of order up to k + 2 were and 
implemented in a variable order, variable-step mode.. In this paper we proposed a second derivative hybrid method of the 
form (3) ∑ ������ ���� � � �∑ ������ ���� � ∑ ������� ������ � � �∑ !����� "��� � ∑ !������ "�����  ,      (3) 

with additional methods that are combined and implemented as a block method .  
The block hybrid method proposed in this paper is developed via collocation and interpolation procedure ([1], [12–14]).The 
main hybrid method together with additional methods is applied as a block method to simultaneously solve (1). 
The continuous representation generates a main discrete SDHM and two additional method to simultaneously produce 

approximations #���$%,  ���&% ,  ���� ' , at a block of points, #���$%,  ���&% ,  ���� ' ,   h=���� ( ��,  n = 0, . . . ,N − 1 on a 

partition [a, b], where a, b � R, h is the constant step-size, n is a grid index and N > 0 is the number of steps. The method 
preserves the Runge-kutta traditional advantage of being self- starting and is more accurate since it is implemented as a block 
method. It should be noted that block methods were first introduced by Milne [15] for the purpose of obtaining starting 
values for predictor-corrector algorithms (see Sarafyan [16]). However, Rosser [17], developed Milne’s idea into algorithms  
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for general use. Block methods have also been considered by Shampine and Watts [18]. In order to apply the proposed block 
method at the next block to obtain ��� , the only necessary starting value is ����, and the loss of accuracy in ���� does not 
affect subsequent points, thus the order of the algorithm is maintained. It is not required to make a function evaluation at the 
initial part of the new block. Thus, at all blocks except the first, the first function evaluation is already available from the 
previous block. Hence, as we proceed we have six function evaluations per step. Inspite of the higher order of our method, 
the method is also very efficient. 
 The paper is organized as follows. In Section 2, we obtain a continuous representation Y(x) for the exact solution y(x) which 
is used to generates a main discrete SDHM and two additional method for solving (1). The analysis of the method is 
discussed in Section 3. Numerical examples are given in Section 4 to show the efficiency of the method. Finally, 
the conclusion is presented in Section 5. 
2.0      Development of the Second Derivative Hybrid Block Method 
A continuous representation of the hybrid method is derived and used to generate the main discrete method of the form 

) ��
�

��� ���� � � *) ��
�

��� ���� � ) ���
�

��� �����+ � � *) !�
�

��� "��� � ) !��
�

��� "����+              �4	 

where � is the step size, - � 2 is the number of off-step points, �� � 1,    �� , �� , ��� are unknown constants and  0� are non-

negative rational numbers.  
In order to obtain (4), we assume a continuous solution 1��	 of the form (5) as an approximation of the exact solution ���	 

1��	 � ) 
�
2� 34�

��� 5���	                                                                                                             �5	 

where � � 
��, ���, 
�   are unknown coefficients to be determined and 5���	 are polynomial basis function of degree 7 � 28 ( 1 such that 7 is the number of interpolation and the number of the collocation points 28 are respectively chosen to 

satisfy 0 : 7 : ;, 8 < 0. The proposed method is constructed by specifying the following parameters: 0� � �1 5> , 3 5> 	  

, 5���	 � ��, @ � 0, … ,8 ,   7 � 1, 8 � 4 and ; � 1, with the assumption that ���$% denote numerical solution of the exact 

solution � #���$%',   ���$& � � #���$&' and "��$& � " #���$&', n is the grid index. 

Letting 5���	 � �� , @ � 0,1, … , 7 � 28 ( 1, we impose that the interpolating function (5) coincides with the analytical 
solution at the  point ���C , D � 0  to obtain the equation 1����C	 � ���C ,   D � 0                                                                                                           �6	 

If the function (5) satisfies the differential equation (1) at the points  ���C , D � 0, �F , GF , 1 ,  we obtain the following set of four 

equations: 1H����C	 � ���C ,   D � 0, 15 , 35 , 1                                                                                         �7	 

We further demand that the second derivative of the function (5) coincides with the second derivative of the analytical 

solution at the points ���C , D � 0, �F , GF , 1   to obtain the following set of four equations: 

1HH���	 � "��C ,   D � 0, 15 , 35 , 1                                                                                               �8	 

Equations (6), (7) and (8) lead to a system of nine equations which is solved to obtain the coefficient 
� . The one-step 
continuous hybrid method is obtained by substituting these values of 
� , @ � 0�1	8 into (5). After some algebraic 
computation, the hybrid method yields the expression in the form  

