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Abstract

A homogenous isotropic infinite elastic layer occupying theregion —o < x <o, 0<y<a
under anti-plane strain is investigated. The problem is formulated using the Médllin transform and
solved by conformal mappings. A closed form solution for the displacement everywhere in the layer
is obtained from which we determine the stress field and the effects the loading caused on the
material was ascertained. Three outstanding casesnamelyy = a,y = %and y = 0, are considered.

1.0 Introduction

Some observations regarding the stress field meapadint of a crack has been carried out by Willidfj. Reissner
[2] studied stress and Displacements of spherfualls

In this paper, we investigate a homogeneous isiatriofinite elastic layer of height a in a two dimsional strip
subjected to anti-plane stresses of magnitude T .

It consists of two parallel line ABC and DEF whé&eand D are at-o while A and F are atos. The loadings are
prescribed on BC and DE where the sjrigs a andy = 0 respectively.

@
A :
y Z=x+1iy
g 0:5(x,0) =T B é
62®+62®_0 —0< x < I
x2  dy? 0<y<a
a
0
» E »
D 032(x,0) = =T 032(x,0) =0 F
Figl Geometry Of The Plane That Forms The Layer
1.1 A Transformation Of Plane Representing The Layer

Because of the nature of the boundary conditiolesnentary methods of solutions such as methodsdration of
variables cannot be applied. Therefore, the regfcanalysis is transformed to a region where irdeggansform can be
applied.
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Fig 2. The Layer Transformed To An Upper Half RI&R)

The Conformal Transformation
Puttng

w(z) = e%, z=x+1iy (1)
maps the shaded plane region in Fig 1 onto therupgdeéw-plane of Fig 2

Under the given special loading conditions the gowey field equations of linear elasticity redu¢eshe following
Laplace equations
9? 92 2 190 1 92
(G * 302) @) = (G5 + 15+ 5 w0 0) = 0 2)
-1<r<1, 056 <m.
The non-zero stress components are given by thgmel

a 3

ng(r, 9) = g£u3 (T', 9), Orz (T', 9) =Hu Eu3 (T', 9) (3)
Wherepu denotes the shear modulus of elasticity.
The boundary conditions are

a aT
5“3(7',0)——#—”, 0<r<l1 (4)
=0, r>1
a aT
£u3(r,n)——ﬂ—n, 0<r<1 )(5
=0, r>1
The asymptotic behavior of the stresses are
0(r* 1) as r—-0
00z,0rz = 11 (7)
O(r ) as r— o
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The Mellin integral transform ai;(r, 8), is defined as

Us(s, 0) = fow us(r, )rs~tdr (-1 < Res < 1) [3,4] (8)
Applying the Mellin transform to (2), (4) and (5gids
(m+s)u3(s,6)=0 —1<Res<1 9)
22 (s,0) = - (10)
6173 _ _ﬂ
o0 &= (12)
Solution of (9) is considered in the form
U5(s,0) = A(s)cosOs + B(s)sinfs (12)
Therefore (10), (11) and (12) yields
-SA(s)sin0s + sB(s)0s = —;—; (23)
—sA(s)sinmts + sB(s)cosns = —:—; 14)
Consequently,

aT [cosBs—cos (t—0)s

e (s.60) = _[ s2sinms ] (15)
The displacement sought for is given by the invefdghe Mellin transform given by
uz(r,0) = fCC_Jrl,l;o uz (s, 0)r=Sds (16)

The Bromwich integral in (16) can be solved by roettof residue. The integral has simple poles atiSny n =
1,2,3,...... and double poles &t= 0
Therefore, the solution of the problem is

— cos(m — 0))] r 17)
r < 1, 0<0<m

[n Z Sl (cosnB — cos(m — 6))|r

r>1 0<6<nm

_ aT [m 1 oo (-1)
uz(s,0) = ;- 0+- Y1 2

Polar co-ordinatesi; (1, 6) obtained in (17) was converted back to its orip®@rtesian co-ordinate; (x, y)

(aT [ = Zn 1 n2 (cosn% —cosnn(1l— %)>] e"a ew <1,
0<sy<a
u3(x,}’) = aT 1 n X X (18)
o (1 ny y -, X
E[; Yoq — (cosn;— cosnm(1l _Z))] e Vaea >1,
0<y<a

X
Three outstanding cases namely a,y = % andy = 0 are considered. These cases yield known resulefer< 1
X
and ea >1

2.1 ANALYSIS OF THE RESULTS
Analysis of the displacement and stressesifat x < and0 <y <a

1) Fore a <1
At y = 0 the displacement is

uz(x,0) = at [E—E — Z( 1)n cosn%y—cosnn(l——)) e"a’

um |2
w3, 0) = 2 [T 42 3, (S| e (19)

n2
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At y = a, the displacement is

(x,0) = aT T T Z( 1)” nma L ) X
us(x, IUT > cosn 7 cosnm( )

T 1 e [(1-(-D" H
us(x,0) = & Il (RS )] e"a (20)

