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                       Abstract 
 
In this paper, an integrator backstepping technique that employs a single-control input 

is extended for the design of the control function that is capable of driving a hyperchaotic 
dynamical system to different desirable dynamical behaviors.  The Lorenz hyperchaotic 
system is used as a typical model to illustrate the approach.  The paper presents both 
theoretical and corresponding numerical simulations; and the result shows that, the 
hyperchaotic Lorenz system was effectively controlled.  The control of this system to a 
specific fixed point as well as a bounded point was achieved. Trajectory tracking of a 
desired periodic function is also illustrated 

 
 
 
1.0    Introduction 

A deterministic nonlinear system is said to be chaotic whenever its evolution depends sensitively on the initial 
conditions [1,2]. This property implies that two trajectories emerging from two different closely initial conditions separate 
exponentially in the course of time. For a deterministic continuous system to be chaotic, the system must be nonlinear and 
must be at least three dimensional.  

As at now, no definition of the term chaos is universally accepted yet [2], but almost all the researchers agree that 
chaos is a periodic long-term behaviour in a deterministic dynamical system that exhibits sensitive dependence on initial 
conditions. A measure of sensitive dependence on initial conditions, which is the hallmark of chaotic systems, is the 
Lyapunov exponent. In general, a positive Lyapunov exponent is an indicator of chaotic behavior; while a negative 
Lyapunov exponent denotes periodic behavior. 

When a deterministic nonlinear system has more than three dimensions as could be found in lasers and Plasma 
models, it could exhibit hyperchaotic dynamics [3] in which case the system has at least two positive Lyapunov 
exponents corresponding to two of its dimensions and indicating complex instability. In recent times, interest in the 
generation, control and synchronization has witnessed tremendous increase. A large number of hyperchaotic systems has 
been identified, some of which were obtained from existing chaotic systems by artificial increase the systems’ 
dimensions. One of such is the hyperchaotic Lorenz system [4]. 

Chaotic and hyperchaoticbehaviours occur naturally in many physical, biological, engineering, and social systems 
[5]. It could be beneficial in some applications, however, it is undesirable in many engineering and other physical 
applications and its control is therefore very important in order to improve the system performance.  

The idea of chaos control was enunciated at the beginning of the last decade at the University of Maryland [6]. 
Control of chaos refers to a process wherein a perturbation is applied to a chaotic system, in order to realize a desirable 
(chaotic, periodic or steady-state) behaviour. This implies stabilization by means of small system perturbations of one of  
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the unstable periodic orbits embedded in the chaotic attractor. The result of such control is to render an otherwise chaotic 
motion more stable and predictable which is often an advantage. Care must however be taken to ensure that such 
perturbation should be as small as possible, to avoid significant modification of the system’s natural dynamics and ensure 
experimental realization [1,6].  

 
Strategies for the control of chaos have grown in the last two decades since the pioneering work of Ott,Grebogi and 

Yorke (popularly known as OGY closed-loop method) [7]. Other methods includethePyragas feedback and non-feedback 
methods [8-10],differential geometric[11-13], active control [14, 15] inverse optimal control and adaptive control [16-22]. 
Feedback method could be classified as static, dynamic or open-loop feedback controls[23, 24]; and could also belong to 
either the linear or nonlinear feedback control forms. Backstepping techniques belong to nonlinear feedback control 
methods. They include back-stepping for strict feedback system [5, 25, 26], adaptive back-stepping [27, 28], robust back-
stepping [29], recursive back-stepping and the integrator back-stepping[5, 23]which is used in this paper. The integrator 
backstepping is outstanding for its ability to achieve global stability, tracking, and transient performance for a broad class 
of strict-feedback nonlinear system. It has the advantages of wider applicability to a variety of chaotic systems with or 
without external excitation; and a controller could be sufficient to achieve stabilization of chaotic systems, thereby, 
reducing controller complexity. Furthermore, there are no derivatives in the controller [30]; the controller is singularity 
free from the nonlinear term of quadratic type, gives flexibility to construct a control law which can be extended to higher 
dimensional hyperchaotic systems, and the closed-loop system is globally stable; it requires less control effort in 
comparison with the differential geometric method. 

In our very recent paper [27], we introduced a backstepping approach that uses a single-control function for the 
synchronization and control of a three-dimensional chaotic circuit. In this paper, we present preliminary results of an 
attempt to design a single-control input for the control of four-dimensional hyperchaotic systems. Here, we develop an 
integrator backsteppingmethod based on Lyapunov stability theory and obtain appropriatecontrol function for the control 
of hyperchaotic systems. A typical hyperchaotic Lorenz system was used to derive the control input. We illustrate 
numerically the effectiveness of the proposed method for the stabilization to the origin and bounded points. We also show 
that the method could be used to track a trajectory.  