1��	 � �� � � *) ��
�

��� ��	���� � ) �����	 
��� �����+

� � *) !�
�

��� ��	"��� � ) !����	 
��� "����+                                                      �9	 

where ����	, �����	, !���	 and !����	 are continuous coefficients. Equation (2.6) is then used to generate the main discrete 

hybrid method by evaluating at the point � � ���� to have  
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 ���� � �� � � # 5932268 �� � 512521504 ����F � 1262536288 ���GF � 327521504 ����'

� � # 191512 "� � 57510752 "���F � 77524192 "��GF ( 7310752 "���'                   �10	 

the additional methods are obtained by evaluating (2.6) at points { � � ���$%, ���&%}  to obtained 

����F � �� � � # 5997497087500 �� � 60541537600 ����F � 2281907200 ���GF � 1690367200000 ����'
� � # 102234725000 "� ( 79971344000 "���F ( 14293024000 "��GF( 79733600000 "���'                                                                                       �11	 

 ���GF � �� � � #1259787500 �� � 47871179200 ����F � 207311200 ���GF � 8529322400000 ����'
� � # 957175000 "� � 9153448000 "���F ( 1551112000 "��GF( 380711200000 "���'                                                                                   �12	 

The block hybrid method is implemented by combining and simultaneously applying the hybrid methods (10), (11) and (12) 
as a single block method to provide approximate solution ���$%, ���&%, ���� for solution (1.1) at discrete block points  � ����$%, ���&%, ����,   K � 0,1, … . , L ( 1 on a partition [��, ��]. 

 
3.0   Analysis of the Derived Method 
        The Local Truncation Error 

. Following Fatunla [19], the local truncation error associated with the derived method can be defined to be the linear 
difference operator  

M
���	; �� � ) ��
�
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��� �′′�� � @�	  ( � ) !��
�

��� �′′��
� 0��                                                                                                            �13	 

Assuming that ���	 is sufficiently differentiable, we can expand the terms in (13) as a Taylor series about the point t to 
obtain the expression M
���	; �� � Q����	 � �Q��′��	 � � Q �′′��	 � R � �SQS�S��	 � R 
Where the constant QS, T � 0,1,2, … are given as follows: 
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The newly derived method is said to have a maximal order of accuracy m if  Q� � Q� � Q � R � QS � 0, QS�� X 0      
The constant QS�� is the error constant and QS����S��	��S��	���	 is the principal local truncation error at the point �� .  
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Thus, the local truncation error (LTE) of the method of order T can be written as MYZ � QS����S��	��S��	���	 � [��S� 	 
 The values of the error constants calculated for the SDHBM (10), (11) and (12) are given as: 
 

Q\ � ] 8331752000000,   6391225000000000 , 542399225000000000^_
 

with order  �8, 8, 8	_ where T is the transpose. 
 3.1     Zero Stability 
The methods (10), (11) and (12) are combined and represented as a matrix finite difference equation in block form given 
by `��	1a � `��	1a4� � �Ob��	ca � b��	ca4�P � � Od��	ea � d��	ea4�P                                                          �14	 
Where 1a � #���$%, ���&%, ����'_ , 1a4� � #��4&%, ��4$%, ��'_

 ,   

ca � #���$%, ���&%, ����'_ , ca4� � #��4&%, ��4$%, ��'_
 ,   

ea � #"��$%, "��&% , "���'_ , ea4� � #"�4&%, "�4$%, "�'_
 ,   

And � is the step length, `��	, `��	, b��	, b��	, d��	 
Kf d��	 are 3 by 3 matrices with real entries written as  

`��	 � g1 0 00 1 00 0 1h ,    `��	 � g0 0 10 0 10 0 1h ,  

     b��	 �
i
jj
k 60541537600 2281907200 169036720000047871179200 207311200 8529322400000512521504 1262536288 327521504 l

mm
n ,     b��	 �

i
jj
k0 0 59974970875000 0 12597875000 0 5932268 l

mm
n,      

 

         d��	 �
i
jj
k( 79971344000 ( 14293024000 ( 797336000009153448000 ( 1551112000 ( 38071120000057510752 77524192 ( 7310752 l

mm
n ,   d��	 �

i
jj
k0 0 1022347250000 0 9571750000 0 191512 l

mm
n

 

The zero stability of the block method is concerned with all the roots of the first characteristic polynomial o�p	 of the 
method such that |p| : 1. The root of modulus one is simple.  o�p	 � detup`��	 ( `��	v � p �p ( 1	 
The block method (14) is zero-stable for o�p	 � 0 and satisfies wp�w : 1, and for those roots with wp�w � 1 the 
multiplicity is simple thus the block method is zero-stable. 
3.2   Linear Stability 
The stability property of (14) is shown by applying it to the scalar test equation  
                                          �′ � x�,      �′

