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Abstract 

 
A theory describing the dynamic response under a linearly varying distributed 

moving loads of an elastically supported Bernoulli -Euler beam on variable elastic 
foundation is considered. The governing equation of fourth order partial differential 
equation was solved by an assumed solution in series form to reduce the coupled 
equation to ordinary second order differential equations. Two cases considered are 
moving masses and moving forces which are solved with Mathematical software 
(Maple). The numerical results are presented in a plotted curve which shows that the 
response amplitude of the elastically supported Bernoulli-Euler Beam decrease as the 
foundation modulli K increases. The response amplitude of the beam increase as the 
value of the mass increases. The result again shows that the response amplitudes for 
moving mass of the elastically supported Bernoulli Euler beam is reached earlier than 
that of the moving force. 
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1.0 Introduction 

Moving loads causes solid bodies to vibrate intensively at high velocities. Thus, the study of the behaviors of bodies 
subjected to moving loads has been the concern of several researchers. Among the earliest work in this area of study was the 
work of Timoshenko et al [ 1 ] who considered the problem of simply supported finite beams resting on an elastic foundation 
and  traversed by moving loads. In his analysis, he assumed that the loads were moving with constant velocities along the 
beam. Oni and Awodola [ 2 ] considered a problem of the vibrations under a concentrated moving mass of a non-uniform 
Rayleigh beam resting on a variable elastic foundation. The technique used is based on the Generalized Galerking Method 
and struble's asymptotic technique. Numerical results in plotted curves are presented. The results show that the response 
amplitudes of the non-uniform Rayleigh beam decrease as the rotatory inertia correction factor r increases. Similarly, for 
fixed value of the displacements of a non-uniform Rayleigh beam resting on variable elastic foundation decease as the 
foundation modulli F increases. Furthermore, the critical speed for the moving mass problem is reached prior that of the 
moving force problem for both illustrative. Dada [3] Studied uniform distributed moving masses vibration for Euler Bernoulli 
beams on elastic foundation. The partial differential equation governing the beam's motion is reduced to ordinary differential 
equation and then expressed as a system of linear equations by finite difference scheme. The analysis is valid for Euler 
Bernoulli beams with various boundary conditions. However, simply supported boundary conditions were used as an 
illustrated example. The numerical results are presented in graphical forms and the limiting cases compared well with known 
existing results. The numerical analysis shows that the foundation stiffness and loads' 

distribution have significant effects on the dynamic deflection of the beam. Oni and Omolofe [4] investigates the 
dynamics behavior of non-uniform Bernoulli-Euler beams subjected to concentrated loads raveling at variable velocities. The 
solution technique is based on the generalized Galerkins Method and the use of the generating function of the Bessel function 
type. The results show that, for all the illustrative examples considered, for the same natural frequency, the critical speed for 
the system consisting of a non-uniform beam traversed by a force moving at a non-uniform velocity is greater than that of the 
corresponding moving mass problem. It was also found that, for fixed axial force, an increase in foundation moduli reduces 
the response amplitudes of the dynamical system. Furthermore, it was shown that the transverse-displacement amplitude of a  
 
Corresponding author Akinpelu F. O.,   E-mail: rilwandemus@yahoo.com-, Tel. +234 8033370470   

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013) 71 – 78     



72 

 

Dynamic Response Under A Linearly Varying Distributed... Akinpelu, Mustapha, and Idowu J of NAMP 
 
clamped-clamped non-uniform Bernoulli-Euler beam traversed by a load moving at variable velocities is lower than that of 
the cantilever. The response amplitude of the same dynamical systems which is simply supported is higher than those which 
consist of clamped-clamped or clamped-free (Cantilever) end conditions. Finally, an increase in the values of foundation 
moduli and axial force reduces the critical speed for all variants of the boundary conditions recently, Oni [6] used the 
Galerkin method to obtain the response to several moving masses of a non-uniform beam resting on an elastic foundation. 
The effects of the elastic foundation in the transverse displacement of the non-uniform beam were analyzed for both the 
moving mass and associated moving force problems. Akinpelu et al [7] investigates the response under moving load of an 
elastically supported Euler-Bernoulli Beam on pre-stressed and variable Elastic Foundation .The technique used is based on 
the analytical and numerical method in terms of series solution. Numerical results in tables and plotted curves are presented. 
The results shows that the response amplitude of the moving mass increases as the mass of the load M increases. It was also 
found that the response amplitude due to the moving mass for pre-stressed is greater than that due to moving force. 
Furthermore, Milormir et al [5] developed a theory describing the response of Bernoulli-Euler beam under an arbitrary 
number of concentrated moving masses. The theory is based on the fourier technique and shows that, for a simply supported 
beam, the resonance frequency is lower with no corresponding decrease in maximum amplitude when the inertia is 
considered. More recent Oni and Awodola [7] considered the dynamic response under a moving load of an elastically 
supported non- prismatic Bernoulli-Euler beam resting on variable elastic foundation were investigated. The technique based 
on the Generalized Galerkin's method and the struble's asymptotic technique. The results show that response amplitudes of 
the elastically supported non-prismatic Bernoulli Euler beam decrease as the foundation Modulli increases. Therefore, a 
theory describing the dynamic response under a partially distributed moving load of an elastically supported pre stressed 
Bernoulli- Euler beam on variable elastic foundation is investigated in this research. 
 