 
2. The Hyper-chaotic Lorenz System 

The Lorenz chaotic system is given by 

bzxyz
yxzcxy

xyax

−=
−−=

−=

&

&

& )(
         (2.1) 

Where a is the Pradtil number and c is the Rayleigh (or Reynolds) number[2, 4]. In the convention problem, b is related to 
the aspect ratio of the rolls. The variables x, y and z are dimensionless quantities, proportional to the circulatory fluid flow 
velocity, temperature difference between ascending and descending fluid elements, and the distortion of the vertical 

temperature profile from its equilibrium, respectively. For 10=a and 3
8=b , the Lorenz system exhibits chaotic 

behavior when 74.24≈c . Control of chaotic behavior in system (2.1) has been achieved by various means including 
backstepping. The Lorenz chaotic system (2.1) becomes hyper chaotic system if the following conditions are satisfied:    
(i) The minimal dimension of the phase space that embeds the chaotic system becomes at least four, which will 

require the minimum number of coupled first order autonomous differential equations to be four[31-33] . 
(ii)  The number of terms in the coupled equations giving rise to instability would be at least two, of which at least 

one should have a non-linear function [32, 33]. 
 

Based on these conditions, the Hyperchaotic form of the Lorenz chaotic system (2.1) above was obtained by introducing a 
simple quadratic dynamic feedback term to system (2.1) above by Gao et al. [4] giving rise to the following fourth-order 
autonomous dynamical system: 

 
 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 29 – 40            



31 

 

 Controlling the HyperchaoticLorenz System …  Ogundipe, Vincent  and Laoye  J of  NAMP 
( )

kzyw
bzxyz

wxzycxy
xyax

=
−=

−−+=
−=

&

&

&

&

      (2.2)   

System (2.2) was proposed recently by Gao et al. [4] and it exhibits interesting dynamics including hyperchaosfor 

10=a , 3
8=b , 28=c , and 1.0=k  . A typical hyperchaotic orbit obtained using the above parameter values is 

shown in Figure 1 
3.  Theory of Integrator Back-stepping 
The goal of this paper is to use the integrator backstepping technique to control a hyperchaoticLorenz system.The relevant 
technique is described below. Consider a second order system    

u

uxxx

=

+−=

ζ&
&

32

,      (3.1) 

wherex is a variable and u is a parameter. The design objective is to stabilize the dynamics of system (3.1) such that 

( ) ϕ→tx as ∞→t , where ϕ  is a fixed or bounded or a specified trajectory – the origin being a unique fixed or 
equilibrium point. 

The control law can be synthesized in two steps. We denote ξ as a real control first, and by choosing the Lyapunov 
function       

2
1 2

1
xv =         (3.2) 

and the control law ( )xxkxdes αξ ≡−−= 1
2 ,the control objective will be achieved. Nevertheless, ξ  is a state and 

cannot be set to desξ .If we define the variable   desz ξξ −=  as the derivation of ξ from its desired value desξ  with the 

definition of the error variable, we have  

   ( )( )zxxkkxuz −++−= 3
112       (3.3) 

The Lyapunov function candidate can be augmented as    

2
12 2

1
zvv +=        (3.4) 

 
 
Its time derivative is 

( ) ( )( )[ ]zxxkkxuzzxkxxv −++−++−−= 3
111

3
2 2&  (3.5) 

In principle, the control goal would be achieved if 2v&  isnegative definite.By choosing the control law as   
( )( ) zkzxxkkxxu 2

3
112 −−+++−=     (3.6) 

then, we obtain   
2

2
2

1
4

2 zkxkxv −−−=&        (3.7)  

which is negative definite. This implies that( ) ϕ→tx   and desξξ →  asymptotically. In this example ξ is called a 

virtual control, and its desired value ( )xα  is called a stabilizing function.  

It should be noticed that system (1) above can also be stabilized by a linearizing control law  

( ) xkxkxxxu 21
232 −−−−=       (3.8) 

However, the 
2x− term which helps in stabilizing equation (3.1) is cancelled by the linearizing control law (2.2). This 

shows the peculiarity of the integrator back stepping design as it can avoid cancellation of useful nonlinearities.The result 
of integrator back stepping is summarized in the following theorem. 

