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Abstract 
 

We propose a symmetric hybrid finite difference scheme with continuous coefficients for the 
solution of boundary value problems of  both special and general third order ordinary 
differential equations. The three member block schemes of the Central, Forward and Backward 
difference methods derived were used simultaneously for the solution of boundary value 
problems of ordinary differential equations. Two numerical experiments were demonstrated to 
ascertain the efficiency of the proposed method. 
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1.0 Introduction 
Yahaya and Onumanyi [1] proposed a symmetric hybrid finite difference scheme with Continuous coefficients for the 
solution of boundary value problems of the general second order ODEs of the form 
��� �  � ��, �, ��	,      ��
	 � ��,   ����	 � �
    
 � �
, ��                                      (1) 
This idea is extended in this paper for the solution of boundary value problems of both special and general third order ODEs 
of the form 
���� �  � ��, �	        
���� �  � ��, �, ��, ��� 	 ,      ��
	 � ��,   ���
	 � �, ����
	 � μ                                (2) 
    Recently, some Scholars [2-4] have proposed some methods of Numerical solution of higher order Boundary value 
problems of ordinary differential equations. However all these methods were limited to Special and General second order 
boundary value problems in ordinary differential equations. 
 
2.0      Methodology 
We consider an approximate solution of the form 

                                ���	 � � 
�����	
�

���
                                                                                                            �3	 

where ����	 are Canonical polynomials which is used as a basis for this method. Specifically in this method, � � 6. 
 To generate ����	 we write (3) in the form ���� � ���	 � ���	 � ���, �, ��, ���	 and define a differential operator 

                                                                 �� � � 
�! � 1                                                                               �4	 

We define the Canonical polynomials  ����	 by  
������	 � ��    $ � �0,1, … . �	                                                                   �5	 

 
And we generate the Canonical polynomials ����	 by use of the operator �, ie 
 ���� � $�$ ) 1	�$ ) 2	��+, � ��                                                                                �6	 
Using equations (5) and (6) we obtain 

���� � ��-$�$ ) 1	�$ ) 2	��+,��	 � ����	.                                               �7	        
 
Assuming ��+0exist, then we have 
����	 � �� )  $�$ ) 1	�$ ) 2	��+,��	, $ � 0,1, … �                                      (8) 
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Thus from equation (8), we obtain recursively for $ � 0,1, … . � where  
����	 � 1,  �0��	 � �,  �1��	 � �1, �,��	 � �, ) 6 , �2��	 � �2 ) 24� ,  
�3��	 � �3 ) 60�1,   �4��	 � �4 ) 120�, � 720.  
Substituting  these in equation (3) yields 
���	 � 
� � 
0� � 
1�1 � 
,��, ) 6	 � 
2��2 ) 24�	 � 
3��3 ) 60�1	 �   

4��4 ) 120�, � 720)                                                                                     (9) 

where 
� , $ � 0,1,2,3,4,5 
56 6 are parameters to be determined. We interpolate (9) at      � � �7  where m� 8 ) ,
1 , 8 ) 1, 8 )

0
1 , 8, 8 � 0

1 , 8 � 8, 8 � ,
1 , which gives the system of non linear    equations of the form 

���7	 � � 
�����7	                                                                                          
4

���
 

By using Maple Mathematical software, we obtain our Continuous formulation of the form 
���	 � 9��	�:+,

