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Abstract 

 
 

The dynamic response under a partially distributed moving load of an elastically 

supported Euler- Bernoulli Beam on pre-stressed and variable elastic foundation was 

investigated.  The governing partial differential equations were analyzed for both moving 

force and moving mass in order to determine the behavior of the system under 

consideration. The analytical method in terms of series solution and numerical method 

were used for the governing equation. It was observed that the response amplitude of the 

moving mass increase as mass of the load M increases. It was also found that the response 

amplitude due to the moving mass for pre-stressed is greater than that due to moving force. 
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1.0 Introduction 
Beam with various shapes and materials are important structural elements. They are widely used in modern engineering 

and science. In the recent years all areas of transport have experienced great advances characterized by increasing higher 

speeds and weight of vehicles. As a result, structures and media over or in which the vehicles move have been subjected to 

vibrations and dynamic stresses far larger than ever before. Many researchers have studied vibration of elastic and inelastic 

structures under the action of moving loads for many years, and effort are still being made to carry out more investigation 

that deal with various aspect of the problem [1-18].The more practical cases when velocities at which these loads move are 

no longer constants but vary with the time have received little attention. This may be as a result of the complex space-Time 

dependencies inherent in such problems specifically,  even when the inertia effect of the  moving load are neglected 

analytical solutions involving integral  transforms are both intractable  and cumbersome. However, such practical problem as 

acceleration and braking of automobile on roadways and high way bridges. Taking off and landing of aircrafts on runway and 

braking and acceleration forces in the calculation of rails and railway bridges in which motion  is not uniform but a function 

of time have intensified the need for the study of the behavior of structures under the action of loads moving with variable 

velocity. In spite of all the published work, there seems to be very  little literature concerned  with the pre stressed beams 

(beams which do experience compression when no external load is applied i.e. artificial creation of stresses in structure 

before loading) of any type. This problem has some practical application they are commonly incorporated in the design aero 

planes. Advances in technology have accelerated the utilization of such pre-stressed structural element. In general an aircraft 

is subjected to a wide range of temperature variation during flight which may cause considerable tensile or compressive pre-

stressed in the beams when they are fixed in the plane direction. Emailzadeh and Ghorashi [  8] worked on the vibration 

analysis of beams traversed by uniform partially distributed moving mass using analytical-numerical method. They 

discovered that the inertia effect of the distributed moving mass is of importance in the dynamic behavior of the structure. 

The critical speeds of the moving load were also calculated for the mid-span of the beam. The length of the distributed 

moving mass was also found to affect the dynamic response. Dada [3  ] studied uniform distributed moving masses vibration   
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for Euler Bernoulli beam on elastic foundation. He reduced partial differential equation governing the beam to ordinary 

differential equation and then expressed as a system of linear equations by finite differences schemes. The analysis is valid 

for Euler Bernoulli beam with various boundary conditions. However, simply supported boundary conditions were used as an 

illustrated example. The numerical results are presented in graphical forms and the limiting cases compared well with known 

existing results. The numerical analysis shows that the foundation stiffness and loads distribution have significant effects on 

the dynamic deflection of the beam. Oni and Omolofe [ 4] investigates the dynamics behavior of non-uniform Bernoulli 

Euler beam subjected to concentrated loads traveling at variable velocities. The solution technique is based on the generalized 

Galerkin method and the use of the generating function of the Bessel function types. The results show that, for all the 

illustrative examples considered, for the same natural frequency, the critical speed for the system, consisting of a non-

uniform beam traversed by a force moving at a non-uniform velocity is greater than that of the corresponding moving mass 

problem. It was also found that, for fixed axial forces, an increase in foundation moduli reduces the response amplitudes of 

the dynamical system, furthermore, it was shown that the traverse-displacement amplitude of a clamped- clamped non-

uniform Euler Bernoulli beam traversed by  a moving load at variable velocities is lower than of the cantilever. The response 

amplitude of the same dynamical systems which is simply supported is higher than those which consist of clamped – clamped 

or clamped free (cantilever)  end conditions. Finally, an increase in the value of foundation moduli and axial force reduce the 

critical speed for all variant of the boundary conditions. Recently Oni and Awodola [2] considered the dynamic response 

under a moving load of an elastically supported non-prismatic Bernoulli Euler beam resting on variable elastic foundation. 