2.0  Formulation of Problem 
The problem of the dynamic response under a partially distributed moving load of an elastically supported Bernoulli-Euler 
beam on variable elastic foundation is governed by the fourth order partial differential equation given by 
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Where E is the Young's Modulus ),( tx is the transverse displacement, ( )xK  is the variable 

elastic foundation, ( )xµ  is the Variable mass per unit length of the beam, ( )xI  is the variable moment of inertia, bω is the 

damping coefficient, x andt are respectively spatial and  time coordinates. ( )txq , is defined by Macaulay notation as the 

load. 
 V is the velocity of load, g is the acceleration due to gravity. 
Macaulay notation is defined as 

( )



−
=−

i

n

i x
x

α
α

0
     

i

i

x

x

α
α
〉

〈
         (2) 

 With ( )txq , defined as 

( ) 2
120

22

1

1
120

11, αααα −
−

−−+−
−

+−= x
d

WW
xWx

d

WW
xWtxq    (3) 

Where gMW 11 =  and gMW 22 =  are the forces produced by masses 1M and 2M respectively at the end points of the 

load as shown in the figure below 

12 aad −=            (4) 

The variable elastic foundation and variable moment of inertia by [ 8 ] is adopted, where K is the foundation modulus. 
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Where 0I and 0µ are constant. Substituting equation (4), (5) and (6) into (1), then becomes 

The equation (7) becomes 
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The variable elastic foundation and variable moment of inertia by [7] is adopted, where K is the  
foundation modulus. 

 
(11) 

 
 

 
Fig 1, Schematic diagram showing linearly varying distributed moving loads on 

 
3.0  Method of Solution 
Evidently, a closed form solution of the partial differential equation (11) does not exist. The assumed solution of the form 
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Were considered. Where )(xX n  is chosen such that desired boundary condition are satisfied.  

Substituting equation (12) into equation (11) this yield 
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Multiplying both sides of the equation (13) by )(xX k  and then integrating it along the entire length of the beam. 
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and applying orthogonality condition where necessary. 
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and α  is a constant, equation (14) becomes, 
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By collecting the differential equation of the order and degree together, equation (14) becomes, 
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•••
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For the general solution of the equation (16) and for the purpose of the solution, we consider mass (M) traveling with 
constant velocity (V).Solutions for the greater number of mass can be obtained in the same manner. Thereafter, the following 
special cases  for the equation (16) follows; 
(a) Moving force 
If we neglect the inertia term, we have the classical case of the moving force, under the 
Assumption of equation (14), we have 

( ) ( ) ( ) )17()()( 1918171614131510987654321 −−−−−−−−++=++−+−+−++−−+
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(b) Moving mass 
If we consider all the inertia terms we have classical case of moving mass under the assumption of equation (14), we have 
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4.0   Numerical Method and Discussion of Results 

To illustrate the foregoing analysis, the uniform Bernoulli - Euler beam of length 15m were  considered ,
.3,2,1,142.3,15,10,3.3,...,3,2,1,2785,75,9,6,3 211 ========= −−− nmLmsgmsVKNMEIkgkgkgM πµ

The results are shown graphically below for the various values of foundation moduli and masses. 
Figure 2, displays the Deflection against time response of simply supported Bernoulli beam on variable elastic 

foundation under the action of moving mass for the various values of foundation Moduli. The graph shows that the response 
deflection of the beam decreases as the value of the foundation modulus increases. And the maximum deflection was attained 
at foundation modulus K = 0. Also  

Figure 3, shows the deflection against time of simply supported Bernoulli beam on variable elastic foundation under the 
action of moving mass 10 for various masses M. From the graph, the response deflection of the beam increases as the value 
of the masses increases. 

Figure 4, shows the deflection against time response of simply supported Bernoulli beam on variable elastic foundation 
under the action of moving force for the various values of foundation Moduli. The graph shows that the response deflection 
of the beam decreases as the value of the foundation modulus increases. And the maximum deflection was attained at 
foundation modulus K = 0. Also  

Figure 5, shows the deflection against time of simply supported Bernoulli beam on variable elastic foundation under the 
action of moving force for various masses M. From the graph, the response deflection of the beam increases as the value of 
the masses increases. 

 Figure 6 shows the comparison of moving mass and moving force of the elastically supported Bernoulli Euler beam. 
Which shows that the response amplitudes for moving mass of the elastically supported Bernoulli Euler beam is reached 
earlier than that of the moving force. 
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5.0    Conclusion 
The problem of assessing the dynamic response under a linearly varying distributed moving loads of an elastically 

supported variable Euler-Bernoulli Beam. The governing equation for the mathematical model is analytically simplified into 
a set of ordinary differential equations that are solved by a mathematical software (Maple).Clearly, the elastic foundation, 
have considerable effects on the dynamic behavior of the beam.  

The results have been able to show that the response amplitude of the elastically supported Bernoulli-Euler Beam 
decrease as the Foundation modulli K increases. Also that the response amplitude of the beam increase as the value Mass M 
increases. 

The result again shows that the response amplitude for moving mass of elastically supported Bernoulli-Euler Beam is 
reached earlier than that of the moving force. 
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