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Abstract

A one step continuous hybrid block method derived from Second Derivative
approach is constructed and used to generate I nitial Value Methods ( 1VMs) for initial
value problems of diff ordinary differential equations. The 1VMs are applied as
simultaneous numerical integrators by assembling them as a single block matrix
equation called Second Derivative Block Hybrid Method( SDBHM) which is A(a)-
stable. Numerical results produced by the block method show that the method is
competitive with existing onesin the literature.
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1.0  Introduction
Consider the initial value problem of the form

y' =fy), y@=y, xE€lab] 1)
where f satisfies a Lipschitz condition. [1].
In the literature, several authors have proposeidwsitechniques including hybrid method for theigon of (1), [2-9] and
references therein.
Hybrid method (2) is the modified form of the kystenear multistep method (LMM) obtained by incorating off-step
points in the derivation process in order to ovaredhe Dahlquist barrier theorem.
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where h is the step size , k is the step numkisrthe number of off-points,is a rational number for some§{, zl,and

CYJ- , ,8”, are unknown constant which must be determinedpt#&[10] noted that the design of algorithms fglorid

methods is more tedious due to the occurrencefeattep functions which increase the number of mteds needed to
implement

the methods. Second derivative methods proposé&thbight [11], were shown to be of order up to k w&e and
implemented in a variable order, variable-step mddethis paper we proposed a second derivatitithynethod of the
form (3)
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with additional methods that are combined and imgleted as a block method .

The block hybrid method proposed in this papeleigetbped via collocation and interpolation proced{it], [12—14]).The
main hybrid method together with additional methimdapplied as a block method to simultaneouslyesél).

The continuous representation generates a mairettissDHM and two additional method to simultanéppsoduce

approximation:(yn%, yn+%, V41 ) , at a block of point%xn%, xn%, Xn41 ) , h=x,;;,—x,, n=0,...N—-1o0na

partition [a, b], where a, & R, h is the constant step-size, n is a grid irelek N > 0 is the number of steps. The method
preserves the Runge-kutta traditional advantadeeiofg self- starting and is more accurate sinteiihplemented as a block
method. It should be noted that block methods wiieseintroduced by Milne [15] for the purpose ditaining starting
values for predictor-corrector algorithms (see Sara[16]). However, Rosser [17], developed Milniglea into algorithms
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for general use. Block methods have also been deresi by Shampine and Watts [18]. In order to afipyproposed block
method at the next block to obtaip, ,, the only necessary starting valueis ;, and the loss of accuracyyn, ; does not
affect subsequent points, thus the order of therithgn is maintained. It is not required to makieiiaction evaluation at the
initial part of the new block. Thus, at all bloakscept the first, the first function evaluatioralseady available from the
previous block. Hence, as we proceed we have sictifin evaluations per step. Inspite of the higiveer of our method,
the method is also very efficient.

The paper is organized as follows. In Section plstain a continuous representation Y(x) for tkecesolution y(x) which
is used to generates a main discrete SDHM and tditianal method for solving (1). The analysis lod tmnethod is
discussed in Section 3. Numerical examples arengiv&ection 4 to show the efficiency of the metheidally,

the conclusion is presented in Section 5.

2.0 Development of the Second Derivative Hybrid Block Method

A continuous representation of the hybrid methodeisved and used to generate the main discreteotetf the form
k k

v k v
Zann+j =h Zﬁjfn+j +Zﬁrjfn+rj +h2 Zyj gn+j +Zy‘rjgn+rj (4’)
j=0 j=0 j=1 j=0 j=1
whereh is the step size; = 2 is the number of off-step points, = 1, «;, B, ,8,}. are unknown constants ang are non-

negative rational numbers.

In order to obtain (4), we assume a continuoustissiy (x) of the form (5) as an approximation of the exatttson y(x)
p+2q-1

Y@= ) ae 5)
j=0
where x € [x,,x,], a; are unknown coefficients to be determined andx) are polynomial basis function of degree
p + 2q — 1 such thap is the number of interpolation and the number efdhllocation point2q are respectively chosen to

satisfy 0 < p <k, g > 0. The proposed method is constructed by specifyheg following parametersz; = (1/5,3/5)
v @i(x) = x/,j=0,...8, p=1,q =4 andk = 1, with the assumption that,,1 denote numerical solution of the exact
5

solutiony (xn%), .fn% =f (xn%) andgn% =g (xn%), n is the grid index.
Letting ¢;(x) =x/, j=0,1,..,p + 2q — 1, we impose that the interpolating function (5) cdiles with the analytical
solution at the point,,;,i = 0 to obtain the equation
Y(xn+i) = Yn+ir i=0 (6)
If the function (5) satisfies the differential ed¢joa (1) at the pointsx,,,;, i = 0%% 1, we obtain the following set of four

equations:
, . 13
Y (xn+i) = fn+i: L= Olglgl 1 (7)