 
 
 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 23 (March, 2013), 29 – 40            

   

 

  



32 

 

 Controlling the HyperchaoticLorenz System …  Ogundipe, Vincent  and Laoye  J of  NAMP 
Theorem : Consider the following system 

( ) ( )
u

xgxfx

=
+=

ξ
ξ&

      (3.9) 

where ( ) 00 =f  is the fixed or equilibrium point. If there exist a stabilizing function ( )xαξ =& and a positive 

definite radially bounded Lyapunovfunction RRv n →: such that   

( ) ( )[ ] ( ) 0<+∂
xxgxf

dx

v α
     

(3.10)   

then, the control   

( )[ ] ( ) ( )[ ] ( ) 0<+∂+−−= xxgxf
dx

v
xcu ααξ   (3.11) 

will asymptotically stabilize the fixed or equilibrium point of system (2.2). 
 
4.0 Control Formulation 
The goal of this work is to design an effective control function based on integrator back stepping technique that will drive 
the hyper chaotic Lorenz system to a desired stable point. The idea is to add a single control input to any of the equations 
in (2.1) containing non – linear terms. In this way, control can be achieved to the origin and to bounded point. A 
trajectory can also be tracked in a systematic way 
 
4.1 Stabilization to equilibrium point 

In order to control Lorenz system to the origin point (0, 0, 0, 0) we add a control input 1u  to second equation of the 

system (2.1). Thus, the controlled system becomes: 
( )

kzyw

bzxyz

uwxzycxy

xyax

=
−=

+−−+=
−=

&

&

&

&

1

      

(4.1) 

Where 
1

u  is the required controller. For the virtual control y, we design a stabilizing function ( )x1α  to make the 

derivative of 

2
)(

2

1

x
xV =

        
(4.2) 

which is  

axyaxxV +−= 2
1 )(&       (4.3) 

to be negative definite as )(1 xy α= . Suppose 0)(1 =xα  and define an error variable  

)(1 xyy α−=        (4.4) 

Then, we obtain the ),( yx subsystem as follows from (3) 

)( xyax −=&  

But yxyy =−= )(1α and from (4.4) since 0)(1 =xα , then )( xyax −=&  

yaaxx +−=& .       (4.5) 

Similarly, 

1uwyxzcxy +−+−=& .     (4.6) 

Combining (4.5) and (4.6) we have the ),( yx subsystem as follows 

yaaxx +−=&  

1uwyxzcxy +−+−=&      (4.7) 

Consider the following Lyapunov function;  

2
12 2

1
)(),( yxvyxv +=  

The time derivative of ),(2 yxv is given by  
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 yyxvyxv &&& += )(),( 12          (4.8) 

Substituting for (4.3) & (4.7) in (4.8) we have 
)),( 1

2
2

2 yuywyyxzycxyaxaxyxv +−+−++−=&      (4.9) 

By introducing 
22 yy +−  in the R.H.S. of the above equation, we have  

)2 (),( 1
22

2 uwyxzcxaxyyaxyxv +−+−++−−=&      

 (4.10) 
With this we have proved that in the ),( yx  subsystem, the equilibrium (0,0,0,0) of the subsystem  is asymptotically 

stable.  

According to (4.1), ( ) 01 =xα , 0→x and 0→y and the third equation of system (4.1), we get that ),,( zyx  the 

controlled system (4.1) tends to the fixed point when we choose the control input by making, 

yy −=&             (4.11) 

so that  

( )[ ] ycazxwu 31 −+−+=          (4.12) 

4.2 Tracking desired trajectory  
Here, we wish to find a control law 

2
u  so that a scalar output )(tα of the Hyperchaotic Lorenz system can track any 

desired trajectory )(tr . Replacing 1u by 
2

u in Eqn. (4.1) we now have  

( )

kzyw

bzxyz

uwxzycxy

xyax

=
−=

+−−+=
−=

&

&

&

&

2         (4.13) 

Let  x  be the deviation between the output x and the desired trajectory)(tr . That is,     

)( trxx −= .         (4.14) 

Recalling the Lyapunov function given by (4.3), it’s time derivative along the controlled system 

 
2

)(
2

1

x
xv =           (4.15) 

can be obtained by substituting x  with x  from (4.15) and x&  given by  

rxx &&& −=           (4.16) 
to get  

[ ]rxyarxv −−−= )()(1& .        (4.17) 

To make )(1 xv negative definite, let xx −=& , then we obtain that 

.
1

a

rr
x

a

a
y

&++−=         (4.18) 

