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Abstract 
 

Let max( , )a b a b   and a b a b    for      ̅     {  }  and extend the 

pair of operations to matrices and vectors in the same way as in linear algebra. Max-linear 

programming is a problem of the form min(or max)Tf x   subject to

A x c B x d     . Max-linear programs with finite entries have been considered in 

the literature and solution methods for both minimization and maximization problems have been 

developed. In this paper we consider max-linear programming problems with infinite entries and 

show that this problem can be transformed to the one with all input variables finite.  
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Introduction 

1.0  Max-algebra and its basic definitions 

Let max( , )a b a b   and a b a b    for      ̅     {  } The element   plays the role of neutral for   

and a null for  . We will denote by   the element   and for convenience we will use the same symbol to denote a vector 

or matrix whose elements are  . For aR ,  the symbol 
1a
 means a .   

Max-algebra is an analogue of linear algebra developed for the pair of operations ( , )  , extended to matrices and vectors in 

the same way as in linear algebra. That is if ( ), ( ) and C ( )ij ij ijA a B b c    are matrices of compatible sizes with entries 

from  ̅, we write C A B  if 
ij ij ijc a b   for all ,i j  and  C A B   if max ( )ij ik kj k ik kjk

c a b a b


     for 

all ,i j . One of the main advantages of using max-algebra is the possibility of dealing with a class of non-linear problems in a 

linear-like way.  

Max-algebra has been studied by many authors for further reading the reader is referred to [1, 2, 4, 5, 6] and [11]. 

We will now summarize some standard properties of matrices and vectors in max-algebra. Identity matrix is a matrix whose 

all diagonal elements are 1 and all off the diagonal elements  . We denote by I  the diagonal matrix. The following holds for 

matrices (including vectors) , ,A B C  of compatible sizes over  ̅ and      ̅   

 

( ) ( )

A B B A

A B C A B C

A A A

A B A

A I A I A

 

  

    

   

 

   

  
( )

( )

( )

( ) ( )

A A

A B C A C B C

A B C A B A C

a B C a B a C

a B C B a C

     

     

     

     

      
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2.0  Problem formulation 
Consider the following ’multi-processor interactive process’ (MPIS). 

Products 1,..., mP P  are prepared using n processors, every processor contributing to the completion of each product by 

producing a partial product. It is assumed that every processor can work on all products simultaneously and that all these 

actions on a processor start as soon as the processor is ready to work. Let 
ija  be the duration of the work of the jth processor 

needed to complete the partial product for iP  (i = 1, . . . ,m; j = 1, . . . , n). Let us denote by 
jx  the starting time of the jth 

processor (j = 1, . . . , n). Then, all partial products for iP  (i = 1, . . . ,m; j = 1, . . . , n) will be ready at 

1 1max( ,..., )i in na x a x  . Now, suppose that independently k other processors prepare partial products for products 

1,..., mQ Q  and the duration and starting times are 
ijb  and

jy , respectively. Then the synchronization problem is to find 

starting times of all n k  processors so that each pair ( , )i iP Q  (i = 1, . . . ,m) is completed at the same time. This task is 

equivalent to solving the system of equations 

i1 1 in n i1 1 in nmax(a + x , . . . , a + x )=max(b + y , . . . , b + y ),(i = 1, . . . ,m).  

It may also be required that  
iP  is not completed before a particular time ic  and similarly 

iQ   not before time
id  . Then, 

the equations are 

i1 1 in n i i1 1 in n imax(a + x , . . . , a + x ,c )=max(b + y , . . . , b + y ,d ),(i = 1, . . . ,m).  

This system is called ’two-sided max-linear system with separated variables’ and can be written in matrix-vector notation 

as follows: 

A x c = B y d                                               (2.1) 

It is shown [6] that (1) can be transformed to the one with non separated variable 

A x c = B x d                                               (2.2) 

In applications it may be required that the starting times are optimized with respect to a given criterion. In [3] the 

objective function is considered to be max-linear,  that is 

1 1( ) max( ,..., )T

n nf x f x f x f x      

and developed a method for solving this problem  for both minimization and maximization. But all the entries for both 

objective function and constraints are finite. If in the MPIS some processor j  does not produce some partial product i  then 

the duration 
ija  of work of the jth  processor needed to complete these partial products for (or )i iP Q  (i = 1, . . . ,m; j = 1, . . 

. , n) is set to   . If under this assumption we have a non-homogeneous two-sided constraints and the objective function is 

max-linear then the problem is called ’max-linear programming problem over  ̅’. In this paper we will consider ’max-linear 

programming problem over  ̅ and show that this problem can be transformed to the one whose all input variables are finite 

and hence methods developed in [3] can be applied to find solution to this problem. 