We further demand that the second derivative offtimetion (5) coincides with the second derivatfethe analytical

solution at the points,,,;, i = 0,2,3,1 to obtain the following set of four equations:

5°5
" ) 13
Y (xn) =In+ir L= Olglgl 1 (8)

Equations (6), (7) and (8) lead to a system of mgeations which is solved to obtain the coeffitien The one-step
continuous hybrid method is obtained by substigitithese values of;,j = 0(1)8 into (5). After some algebraic
computation, the hybrid method yields the exprassgidhe form

1 2
VO = g+ h( D B ey + D ey () fore,
=0 =1

1 2
12 [ @y + ) ¥, v, ©)

J J
wheref;(x), ﬁ,j(x), 14163 andy,}.(x) are continuous coefficients. Equation (2.6) istiieed to generate the main discrete

hybrid method by evaluating at the paint x,,,, to have
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593, 5125 , 12625 3275 )
22687 21504fn+§ 36288f 21504/
e ( 19 575 775 73 )

15129 T 10752902 * 241029042 T 107529741

the additional methods are obtained by evalua@g) @t points & = x, ,1,x, s} to obtained
5

( 599749 60541 2281 16903 )

7087500f" 537600fn+— 907200 n+— 67200000f"Jr1
( 10223 7997 1429

4725000 9" ~ 1344000 In+t ~ 3024000 In+d
797 )

~ 33600000 I+t

Yn+1 =yn+h(

(10)

yn_'%:yn'i_

(1D

12597 47871 2073 85293 )

87500 /" * 179200 n+t * 11200/ n+2 * 22400000+
2( 957 9153 1551

175000 7" * 228000 In+t ~ 112000 In+i
3807 )

11200000 9+ (12)
The block hybrid method is implemented by combirémgl simultaneously applying the hybrid methodg,({01) and (12)
as a single block method to provide approximatelti;Myn+1 yn+3 Vn41 fOr solution (1.1) at discrete block points =

xn+ xn+ v Xne, =0,1,....,N —1 on a partitionf,, x,].

yn+%=yn+h(

3.0 Analysis of the Derived Method
The Local Truncation Error

. Following Fatunla [19], the local truncation aressociated with the derived method can be defioda the linear
dlfference operator

Lly@); ] = Z%Y(x-i-}h)—hZﬁJY(x-Hh)—hZﬂr y(x+ k) = B2 Zy]y G + ) —hzzn y'(x

Jj=0 j= Jj= Jj= Jj=
+1;h (13)

Assuming thay (x) is sufficiently differentiable, we can expand teems in (13) as a Taylor series about the pdint t
obtain the expression

Lly(x); h] = Coy(x) + hC,y'(x) + h%C,y " (x) + =+ + K™ Cppyy™(x) + -
Where the constartt,,, m = 0,1,2, ... are given as follows:
k

Co = Zaj
]'=kO k v
Cy ZZjaj_ZBj_ZB‘:j
k
2 ZIZ} a] Z].B] ijﬁrj Z Z y‘r]
j=1 j j=1

j=0

Q

v

C =i21 a —m ZJ’" i — mlﬁ —m(m — 1) ZJ’“ —Z Ty
m m j Tj Tj

j=0 '=

The newly derived method is said to have a maxor@ér of accuracy m if
C0=C1=C2="'=Cm=0, Cm+1¢0
The constant,, ., is the error constant arttl,,, A™*Vy ™+ (x, ) is the principal local truncation error at therniai,,.
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Thus, the local truncation error (LTE) of the mettad orderm can be written as
LTE = Cm+1h(m+1)y(m+1)(xn) + O(hm+2)
The values of the error constants calculatedierSDHBM (10), (11) and (12) are given as:

- 83 639 5423 !
7131752000000 1225000000000’ 99225000000000
with order (8, 8, 8)" where T is the transpose.
3.1 Zero Stability
The methods (10), (11) and (12) are combined apebsented as a matrix finite difference equatioblatk form given
by
AWy, = 4Oy, + h(BWE, + BYF,_,) + h*(DWG, + D6, _,) (14)
Where

T

T
Yy = (yn+%’ yn+%’ Yn+1) Y1 = (yn_%:yn_%: Yn> )

T T
Fo= (Fut s far) oFors = (Fasifon fo)

T

T
Gy = (gn%, gn+§,gn+1) Gy-1 = (gn_g,gn_é, gn) ,
And h is the step lengtty®, A©@, B RO p gnd p© are3 by 3 matrices with real entries written as

1 0 0 0 0 1
AV =0 1 0], A9=0 0 1],
0 0 1 0 0 1

60541 2281 16903 0 o 599749
(537600 907200 67200000\ ( 7087500\
® 0) —

47871 2073 85293 o o 12597
179200 11200 22400000 | 87500
\5125 12625 3275 / \0 , 5% /
21504 36288 21504 2268
7997 1429 797 o o 10223
/1344000 3024000 33600000 4725000
p® = 9153 1551 3807 L© = , 957
448000 112000 11200000 =10 175000 |
575 775 73 \
10752 24192 10752 1512

