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Abstract 

 
Finite deformation of a hollow cylindrical pipe of a Blatz-Ko material deforming 

under applied uniform internal pressure is studied. The analysis resulted into a non-
linear second order ordinary differential equation for the determination of 
displacements. An asymptotic solution of this is sought in the Sobolev Space W1, 2 and 
approximate closed form solutions of stresses and displacements are obtained. The 
explicit form of the stress solution makes further investigation of the concept at various 
pressure levels easy. 
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1.0 Introduction 

Exact solutions to problems of determining stresses and displacements in a homogeneous and isotropic linearly elastic 
hollow cylinder under internal pressure are well known. Abeyaratne and Horgan [1] obtained a parametric solution to a 
problem describing finite plane strain deformation of an infinite medium of Blatz-ko material (a nonlinear elastic material). 
The medium considered was an infinite medium with a circular cylindrical cavity under pressure loading condition. Later, 
Chung et al [2] applied the same technique to solve problems of pressurized hollow cylinders and spheres with finite radii. 

Recently, Ejike and Erumaka [3] obtained an exact solution to the problem of a rotating circular cylinder of a nonlinear 
elastic incompressible material. They used an asymptotic approach and sought for the solution in the Sobolev space W1,2. 
Note that the problem involves the minimization of approximate errors and this is best executed in Sobolev space where it is 
possible to minimize not only the solution functions but also their gradients.  Erumaka. [4 – 5] respectively applied the same 
method and obtained approximate solutions to the problem of rotating hollow and solid spheres rotating about their axes with 
constant angular velocity. 

In this paper we apply the asymptotic method in the Sobolev space W1,2 to provide an approximate solution to the 
problem of a hollow cylinder of Blatz-ko material under a uniformly distributed internal pressure with a traction free surface.  
 
2.0 Formulation of Boundary Value Problem 
Let  
Ω0 = {(r, θ, z) : a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ h}      (2.1) 
denote the cross-section of the right circular hollow cylinder in the undeformed configuration. The deformation which takes 
the point (r, θ, z) of the undeformed configuration to the point (R, θ, Z) of the deformed configuration Ω = {(R, θ, Z)} is 
given by 
 R = R(r) a  ≤ r ≤ b 
 θ = θ  0 ≤ θ ≤ 2π       (2.2) 
 Z = z  0 ≤ Z ≤ h, 

where R(r) ∈C2 (a, b) and is such that R and its derivative R& (r) are non negative. We have assumed that the cylinder is large 
and long enough that end effect is negligible. 

The deformation gradient tensor F  is given by 
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The left Cauchy – Green deformation gradient tensor B   is given by 
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where TF   denotes the transpose of F . The strain invariants are 
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and  

I3 = det 
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where tr B  = trace of B  and detB  = determinant of B  
Now let  
W = W(I1, I2, I3)  
be the strain energy density function of the material considered, then the stress field for the compressible material is given in 
Atkin and Fox [6] as 

 τ  = ψ0I + ψ1 B  + ψ-1 B -1,       (2.6) 
where the coefficients are given in terms of W as 
 ψ0 = 2I3

-1/2 (I2W2 + I3W3);        (2.7a) 
 ψ1 = 2I3

1/2 W1 ;         (2.7b) 
 ψ-1 = -2I3

-1/2 W2 ;         (2.7c) 
I is the unit tensor and 

 Wi = 
��

���
 i = 1, 2, 3        (2.8) 

Here, we consider a particular homogeneous isotropic compressible elastic material, namely the Blatz-ko material. The Blatz-
ko material is characterized by the strain energy density function 
 W = 

�

�
 (I2I3

-1 + 2I3
1/2 – 5),        (2.9) 

where µ is the shear modulus of the material at infinitesimal deformation. 
It is easy to see that for the material in equation (2.9) the stress tensor (2.6) reduces to 

 τ  = ψ0I + ψ-1 B -1        (2.10) 
Now using equations (2.7) – (2.9), we obtain the non-trivial components of the non-trivial stresses as the principal stress 
components 

τRR = µ 
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τzz = µ 
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τRθ  = τRZ =   τθZ = τZθ = τθZ = 0   a < r < b      (2.11d) 
In the absence of body force, the equilibrium equation is given by 
 div τ  = 0         (2.12) 
Equation (2.12) in components form is equivalent to the three equations 
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In the present case (2.12) reduces to a single equation 
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So that the equilibrium equation becomes 
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Equation (2.13) together with (2.11) yields the following nonlinear second-order ordinary differential equation for the 
determination of R(r) 
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dr

dR
 =  0        a < r < b     (2.14) 

Now for the pressurized cylinder considered, the prescribed boundary conditions are 
 τRR = - p at  r = a,  τRR = 0 at  r = b.      (2.15) 
3.0 Solution of Boundary value Problem 
We are now set to solve the boundary value problem 
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When we use equation (2.11) we see that the boundary conditions are the same as  

 R(a) )(3 aR&   = a (1 + p/u)-1 ,       (3.1a) 

 R(b) )(3 bR&   = b.        (3.1b) 

Notice that here, the boundary conditions are nonlinear.  
Let us set 
 R4(r)  = g3(r).         (3.2) 
Substituting equation (3.2) in the boundary value problem and realizing that 
 R = g3/4 , 

 R&  = 
�

 
g-1/4 g& , 
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we obtain  
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In (3.3), although the equilibrium equation is still nonlinear but we now have linear boundary conditions. 
A solution of (3.3) in closed-form is not readily feasible, so we seek an approximate solution in W1,2(a, b). The Sobolev space 
W1,p(a,b), p ≥ 1 is characterized by absolutely continuous functions. Now let 

g = r4/3 
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where we choose c-2, c0 and c2 so that the boundary conditions in (3.3) are satisfies and the error ε is minimum in W1,2(a,b) 
From equations (3.3) and (3.4) we obtain the relationship between c2, c0 and c2 as  
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Hence we can replace  g with g0 as 
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If we denote the error in using g0 as g by ε (r, c2), we may write 
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Substituting (3.6) into (3.7) we obtain 

    ε (r, c2) = 
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where  
 n(r) = r10/3 – 5a2b2r-2/3 – 5(b2 + a2)r4/3      (3.9) 

The minimizing condition in the space )2,1(W  (a, b) is given by 

 0)c (r, 2
2

=
∂
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c

         (3.10) 

 
where || . || denote norm in W1,2 (a, b) 
After some computations to O (c2

3) we obtain 

 c2 = 
!�

�"�!#��
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The stress component τRR, is seen to be 
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4.0 Summary and Conclusion 
 
Chung et al [2] tried to use the technique of Abeyaratne and Horgan [1] to find a solution to this problem of pressurized 
cylinder, unfortunately the solution they obtained was in parametric form. Worse still was that the solution they obtained for 
the displacement R was in form of the ratio of deformed and undeformed radii R : r which led to a set of four highly non 
linear simultaneous equations for the determination of the parameters and the constants of integration. Even at that, the 
parameters could only be determined at the surfaces r = a and r = b. 
In this paper we have presented a solution that is explicit. Equation (3.13) gives R, the deformed radius as an explicit function 
of r, the undeformed radius thereby permitting determination of stresses and displacements at any desired section of the 
cylinder. It is also easy to check the effect of increased pressure p through β on the deformed radius R. Application of the 
method used in this paper to the linearized problem gives the already known results of Timoshenko and Goodier [7]. 
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