Equation (4.16) becomes negative definite by choosing the virtual control y as  

.x
a

xrr
y +−+=

&
         

 (4.19) 
Define the second Lyapunov function as   

2

2

12

y
vv +=           (4.20) 

where  








 −++−=
a

xrr
xyy

&
          (4.21) 

so that  
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         (4.22) 
Then,  

yyvv &&&& += 12           
 (4.23) 

is negative definite by choosing the control law 2
u

 as follows: 

Let yy −=&
           (4.24) 

then,  
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xrr
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&&&&&
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From (4.1), we have 

( ) 














 −++−−=




 −++−−+−−+
a

xrr
xy

a

xrr
xyauwxzycx

&&&&&&&
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From which we obtain the control function as  

( )
a

xrxrr
wxcaayxzu

−+−+++++−+=
&&&& 2

 12
    (4.26) 

 
4.3  Stabilization to a Bounded Point  

Our objective here is to find a control 3u for stabilizing the state space of the controlled system (4.1) at a bounded point, 

say, px  where p is an arbitrary constant. To achieve this goal, we add the control input 3u to the fourth equation of Eqn. 

(4.1) and obtain  

3

)(

ukzyw

bzxyz

wxzycxy

xyax

+=
−=

−−+=
−=

&

&

&

&

         (4.27) 

Starting from the first equation, we define a stabilizing function ( )x1α  for the virtual control variable 

pxx =)(1α           (4.28) 

and find a derivative of 
 

2
)(

2

1

x
xv =           (4.29) 

as  
( ) xxxv && =           (4.30) 

so that  

( ) 2
1 axaxyxv −=&           (4.31) 

Defining the error variable as 
)(1 xyy α−=           (4.32) 

we obtain the ),( yx subsystem as follows  

xpapwpxyapxzcxy

xpayax

)1( )1(

)1(

−+−+−−−=
−−=

&

&

     

(4.33) 

Consider the second Lyapunov function given by: 2
12 2

1
)(),( yxvyxv += . 

The time derivative of  

),(2 yxv is yyxvyxv &&&
2

1
)(),( 12 += .        (4.34) 
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By substituting for )(1 xv& given by(4.31) and y& given by(4.33)in(4.34)we have:  

{ })1( )1()1()( 22
2 pappcazxyywyapxpaxv −−−−−+−−−−−=&     (4.35) 

We can choose a virtual control ( )yx,2α  such that 

)1(),(2 pappcayxz −+++== α        (4.36) 

Similarly, by defining the error state as 
),(2 yxzz α−=           (4.37) 

 We can obtain the sub-system in the ),,( zyx  coordinates. From (4.37) ),(2 yxzz α−= && and from the third equation of 

(4.1) 

bzxyz −=& . Then,   

),(2 yxbzxyz α−−=         (4.38) 

From (4.36) )1(),(2 pappcayx −+++=α which are all fixed parameters of the system, so that    

0),(2 =yxα& .           (4.39) 

 Hence, we have  bzxyz −= and   

( ))1( pappcabzbpyxz x −+++−−+=&        (4.40) 

So, in the ),,( zyx coordinate, we have the sub-system  

( )
( ) ( )

( )[ ]pappcabzbpxyxz

xpapwpxapyxzcxy

payax

−+++−−+=

−+−+−−−=
−−=

1

11

1

2&

&

&

      

(4.41)

 
Consider a third Lyapunov function given by  

2
23 2

1
),(),,( zyxvzyxv +=        (4.42) 

By substituting for sub-system z&  in (4.41) in the time derivative of (4.42), we have 

[ ] { }[ ])1(  )1( )1()1(),,( 222
3 papcabbzpxyxzpappcazyxwyyapxapazyxv −−−−−++−−−−−−−−−−−=&  

which can be written as  








 −+++−+−−−−−−= )1((  )1()1(),,( 2222
3 pappcabpx

z

w
yzzbyapxapazyxv&

    

(4.43)  

To make ),,(3 zyxv& negative definite, we let  

[ ] 0)1(2 =−+++−+ pappcabpx
z

w
y       (4.44) 

So that  
[ ]

y

pxzpappcabz
w

2)1( −−+++=
       

(4.45)  

We can also choose a third virtual control ( )zyx ,,3α  such that 

),,(3 zyxw α=           (4.46) 

{ }[ ]
y

pxzpappcabz 2)1(
    

−−+++=
       

(4.47)

 
Similarly let 
 ),,(3 zyxww α−=

        

(4.48) 

Then we obtain the ),,,( wzyx  subsystem so that 

),,(3 zyxww α&&& +=          (4.49)  

y

zpx
ukyzw

&
&

2

3 ++= . 