The zero stability of the block method is concernétth all the roots of the first characteristic yabmialp(R) of the
method such thgR| < 1. The root of modulus one is simple.

p(R) = det|RAW — A®] = RZ(R — 1)
The block method (14) is zero-stable fiR) = 0 and satisfie$R;| < 1, and for those roots witfR;| = 1 the
multiplicity is simple thus the block method is aestable.
3.2 Linear Stability
The stability property of (14) is shown by applyiih¢p the scalar test equation

y =2, y =ry,
wherel a complex number with R&) < 0, and yields the equation
Yn+1 = M(Z)yn' z= hl
whereM (z) is the amplification matrix given as.
M(z) = (AD — zBW — z22DM) ™ (A© 4 zB© 4 2Py
The matrixM (z) has eigenvalue@,, u,, u3) = (0,0, u3) where the dominant eigenvalya. is a rational function of
given by
1+0.552+0.14071472+0.021809523+0.002213332*+0.00014476225+5.07937x10~°

”3(2) - 1-0.45z+0.090714322-0.010571423+0.000760952z%—0.000032857125+7.14286x10~7z6 (15)
using the equations (15), the stability regionreswh and shown in Figure 1
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Ahsolhite Stability Fegion
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Figure 1 Stability Curve

It is obvious from figure 1 that the method is Aestable since part of the shaded

portion of the right half plane lies in the negathalf plane. Thus it is Aj-stable

with « =2.4760.
4.0 Numerical Examples
In this section, we give numerical examples tosillate the accuracy of the derived block hybridhoét All absolute errors
of the approximate solution on the partition araatedady — y(x)|
All computations were carried out using a writtede in Matlab 7.0.
Example 4.1  Our second test example is the given nonlinearwiizh was also solved by Norsett [16] and Jain[12]

1
y' = —100x y? Y(l):ﬁ 0<x<20

Exact solution:  y(x) = a +50x2)

Although the new block method (10) is not A-stalblet it performed excellently than the methods giiref20] and [21] that
are A-stable, when tested on this nonlinear probl®a note that though our method is expected toparbetter, because

of its higher order, it is observed that even fdamge step size df = %, the SDBHM performs better than the methods in

[20] and [21] with a smalller step sizelof= i.. Details of the numerical results are given inl€db
Table 1. comparison of results for Example 4.1

h X SDBHM Norsett [20] Jain [21] Exact y(x)
v v V)
(| Error |) (| Error |) (| Error ])
1 10 0.19996001 x 1073 0.19995554 x 1073 0.19996018 x 1073 0.19996001 x 1073
16 (1.275 x 10715) (4.470 X 1079) (1.700 X 107°)
1 10 0.19996001 x 1073 0.19991486 x 1073 0.19996310< 1073 0.19996001 x 1073
8 (2.753 x 1071%) (4.515 x 1078) (3.090 x 1079)
20 0.49997500 x 10+ 0.4999456 10~* 0.4999769% 10~* 0.4999750& 10~*
(3.385x 10715) (2.938 x 1079 (1.950 x 10719)
1 10 0.19996001 x 1073 0.1990613% 1073 0.20000938x 1073 0.19996001 x 1073
4 (4.702 x 107%) (8.987 x 1077) (4.937 x 107%)
20 0.49997500 x 10~* 0.49940176x 10~* 0.5000060% 10~* 0.4999750& 10~*
(1.389 x 1071%) (5.732 x 107°) (3.107 x 107°)

Example 4.2  Consider the Initial Value Problem on the rafigs x < 1,
y’ =-y+95z, y(0)=1
= —y 97z, y(0)=1
Exact solutiony(x) = —e T2 :s e~ 96%, z(x) = —e‘%" %e‘z"
For this problem we present and compare our rmthtthe exact solution at the end point in Tahle 2
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Table 2 . Result for Example 4.2 at the end peinl using SDBHM

y(1) z(1)x 10?

Step (lerror|) (lerror|) x 102

0.125 0.27355004 —0.28794741
(9 x10% (1x10%9

0.0625 0.27355004 0.28794741
(7x10%9) (6x10%9)

0.03125 0.27355004 0.28794741
(3x10%) (3x10%)

True Solution  y(1) ©.27355004 z(1) =0.28794741

5.0 Conclusion

A one step second derivative hybrid methods ha@eslpresented and assembled into a single bloakxregtiation which
is A(o) stable and used to simultaneously generate tb#@ostiff problem. In particular, the methodimsplemented
without the need for starting values or predictdrerefore complicated subroutines are avoidedhde demonstrated the
accuracy of the method on both linear and non tipeablems. The numerical results given in Tab2show that our
method is efficient for solving stiff problems.
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