Aty = % displacement is

. 0) aT | na+li(—1)"( nw oa na) T
=—|———,— — _ _—, = a‘
us(x, > "zt 1 2 COSTla > cosn(m . )
n=
u; (1,%) =0 (21)
Lety = —(n - —) the displacement the becomes
( ) aTn na( 1)+ Z(—l)"( nm a( 1) 1 1( 1)) T
[R— —_——_— = = _—— f— [ _ —_—) — _—— _—— a’
—(n—2) ZannZ - 1n2 cosnann2 cosnm( nn2 e
oy
aT |m n( 1) ( 1)”( ( 1) n( 1)) 24
R — — . — ) - R [ a’
annn > 2 |cosnm.{n—- cosn(m —(n=3))le
aT 1 - " X
Tz —Z( ) 0—0)le"7'
,un 2n n
n=1
aT 1 X X
= —n [ (—— 1) ] e"a e"ar <1 n=123....
2\n
a 1) 1 aT( 1 T 123
— —_— = ——— - a’ =
Usg x,n(n 3 27 \n ) n=123..
Fore™a > 1
Aty =0 the d|splacement is
aT G0k
us(x,0) = — Z (cosn(0) — cosn(r — 0))| e
pm |
aT (D"
= — a-nr
il Z (1) )]
aT |1 Z D" -1 _m=
= —|— ] e a
um (m n?
=Dr-1 1)"—1 s
a
/mz
2aT o -(2n 1)—
= Ha? Yn=1 [W] 2)2
At y = a the displacement is
(-1 )" X
us(x,a) = — - Z Cosn(—) — cosn(m ——a)) "a
( 1)" —nX
=LY - e
niol
aT (1 - (- 1)> T
- a
2 2
MT[ n=1 " X
—2aT o —(2n—1)7
= T [ iy ] (23)

Aty = "the displacement is
Ug (x, 5) s [Zn 1 ( nlz) (cosnz—TI — cos nz—n)] e o =0(24)

2
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Aty=>(n— %) the displacement is

Us (x,%(n—l)) =£ 3 ﬂ(cos% %(n—l)—cosn(n—g g(Tl——)) e

2 ur? n? 2
n= 1

" un? Z = (COS” (n - %) — cosn(m—.— (n - _)) -n"E

unzz(_) (0—-0)e e
=0 (25)

nmx

. 1
Plotting the graph of- u, (x,a(n - ) = ——(1 - —)e a
Wherey = —2(1-2)e™  n#1lien=234,..

We have Fig 3 y

A

displaced y =la displaced

la 1 _
displaced Y- displaced
Not-displaced y = 4 Not-displaced
2
0 . X displaced

displaced y =0

Fig 3 Layer showing displaced and non-displacetreg
General stress states are

) = 5 ), =12
o3i(x,y) = x,y), j=12..
] dx]

Aty = 0, the stress is

aT T 1 nm (—1)"
LIS R z
T a n?

a T
Z L 0 - o)l

[——] - n=123

TTX
(sin0 —sinnm)|e™a”

03,(x,0) = -Te"a n=1273.. (26)
At y = a, the stress states is

ud—(x a)—ﬂ —E v & Dn
T

TIX

Sl‘)’l— a+SlI‘ll’1(T[—a a))le

aT fia x
_r[n]

03,(x,a) = _Te"a 27)
Aty = g the stress states becomes
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du3( g)=£ —g+%;(_1)n(—sing.n-l-sinng) T

ea’

ME ) /i n

O3y (x,%) =-Te"a (28)
Aty = %(n - %) the stress states is

dus a( 1) aT T[+1 - (—1)"( s ) D+ si n) T

R — — —_— = —|—— — —_ — —_ — a’

'udy x,nn > - e El - smz(n ) sm2 e
n=

[oe]

aT| 7 1D /(D" WX
= et 2 ( n +1ﬂe“

00n:1
1 —-1)" X
=T —1+—Z(1+( ) )le"?
T n
n=1
X X Zk%
=T [—1 +% Tieta ] 032 (x,g) =T [—1 +% e?a +¥n,° . ]
(29)
Similarly, for os;(x,y) =~ ;;'3 (x,y) respectively.
]
The layer experienced stress at the upper edgeswher
TLT[—E+EZ%O:1(1_(_21) )]enT —0o<x<0 0<y<a
— 2 n n
0-31(x1 a) - T 1_(_1)n nﬂ (29)
—;Z;'le(T)e a x> 1, 0Sy<a
The material did not experience stress at the middiere
0, e"a <1
o (1:9) = { 5 (30
0 ea >1

The layer also experienced stress at the lower etigee

o] _ n_
[y (EEes oF
T n

n=1
oo _ n _
_Z z (—( D 1) e"% e"% >1
k T n
. n=1
3.0 Conclusion

The displacement deduced in a closed form, is tleeal to obtain the stress everywhere in the matédieng the
middle of the layer, wherg = % the displacement vanishes that is

032(x,0) =

a
(us(x,§)=0. —o<x <o, OSysa),
The stress ar@;, (x, %) = 0 anda;, (x, %) # 0. show that since the tearing stress, (x, %) depends on the applied

stressT, it follows that cracking will begin at the middl€ the layer ifT becomes very large. This is line with the result
of [5,6]
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