1
� ;��	�:+0 � <��	�:+0

1 � =��	�: � >��	�:?0
1

� @��	�:?0 � A��	�:?,
1
 

                                                                                                                                       (10) 
where  

9��	 � �8�� ) �:	4 ) 12C�� ) �:	3 ) 10C1�� ) �:	2 � 15C,�� ) �:	, � 2C2�� ) �:	1 ) 3C3�� ) �:	�
90C4  

;��	 � �)48�� ) �:	4 � 48C�� ) �:	3 � 120C1�� ) �:	2 ) 120C,�� ) �:	, ) 27C2�� ) �:	1 � 27C3�� ) �:	�
90C4  

<��	 � �120�� ) �:	4 ) 60C�� ) �:	3 ) 390C1�� ) �:	2 � 195C,�� ) �:	, � 270C2�� ) �:	1 ) 135C3�� ) �:	�
90C4  

=��	 � �)160�� ) �:	4 � 560C1�� ) �:	2 ) 490C2�� ) �:	1 � 90C4�
90C4  

>��	 � �120�� ) �:	4 � 60C�� ) �:	3 ) 390C1�� ) �:	2 ) 195C,�� ) �:	, � 270C2�� ) �:	1 � 135C3�� ) �:	�
90C4  

 

@��	 � �)48�� ) �:	4 ) 48C�� ) �:	3 � 120C1�� ) �:	2 � 120C,�� ) �:	, ) 27C2�� ) �:	1 ) 27C3�� ) �:	�
90C4  

A��	 � �8�� ) �:	4 � 12C�� ) �:	3 ) 10C1�� ) �:	2 ) 15C,�� ) �:	, � 2C2�� ) �:	1 � 3C3�� ) �:	�
90C4  

                                                                                                                                                            (11) 
Taking First, Second and Third derivatives of (11) independently and substituting them in (10) when evaluated at � � �:  
yield First, Second and Third order derivatives Central difference schemes of the form 
  

����	 � 1
30C E)�:+,

1
� 9�:+0 ) 45�:+0

1
� 45�:?0

1
) 9�:+0 � �:?,

1
F 

�����	 � 1
45C1 E2�:+,

1
) 27�:+0 � 270�:+0

1
) 490�: � 270�:?0

1
) 27�:+0 � 2�:?,

1
F 

������	 � 0
G E�:+ 

H
) 8�:+0 � 13�:?I

H
� 8�:?0 ) �:? 

H
F                            

                                                                                                                                                         �12	 

Equation (12) is of order �6,6,4�J with Error constants K 0
LM4�  , 0

,3L2� , N
0M1�OJ

respectively. 

Also in the same manner, evaluating (10) at  � � �:+ 
H
  and choosing 8 � 8 � ,

1 gives the first, second and third derivatives 

Forward difference schemes of the form 

����	 � 1
30C E)147�: � 360�:?0

1
) 450�:?0 ) 450�:?0 � 400�:?,

1
) 225�:?1 � 72�:?3

1
) 10�:?,F 

�����	 � 1
45C1 E812�: ) 3132�:?0

1
� 5265�:?0 ) 5080�:?,

1
� 2970�:?1 ) 972�:?3

1
� 137�:?,F 

������	 � 0
G E)49�: � 232�:?I

H
) 461�:?0 � 496�:? 

H
) 307�:?1 � 104�:?P

H
) 15�:?,F                           (13) 

 Equation (13) is of Order �6,5,4�J with Error constants K 0
22L  , N

,1� , NM
12�OJ

respectively. 

Also evaluating (10) at � � �:? 
H
 and 8 � 8 ) ,

1 gives the first, second and third order derivatives Backward difference 

schemes of the form 
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����	 � 1
30C E107�:+, ) 72�:+3

1
� 225�:+1 ) 400�:+,

1
� 450�:+0 ) 360�:+0

1
� 147�:F 

�����	 � 1
45C1 E137�:+, ) 972�:+3

1
� 2970�:+1 ) 5080�:+,

1
� 5265�:+0 ) 3132�:+0

1
� 812�:F 

������	 � 0
G E15�:+, ) 104�:+P

H
� 307�:+1 ) 496�:+ 

H
� 461�:+0 ) 232�:+I

H
� 49�:F                            

                                                                                                                                                      �14	 

Equation (14) is of Order �6,5,4�J with Error constants K 0
22L  , N

,1� , 1M
12�OJ

respectively. 
3.0                  Implementation Strategies   
     We combine first, second and third derivatives of Central, Forward and Backward difference schemes of equations (12), 
(13) and (14) to form our proposed block method in solving problems of form (2).  The result is obtained in block form which 
speed up the computational processes over non-overlapping intervals. 
4.0               Numerical Experiments 
The following problems were used to demonstrate the efficiency and accuracy of the proposed method. 
       Example 1 
     ���� � Q85� � 0 ,                     ��0	 � 4, ��1	 � 7, ��2	 � 0, C � 0.2 
Theoretical Solution: 