The technique was based on the Generalized Galerkin’s method and the struble’s asymptotic technique. The results show that 

response amplitude of the elastically supported non-prismatic Bernoulli Euler beam decrease as the foundation modulli K 

increases. Also, the displacement of an elastically supported non-prismatic Bernoulli Euler beam resting on a variable elastic 

foundation for fixed value of K decrease as the pre-stress N increases. The results again show that the critical speed for the 

moving mass problem is reached earlier than that for the moving force problem for the illustrative examples considered. 

More recent Akinpelu [9] studied the Response of viscously Damped Euler Bernoulli Beam to uniform partially Distributed 

moving loads. Her approach involves using analytical method in terms of series solution and numerical method was used for 

the governing equation. It was found in her result that the response amplitude of the moving force problem with non-initial 

stress increase as mass of the load M increases. 

This Research work presents a new method for dynamic response under a partially distributed moving load of an 

elastically supported Bernoulli Euler beam on pre-stressed and variable elastic foundation. The usual assumption of constant 

moment of inertia is taken to be variable moment of inertia. 

 

2.0 The Governing Equation:   
The problem of the dynamic response under a partially distributed moving load of an elastically supported Euler 

Bernoulli beam on pre-stressed and variable elastic foundation is governed by the fourth order partial differential equation 

given by 
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Subject to the boundary and initial conditions 
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Where 

• E is the young’s modulus 

• U(x, t) is the transverse displacement 

• K(x) is the variable elastic foundation 

•  x  is the variable mass per unit length of the beam 

• I(x) is the variable moment of inertia, 

• N(x)  is the pre-stress and  

• (x, t) are respectively spatial and time coordinates. 
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Where K is foundation modulus,  I0 and N0 are taken to be constants 

Substituting equation (3) into equation (1), to obtain 
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 On further simplification of equation (4) yields  
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3.0 Method of Solution  
 Evidently, a closed form solution of the differential equation (5) does not exist. A series solution of the form 

equation (6) is assumed 
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Where Tn(t) is chosen such that desired boundary condition is satisfied.  

Substituting equation (6) into equation (5) and multiplying both sides of the equation by Xk(x) and then integrating it along 

the length of the beam 
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By applying orthogonality condition  
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And  is a constant, equation (7) become 
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For the general solution of the equation (9) and for the purpose of the solution we consider mass (m) traveling with constant 

velocity (V). Solutions for the greater number of mass can be obtained in the same manner. 

 Thereafter, the following special case for the equation (9) follows 

 (a) Moving force 

 If we neglect the inertia term, we have the classical case of the moving force, under the assumption of equation (9), 

we have  








  P - P = ]P + P + P + P

- P + P - P + P - P + P + P - P -P + P (t)T + +] P +[P (t)

242316151413

10987654321n1211nT

    (11)

 

 (b) Moving mass  

 If we consider all the inertia terms we have classical case of moving mass under the assumption of equation (9), we 

have  

)12(
  P - P = ]P -P + P + P + P + P

- P + P - P + P - P + P + P - P -P + P (t)T + ]P - [P (t)T + ] P - P + P +[P (t)

2423222116151413
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5.0 Numerical Analysis and Discussion of Result 
 To illustrate the foregoing analysis, The uniform Bernoulli – Euler beam of length 10m were considered, M = 3kg, 

6kg, 9kgm, N = 75, E = 2.07 x 10”19 N/m
2
, 𝜀 = 0.1 

 I = 1.04x10
-6

m
4
, v = 3.3m/s, g = 10ms

-2
 pi= 3.142, n = 1, 2, 3 --- the results were shown graphically below for the 

various value of foundation moduli and masses. 