But ,bzxyz −=&  then   
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( ) ( )

y

bzxypxbzxybz
ukzyw

−−−++=
2

3
&

       

(4.50) 

Finally we have the entire system in the complete ( )wzyx ,,,  as  

( )
( ) ( )

( )[ ]
( )( )

y

bzxypxbz
ukzyw

pappcabzbpxyxz

xpapwpxapyxzcxy

payax

−−++=

−+++−−+=

−+−+−−−=
−−=

2

3
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11

1

&

&

&

&

       (4.51) 

 Consider the following Lyapunov function 

( ) ( ) ( ) ( )( )
.  11,,, 3

2
222

4 







+−−++−−−−−= u

y

pxbzbzxy
kzywzbyapxapawzyxv &&   (4.52) 

We choose the control 3u  as follows. Let, then 

( )( ) ( )[ ].,,33

2

zyxwu
y

pxbzbzxy
kzy α−−=+−−+ So that 

( ) ( )[ ]
y

bzpappcabzxy
wkzyu

−−+++−+−−= 1
3

      

(4.53) 

( )wzyxv ,,,4 becomes negative definite, that is 

( ) ( ) ( ) 222
4 11,,, zbyapxapawzyxv −−−−−=       (4.54) 

 
5.0 Numerical results 
All the numerical results that follow were obtained using a standard 4th order Runge-Kutta algorithm with fixed 
integration time-step, 005.0=∆h . 
 
5.1 Dynamics of the hyperchaotic Lorenz system 
The Lorenz hyperchaotic described by system (2.2) exhibits varieties of dynamical behaviour, the most significant in this 

work being hyperchaos. For system (2.2), the parameters used are  � � 10, � �
�

	
, 
 � 28,  � 0.1 as in Gao et al. [19]. 

When k is varied, chaotic periodic and hyperchaotic attractors are observed. For instance, in Fig. 1, phase space showing 
the hyperchaotic attractor for k=0.1 is depicted in (a); while in (b) and (c) the corresponding time series for the � and � 
variables are displayed. 
 
5.2 Stabilization to the equilibrium point 
In Fig. 2, all the state variables ��, �, �, �� have been plotted simultaneously in a composite plot, the controller being 
activated at � � 20. Clearly, control to stable state was achieved. However, we find that the state variable w (in pink) is 
driven to a constant stable state at w≈ 50 as soon as the control is achieved. Theoretically, all the dimensions should 
approach zero equilibrium. The deviation from the expectation equilibrium state could be attributed to the position of the 
controller. 
 
5.3 Tracking a desired trajectory 

To track the trajectory � � ����, the controller 2u  was activated at st 20≥ .In Fig. 3 global tracking is achievedas soon 

as the control is activated.  
 
5.4 Stabilization to bounded points 

To achieve stabilization to bounded points, which is not an equilibrium point, we set p = 0.02 and the control 3u st 20≥
.The effect of the control is seen in Fig. 4. All the variables are stabilized at various points as soon as the control action is 
on.  
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(a) 

                          

(b) 

               

(c) 

                 

Figure 1: Chaotic dynamics of the Hyperchaotic Lorenz System (a) phase portrait (b) time series of the x – variable (c) 
time series of the z – variable. 
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Figure 2: Control to the origin. The controller U1 has been activated at t = 20.  
 

 

                 

Figure 3: Tracked orbit tr sin= . The controller 2u  has been activated at st 20≥ .  
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Figure 4: Stabilization to bounded points. The controller U2 has been activated at st 20≥ and p = -0.6. 
 
5.0 Concluding Remarks 

We have presented in this paper the results of an attempt to address the problem of controller complexity by designing a 
single-control input for the control of hyperchaotic systems based on an integrator backsteppingmethod which uses the 
Lyapunov stability theory. A singledcontrol function was obtained for the control of a typical hyperchaotic Lorenz 
system. We have illustrated numerically the effectiveness of the proposed method for the stabilization to the origin and 
bounded points; and also showed that the method could be used to track a trajectory. We remark that from our 
observation, the choice of the position of the control function in the state equations could significantly affect the control 
performance; and this should be properly chosen to ensure effective control performance. This could have remarkable 
consequences in hyperchaos synchronization with different synchronized states emerging, as we would show in our 
forthcoming paper. 
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