���	 � 5 ) RSQ� � 1
2 �)10 ) 2 cos�1	 � 2cos �1	1	�1 � �)cos �1	1 � 7 � 2cos �1		� 

Example 2 

���� ) ��� � �� ) � � 0 ,        ��0	 � 1, � WX
2Y � 0, ��X	 � 1, C � �0.1	X 

Theoretical Solution 
���	 � RSQ� 
 
Table 1: APPROXIMATE SOLUTION AND ABSOLUTE ERROR OF EXAMPLE 1 

� THEORETICAL 
SOLUTION 

SFD METHOD NEW BLOCK 
FDM METHOD 

ERROR OF 
SFDM 

ERROR OF 
NEW BFDM 

0.2 5.367734 5.368614234 5.367733737 8.80234  E(-4) 2.63  E(-7) 
0.4 6.354670102 6.356001349 6.354669784 1.331247  E(-3) 3.18  E(-7) 
0.6 6.958455942 6.959786351 6.958455666 1.330409  E(-3) 2.76   E(-7) 
0.8 7.17527525 7.176169237 7.175275094 8.93987  E(-4) 1.56   E(-7) 
1.0 7.000000000 7.000000000 7.000000000 ----------------- ------------- 
1.2 6.426394837 6.425506759 6.426395004 8.88078   E(-4) 1.67   E(-7) 
1.4 5.447365679 5.446067637 5.447365970 2.298042   E(-3) 2.91   E(-7) 
1.6 4.055242512 4.053982634 4.055242851 1.259878  E(-3) 3.39    E(-7) 
1.8 2.242085194 2.241276756 2.242085468 8.08438  E(-4) 2.74     E(-7) 
2.0 0.0000000000 0.0000000000 0.000000000 ----------------- ----------- 

 
 

                          
   
              Figure 1: Error graph of Example 1 
              SFDM: Standard finite Difference Method        BFDM: Block finite Difference Method 
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Table 2: APPROXIMATE SOLUTION AND ABSOLUTE ERROR OF EXAMPLE 2 

 
 

                         
                        Figure 2: Error graph of Example 2 
 
5.0     Conclusion 
The Numerical experiments in this paper shows the results are consistent, convergent to the theoretical solution and compete 
favorably with the standard finite difference method (See Figures 1 and 2) 
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� THEORETICAL 
SOLUTION 

SFD METHOD NEW BLOCK FDM 
METHOD 

ERROR OF 
SFDM 

ERROR OF NEW 
BFDM 

(0.1) X 0.951043927 0.9489364893 0.9512854731 2.1074  E(-3) 2.415   E(-4) 

(0.2) X 0.808969105 0.8062760844 0.8093064741 2.693    E(-3) 3.3737   E(-4) 
(0.3) X 0.587686382 0.5854995753 0.5880143635 2.187   E(-3) 3.2798   E(-4) 
(0.4) X 0.308862026 0.3077802791 0.3091285852 1.082    E(-3) 2.666559  E(-4) 
(0.5) X 0.000000000 0.00000000 0.0000000000 ------------ ------------------- 
(0.6) X -0.30924943 -0.3081732377 -3.3090757874 1.0762  E(-3) 1.736426  E(-4) 
(0.7) X -0.588015913 -0.58701363304 -0.5878321615 1.0022  E(-3) 1.837515  E(-4) 
(0.8) X -0.809208497 -0.8089533407 -0.8090013820 2.552   E(-4) 2.07115  E(-4) 
(0.9) X -0.951169741 -0.9516256098 -0.9509915632 4.559   E(-4) 1.781778  E(-4) 

X -1.00000000 -1.00000000 -1.0000000000 -------------- ----------------- 