 

General two-sided max-linear systems have been investigated in several articles e.g [4], [6], [7], [10]. A general solution 

method was presented in [10], however, no complexity bound was given. In [6] an algorithm with a pseudopolynomial 

complexity (Alternating method) has been developed. In [4] it was shown that the solution set is generated by a finite number 

of vectors. An iterative method suggested in [10] assumes that finite upper and lower bounds for all variables are given. The 

iterative method presented in [10] makes it possible to find an approximation of the maximum solution of the given system, 

which satisfies the given lower and upper bounds or to find out that no such solution exists 

 

3. Max-linear programming: existing results 
Here we give a short description of methods for solving max-linear programming, for details, see [3]. We will describe 

minimization problem only since the method we present in paper is for the minimization problem.  Max-linear program 

(MLP) is of the form minTf x   subject to 

A x c B x d     ,                                   (3.1) 

 where 1 1 1( ,..., ) , ( ,..., ) , ( ,..., ) ,T n T m T m

n m mf f f c c c d d d     R R R  ( ) and ( ) m n

ij ijA a B b   R  

are given matrices and vectors with finite entries.  This problem is denoted by
minMLP . 

Any system of the form (3) is called “non-homogeneous max-linear system” and the set of solution of this system will be 

denoted by S . Any system of the form 
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E x F x                                    (3.2)  

 is called “homogeneous max-linear system” and the set of solution of this system will be denoted by hS . 

Proposition 3.1 [3] Let E = (A|0) and F = (B|0) be matrices arising from A and B, respectively, by adding a zero column. 

If x S , then ( |0) hx S  and conversely, if 
1 2 1( , ,...., )T

n hz z z z S  , then 
1

1 1 2( , ,...., )T

n nz z z z S

    

Denote by 
ij ij i i jmax{|a |, |b |, |c |, |d |, | f |; i M, j N}K      

Theorem 3.1 [6] Let ( ), ( ) m n

ij ijE e F f   R  and   be the greatest of the values , , ,ij ije f i M j N  . 

There is an algorithm of complexity O(mn(m + n)  )that finds an x satisfying (4) or decides that no such x exists. 

Proposition 3.1 and Theorem 3.1 show that feasibility question for 
minMLP can be answered in pseudopolynomial time. 

The following proposition shows that the problem of attainment of an optimal value for 
minMLP  is converted to a 

feasibility question. 

 

Proposition 3.2 [3] f (x) = α, for some x S  if and only if the following non-homogenous max-linear system has a 

solution: 

( ) ( )

A x c B x d

f x f x 

    

   
 

where  and ( ) ( ),  where  < ,  for every T T

j jf x f x f f j N      . 

Based on this a bisection method for finding an optimal solution to 
minMLP  was developed. Before we give the 

algorithm we need to show the criteria for the existence of an optimal solution. Denote
mininf ( )x S f x f  . 

Let  ; i iM i M c d     for r M  denote 

1min  and 

max

r k r rj
k N

r
r M

L f c b

L L








  


 

Lemma 3.1 [3 ] If c > d, then f (x) > L for every x S . 

Theorem 3.2 [3] 
min  if and only if f c d   

Algorithm 3.1 MAXLINMIN (max-linear minimization) 

Input:
1 1 1( ,..., ) , ( ,..., ) , ( ,..., ) , ,T n T T m

n m mf f f c c c d d d c d c d      R R , 

( ), ( ) , 0m n

ij ijA a B b    R  

Output:  x S  such that 
min( ) ( )f x f x   . 

1. If L = f (x) for some x S , then stop (
minf L ). 

2. Find an 
0x S . 

3. L(0) := L,U(0) := 
0( )f x , r := 0. 

4.  
1

: ( ) ( )
2

L r U r    

5. Check whether f (x) = α is satisfied by some x S  and in the positive case find one. 

If yes, then U(r + 1) := α, L(r + 1) := L(r ). 

If not, then U(r + 1) := U(r ), L(r + 1) := α. 
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6. r := r + 1. 

7. If ( ) ( )U r L r   , then stop else go to 4. 

 

Theorem 3.3 [3] Algorithm MAXLINMIN is correct and the number of iterations before termination is 
2log

U L
O



 
 
 

. 

The integer modification of Algorithm MAXLINMIN is given as follows as follows 

 

Algorithm 3.2 INTEGER MAXLINMIN (integer max-linear minimization) 

Input:
1 1 1( ,..., ) , ( ,..., ) , ( ,..., ) , ,T n T T m

n m mf f f c c c d d d c d c d      R R , ( ), ( ) m n

ij ijA a B b   R  

Output:  
min nx S R . 

