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Abstract 

 
 

The Variational Iteration approach is used to analyzing nonlinear forced vibration 

of a nonconservative three mass-spring system having mass-mass dashpot. By 

implementing suitable intermediate variables, three nonlinear differential (Duffing) 

equations of the system are transformed into a single nonlinear differential equation. 

Hence, the Method is used to find the difference between the two extreme displacement, 

of which the result is used to find the individual displacements of the three masses by 

using the analytical method. The initial value of difference between the two extreme 

displacement is  obtained by eliminating secular term ‘tsint’ and ‘tcost’, hence the three 

masses are varied to check its effect on the system and to investigated how the size of 

one mass affect the dynamics of its of other masses.  
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1.0 Introduction 
 

The studies conducted before, show to analyze nonlinear oscillation system, its needed to understand the motions of 

nonlinear single-and two-degree-of-freedom oscillation systems, deeply. The three-degree-of-freedom (TDOF) oscillation 

system are mainly modeled with three coupled non-homogeneous ordinary differrential equation. Nonlinear oscillator with 

more than one degree-of-fredom are considerably more complicated than those with only one degree-of-freedom.  

The nonlinear free vibration of a two-mass system with two degrees of freedom is discussed by Cveticanin[1] and for the 

case when the non-linearity is of a cubic type, and the analytical solution of the system is obtained. An analytical approach is 

developed for the nonlinear oscillation of a conservative, Two Degrees of freedom mass-spring system with serial combined 

linear and nonlinear stiffness excited by a constant external force by Lim et al [2]. Lai and Lim[3] applied an analytical 

approach for nonlinear free vibration of a conservative system, suitable intermediate variables which transform two nonlinear 

differential equations of a two-mass system into a nonlinear differential equation. Razavi[4] applied multiple scales method 

to solve non-linear forced vibration of non conservative two degree of freedom mass-spring system having linear and 

nonlinear stiffness.  

 Kawamura et al[5] proposed an analytical approach for nonlinear forced vibration of a multi-degree-of-freedom using 

the mode synthesis method.    

In this paper, the nonlinear forced vibration of a nonconversative Three Degree of freedom mass-spring system having 

linear and nonlinear stiffness is studied and the effect of the masses the system is analyzed.    

  

2.0 Mathematical formulation of problem 

From fig.1, c is damping coefficient, 1k and 2k are linear stiffness while 3k is the nonlinear stiffness,  is excitation 

frequency, 321 ,, mmm  are masses while 0f is excitation amplitude. 

An Ideal Mass-Spring-Damper system with mass, spring constant (linear and nonlinear stiffness) and viscous damping of 

damping coefficient is subjected to the following; 
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 Fig 1   Non Conservative Mass-Spring system with mass-mass Dashpot  
 
Propelling force 
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Note: Nonlinear force of a coupled mass-spring-damper is given by, 
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Where hl  is opposite distance due to moment of the force. 

Using the above for mass 1m , 
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Also, for mass 2m
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Also, for mass 3m , 

tfUUUUU TNDSv  cos0      (11)
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Equations (8),(10) and (12) becomes, 
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3.0 Solution to Duffing equations using Variational Iteration Method  
Using initial conditions  

1)0()0( ruv    Initial difference between displacements at extreme points  
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3)0()0( ruw 
 

0)0()0(  uv     Initial velocity 
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Initial displacement 
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Using intermediate variables, 

,xu     uzw  , and  wyv   

where we   
 

let suwqwvpuv  ,,
 

Subtract (13) from (14), we have;  
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Using He[6] V.I.M formula for the equation 02  fpp   
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Using the  initial approximations of the intermediate variables are given as follows; 
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Eliminating secular terms ).sin(. tt   and  ).cos(. tt  , for  41,,  to exist, 321 0 rrr  ,  

hence this implies that 032  rr

  since )0()0()0( uwv 
 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 535 – 542      



538 

 

Mathematical Analysis of the Dynamics of...   Aiyesimi  and  Makinde     J of NAMP 

).cos(.
)(

)(
).cos(.).cos().

)(

)(
()(

22

426

222222

426

1 t
r

t
F

t
Fr

tpn 



























 (19) 
Substituting the intermediate variable
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and puv               (35) 

and this yield 
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Note: c  and d are determined by the initial ratio between the displacement zy


and zx
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4.0 Numerical application 
Equation (18) is observed to consist of the terms tsint and tcost which are secular terms, hence we deduce that 
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4 ,

1 and   cannot be zero since damping coefficient, linear and nonlinear stiffness exist, 

therefore 01 r  

The initial difference between displacent y and x  is zero. 

From the above, we observe that for B to exist   022
 

Also, if B  exist, for G to exist   022
 

Also, we take 1 dc  

For the analysis of 1m we use the motion of masses of a typical system Razavi[4]  having the following properties: 

1,1,1,1,5.0,1,1,5.0,5.2 0453221  frrmmckk ,

 

 varying the value of  1m  

we have the following relationship between yxz ,, and t . 

 

 

 

 

 

Fig 2  A graph of displacement w against t 
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Fig 3  A graph of displacement u against t 

 

Fig 4  A graph of displacement v against t 

For the analysis of 2m we use the motion of masses of a typical system Razavi[4]  having the following properties: 

1,1,1,1,5.0,1,1,5.0,5.2 0453121  frrmmckk ,

 

 varying the value of  1m  

we have the following relationship between yxz ,, and t . 

 

Fig 5  A graph of displacement w against t 
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Fig 6  A graph of displacement u against t 

 

 

Fig 7  A graph of displacement v against t 

For the analysis of 2m we use the motion of masses of a typical system Razavi[4] having the following properties:

1,1,1,1,5.0,1,1,5.0,5.2 0452121  frrmmckk ,

 

 varying the value of  1m we have the 

following relationship between yxz ,, and t . 

 

Fig 8  A graph of displacement w against t 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 535 – 542      



542 

 

Mathematical Analysis of the Dynamics of...   Aiyesimi  and  Makinde     J of NAMP 
 

 

Fig 9  A graph of displacement u against t 

 

Fig 10  A graph of displacement v against t 

Figs. 2,3 and 4 show that with increase in 1m , the amplitude of vibration  in u  reduces slightly while the amplitude of 

vibration of  w  and  v increases slightly. 

Figs. 5,6 and 7 show that with increase in 2m , the amplitude of vibration  in w  reduces slightly while the amplitude of 

vibration of  u  and  v  increases slightly. 

Figs. 8,9 and 10 show that with increase in 3m , the amplitude of vibration  in v and w  reduces slightly while the amplitude 

of vibration of  u  increases slightly. 

5.0  Conclusion 
In conclusion, the V.I.M gives a good semi analytic approach of analyzing motions of masses  while varying them 

against each other. It should be noted that the higher the mass at certain point, the lower the amplitude of vibration. It is 

observed that when a mass is of  higher size than its other coupled masses, it reduces its amplitude of vibration, thereby 

increasing the amplitude of the other masses.  
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