′ � x �, 
where x  a complex number with Re�x	 y 0,  and  yields the equation  ���� � z�{	�� ,   { � �x   
where z�{	 is the amplification matrix given as.  

 z�{	 � O`��	 ( {b��	 ( { d��	P4��`��	 � {b��	 � { d��		 
The matrix z�{	 has eigenvalues �|�, | , |G	 � �0, 0, |G	 where the dominant eigenvalue. |G is a rational function of { 
given by  |G�{	 � ���.FF}��.�~�\�~}���.� ����F}&��.��  �GGG}���.����~~\� }%�F.�\�G\�����}� �4�.~F}��.���\�~G}�4�.���F\�~}&��.���\���F }�4�.����G �F\�}%�\.�~ �������}�               �15	  

using the equations (15), the stability region is drawn and shown in Figure 1. 
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Figure 1 Stability Curve 
It is obvious from figure 1 that the method is not A-stable since part of the shaded 
portion of the right half plane lies in the negative half plane. Thus it is A(α)-stable 
with  �  = 2.4760. 

4.0         Numerical Examples 
In this section, we give numerical examples to illustrate the accuracy of the derived block hybrid method. All absolute errors 
of the approximate solution on the partition are denotedas |� ( ���	| 
All computations were carried out using a written code in Matlab 7.0. 
Example 4.1 Our second test example is the given nonlinear IVP which was also solved by Norsett [16] and Jain[12] y� � (100x y    y�1	 � 151                              0 : x : 20 

 Exact solution:         ���	 � ����F���	 
Although the new block method (10) is not A-stable but it performed excellently than the methods given in [20] and [21] that 
are A-stable, when tested on this nonlinear problem. We note that though our method is expected to perform better, because 

of its higher order, it is observed that even for a large step size of � � �~, the SDBHM performs better than the methods in 

[20] and [21] with a smaller step size of � � ���.. Details of the numerical results are given in Table 1. 

Table 1.  comparison of results for Example 4.1 
h x SDBHM 

(y) 
( | Error | ) 

Norsett [20] 
(y) 
( | Error | ) 

Jain [21] 
(y) 
( | Error | ) 

Exact y(x) 
 

116 
10 0.19996001 � 104G �1.275 � 104�F) 

0.19995554 � 104G 
(4. 470 � 104�) 

0.19996018 � 104G �1.700 � 104�) 
0.19996001 � 104G 

18 
10 
 
20 
 

0.19996001 � 104G �2.753 � 104�F	 0.49997500 � 104~ �3.385 � 104�F	 
 

0.19991486 � 104G �4.515 � 104�) 
0.49994562 � 104~ �2.938 � 104�) 
 

0.19996310 � 104G �3.090 � 104�) 
0.49997695� 104~ �1.950 � 104��) 
 

0.19996001 � 104G 
 
0.49997500� 104~ 
 

14 
10 
 
20 
 

0.19996001 � 104G �4.702 � 104�~	 0.49997500 � 104~ �1.389 � 104�~	 
 

0.19906134� 104G �8.987 � 104\) 
0.49940176 � 104~ �5.732 � 104�) 
 

0.20000938 � 104G �4.937 � 104�) 
0.50000607 � 104~ �3.107 � 104�) 
 

0.19996001 � 104G 
 
0.49997500� 104~ 
 

 
Example 4.2 Consider the Initial Value Problem on the range 0 : � : 1, y� � (y � 95z,      y�0	 � 1 z� � (y ( 97z,      y�0	 � 1 

Exact solution: ���	 � �F~\ �4 � ( ~�~\ �4���,      {��	 � ~�~\ �4��� ( �~\ �4 �. 
For this problem we present and compare our result with the exact solution at the end point in Table 2.  
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Table 2 . Result  for Example 4.2 at the end point. x=1 using SDBHM 
 
Step 

y(1) �|�����|	 z(1)� 10  �|�����|	 � 10  
0.125 0.27355004 

(9 ×10-13) 
(0.28794741 

(1×10-10) 
0.0625 0.27355004 

(7×10-16) 
 

0.28794741 
(6×10-16) 

0.03125 0.27355004 
(3×10-15) 

0.28794741 
(3×10-15) 

True Solution     y(1) = 0.27355004           z(1) = (0.28794741           
 
5.0  Conclusion 
A one step  second derivative hybrid methods have been presented and assembled into a single block matrix equation which 
is A(α) stable and used to simultaneously generate the solution stiff problem. In particular, the method is implemented 
without the need for starting values or predictors, therefore complicated subroutines are avoided. We have demonstrated the 
accuracy of the method on both linear and non linear problems. The numerical results given in Tables1,2 show that our 
method is efficient for solving stiff problems. 
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