1. If L = f (x) for some 
min nx S R , then stop (

minf L ). 

2. Find an 
0 min nx S R . 

3. L(0) := L,U(0) := 
0( )f x , r := 0. 

4.  1
2

: ( ) ( )L r U r      

5. Check whether f (x) = α is satisfied by some
min nx S R and in the positive case  

    find  one. 

    If x exists, then U(r + 1) := α, L(r + 1) := L(r ). 

    If it does not, then U(r + 1) := U(r ), L(r + 1) := α. 

6. r := r + 1. 

7. If U(r ) − L(r ) = 1, then stop 
min( ( ) )U r f  else go to 4. 

Theorem 3.4 [3] Algorithm INTEGER MAXLINMIN is correct and terminates after using O(mn(m + n)K log K) operations 

and hence pseudopolynomial. 

4.0 Max-linear programming over R  
We consider the following problem:  

min(or max)Tf x   subject to A x c B x d     ,                                (4.3) 

 where 1 1 1( ,..., ) , ( ,..., ) , ( ,..., ) ,
nT T m T m

n m mf f f c c c d d d     R R R  ( ) and ( )
m n

ij ijA a B b


  R are 

given matrices and vectors. We assume that c d  otherwise swap the equations appropriately. The aim is to show that this 

problem can be transformed to the one with all input variables finite.  We will deal with problems whose objective function is 

to be minimized and denote this problem by MLP.  

We assume without loss of generality that M   , where  ; i iM i M c d     (otherwise by Theorem 3.3 
minf  ) 

and denote 

1min ,

max

r k r rj rj
k N

r
r M

L f c b b

L L











   


 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 579 – 586 



583 

 

Max-Linear Programming: Transformation From  ̅ To          A. Aminu      J of NAMP 

 

Theorem 4.1 

If M    then ( )f x L  for every x S . 

Proof. 

If M    then the statement follows trivially since L  . Let  x S  and r M  . Then we have 

( )r rB x c   

Since rc R  for all r M  , Therefore we have
1,k r rk rkx c b b    for some k N . It follows that, 

1( ) k k k r rk rf x f x f c b L       and hence ( )f x L . 

A variable 
jx  will be called active if ( )jx f x , for some j N . Also, a variable will be called active on the constraint 

equation if the value max( ),max( )ij j ij j
i M i M

a x b x
 

   is attained at the term 
jx  respectively.  We may similarly say that a 

coefficient is active if its corresponding variable is active. 

Since all the variables
jx  corresponding to   coefficients cannot be active on any side of any equation or in the objective 

function while searching for an optimal solution. Therefore we can replace these   coefficients by some sufficiently small 

finite values, so that the matrices A and B in (4.3) can be transformed to another one with finite elements and have the same 

solution set. If the   coefficients are replaced we will therefore call the matrix a transformed-matrix. If A and B are 

transformed we can use the Alternating method for finding a feasible solution to (4.3) and the algorithms for solving the max-

linear programs with two-sided constraints for finite entries to find an optimal solution. To do this transformation we denote 

for all j N : 

1 1 1min min ,min ,
j

rj rj

j rj r rj r j
r M r M

fa b

h a c b d f L
  

 

  

 

 
    
 
 

                 (4.1) 

and  
1 2( , ,..., )T

nh h h h . 

Proposition 4.1 

For any x S  there is an x S  such that x h   and ( ) ( )f x f x . 

Proof. 

Let x S . It is sufficient to set x x h    since if j jx h  j N  then jx  is not active on any side of 

any equation or in the objective function. Therefore for such j N  changing  jx  to jh  will not affect any 

of the equations or the objective function value. 

It follows from Proposition 4.1 that any 
j jx h  j N  is not active on any side of any constraint equation 

or in the objective function. We now show how to transform matrices A  and B  to  and A B   

respectively. Let us denote ( )U f x , where x is the initial feasible solution to a given problem. 

 

                 
,        if 

,  if 

ij ij

ij

j ij

a a
a

h U a






  

 

                                  (4.2) 

                  
,        if b

,  if b

ij ij

ij

j ij

b
b

h U






  

 

                                (4.3) 

Therefore the transformed system is A x c B x d      , where 

( ), ( )  are defined in (7) and (8)m n

ij ijA a B b      R , 1 2 1 2( , ,..., )  and d ( , ,..., )T T m

m mc c c c d d d  R . 

Recall that 

{ ; }S x A x c B x d       and define { ; }S x A x c B x d        . 
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Theorem 4.2 

The sets  and S S  are equal. 

Proof. 

To show that  S S  , we show  and S S S S   . Let x S  and it follows that A x c B x d     . 

Claim: x S . 

Proof of the claim: 

It is clear that any row r  such that 
rj rja a   for all j N  (and therefore 

rj rjb b  ) will be satisfied 

by x  . Therefore we consider rows r M such that there exist j N where  
rj rja a   for all 

j N  (and therefore 
rj rjb b  ) and show that the coefficients 

rj rja a   (and therefore 
rj rjb b  ) 

are not active. It follows from Proposition 4.1 that 
jx  will not be active on any side of any equation 

or in the objective function if  
j jx h . Therefore x h . Now we have for all r M  

 

                     max max

rj rj rj rj

rj j rj j j j
j N j N
a a b b

a x b x h U h
 
  

                                                       (4.4) 

 

Hence for all r M the coefficients 
rj rja a  (and therefore 

rj rjb b  ) are not active. Thus, x S  and so S S . 

Let x S  . This implies that A x c B x d      . It follows from Proposition 4.1 that 
j jx h   for all j N . Also 

it follows from (9) that x S , thus S S  . 

Since we have S S and S S  therefore S S  . 

 

Corollary 4.1. 

The following hold: 

(a) 
min min if and only if S S   

(b) min ( ) min ( )
x S x S

f x f x
 

 . 

Proof. 

Follow straightforwardly from Theorem 4.2. 

Since all entries for the matrices  and A B   are finite therefore we can use the same idea for solving max-linear programs 

over R . 

 

5. An example  
Consider the following max-linear programming problem (minimisation) in which 

(3,1,4,2,0)Tf  , 

15 2 18

12 7 14

1 12

A

 

 

  

 
 


 
  

, 

14 0 14

14 10 5

7 14 14

B

 

 

 

 
 


 
  

, 

18 17

5 , 5

16 5

c d

   
   

 
   
      

 

and the starting vector is 
0 (5,1,4,2,1)Tx  . 

It follows that 
0( ) 8f x  , {1,3}M   the corresponding upper and lower bounds are 
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1max min ,

max(min(7,22,4),min(12,3,4)) 4,

k r rj rj
k Nr M

L f c b b 





   

   

0( ) 8.U f x   

Now we transform the matrices A and B as follows 

1 1 1

1

2

3

4

5

min min ,min ,

min(15,min(3, 2),1) 2

min( 7,min( 9, 9)) 9

min(min(3,6),min(17, 5)) 5

min(min(16, 2), 9) 9

min(min(0, 9),min(3,0)) 9

j
rj rj

j rj r rj r j
r M r M

fa b

h a c b d f L

h

h

h

h

h

  
 

  

 

 
    
 
 

   

     

   

    

   

 

Using (7) and (8) the transformed matrices are 

10 17 15 2 18

10 12 13 7 14

1 17 12 17 17

A

  
 

  
 
    

, 

14 17 0 17 14

10 14 10 17 5

7 14 13 14 17

B

  
 

  
 
   

  

and their corresponding vectors (3,1,4,2,0)Tf   and 

18 17

5 , 5

16 5

c d

   
   

 
   
      

 remain unchanged. The starting vector here is 

also 0 (5,1,4,2,1)Tx  . Using Algorithm MAXLINMIN, presented in Section 3 we find that the optimal solution to this 

transformed problem is (4,0,3,2,0)Tx   with corresponding optimal value min 7f   

 

6. Conclusion  

A method for converting max-linear programs with infinite entries to the one whose all entries are finite is proposed. The 

method can be applied to the minimization problems only, this happens due to the difficulty in finding the upper bound for the 

maximization case. We give a simple example that demonstrates this difficulty as follows. Suppose we want to maximize 
Tf x  subject to A x c B x d     in which 

 (8,3,4)Tf 

0 0

0 1

5 1 3

A





 
 

  
 
 

, 

1 1

1 2

0 4 0

B





 
 

   
 
 

,  5,6,7  and (3,6,4)
T Tc d   

and a feasible solution (2,3,4)Tx   

The optimal objective function value for this problem is shown to be finite (see [3]). It is clear that ( ) 10f x  . Following the 

idea used in [3], one could think that the upper bound can be determined as follows 

1max max ,

    = max (max(8, 9), max(9, 11), max(10, 9, 8)) = 11.

j ij i ij
i M j N

U f a c a 

 
   

 

But this is not the case because  (5,6,5)Tx   is another feasible solution to this problem in which ( ) 13 11f x U   . 
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