 Table 1 and Figure 1 display the deflection against time of moving mass at different values of pre – stressed. The 

graph shows that, the response deflection of the beam decrease as the value of the pre-stressed increases. And the maximum 

deflection was attained at pre-stressed equal 0.Table 2 and Figure 2 display the deflection against time of moving force at 

different values of pre-stressed. The graph shows that, the response deflection of the beam decrease as the value of the pre-

stressed increases. And the maximum deflection was attained at pre-stressed equal 0.Table 3 and Figure 3 shows the 

comparison of moving mass and moving force for pre-stressed. The graph shown that moving mass is greater than that of 

moving force. Table 4 and Figure 4 display moving mass at different values of Mass for pre-stressed. The graph shows that 

the response deflection of the beam increase as the value of the mass increases. Table 5 and Figure 5 show moving force at 

different values of Mass for pre-stressed. The graph shows that the response deflection of the beam increases as the value of 

the mass  increases. Table 6 and Figure 6 display the deflection against time of moving mass at different values of foundation 

moduli k. The graph shows that, the response deflection of the beam decreases as the value of the foundation moduli k 

increases. Table 7 and Figure 7 display the deflection against time of moving force at different values of foundation moduli k. 

The graph shows that, the response deflection of the beam decreases as the value of the foundation moduli k increases. Table 

8 and Figure 8 show the comparison of moving mass and moving force for simple uniform Bernoulli beam on a variable 

elastic foundation and the graph shows that moving mass is greater than that of moving force. Table 9 and Figure 9 display 

moving mass at different values of Mass for foundation moduli k. The graph shows that the response deflection of the beam 

increases as the value of the mass M increases. Table 10 and Figure 10 display moving force at different values of Mass for 

foundation moduli k. The graph shows that the response deflection of the beam increases as the value of the mass M 

increases. 
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Table 1 

 
Table2 

 
Table3 
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Moving Mass at different values of N 

s/n t(sec) 

W(x,t),  

at N=0 

W(x,t), 

 at N=10000 

W(x,t), 

 at N=20000 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.001 7.25E-08 7.18E-08 7.11E-08 

3 0.002 5.19E-08 5.20E-08 5.20E-08 

4 0.003 5.88E-09 7.55E-09 9.15E-09 

5 0.004 8.55E-08 8.28E-08 8.03E-08 

6 0.005 2.93E-08 3.07E-08 3.21E-08 

7 0.006 2.19E-08 2.37E-08 2.54E-08 

8 0.007 8.76E-08 8.30E-08 7.88E-08 

9 0.008 1.06E-08 1.49E-08 1.87E-08 

10 0.009 4.38E-08 4.35E-08 4.33E-08 

11 0.01 7.82E-08 7.32E-08 6.90E-08 

Moving Force at different values of N 

s/n t(sec) 

W(x,t),  

at N=0 

W(x,t),  

at N=10000 

W(x,t),  

at N=20000 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.001 3.62E-08 3.59E-08 3.55E-08 

3 0.002 2.59E-08 2.60E-08 2.60E-08 

4 0.003 2.94E-09 3.78E-09 4.58E-09 

5 0.004 4.28E-08 4.14E-08 4.01E-08 

6 0.005 1.46E-08 1.54E-08 1.60E-08 

7 0.006 1.09E-08 1.19E-08 1.27E-08 

8 0.007 4.38E-08 4.15E-08 3.94E-08 

9 0.008 5.31E-09 7.46E-09 9.35E-09 

10 0.009 2.19E-08 2.18E-08 2.17E-08 

11 0.01 3.91E-08 3.66E-08 3.45E-08 

Comparison of  moving mass and moving Force for Pre-

stress N 

s/n t(sec) 
moving mass  
at N=10000 

moving mass 
 at N=10000 

1 0 0.00E+00 0.00E+00 

2 0.001 7.18E-08 3.59E-08 

3 0.002 5.20E-08 2.60E-08 

4 0.003 7.55E-09 3.78E-09 

5 0.004 8.28E-08 4.14E-08 

6 0.005 3.07E-08 1.54E-08 

7 0.006 2.37E-08 1.19E-08 

8 0.007 8.30E-08 4.15E-08 

9 0.008 1.49E-08 7.46E-09 

10 0.009 4.35E-08 2.18E-08 

11 0.01 7.32E-08 3.66E-08 
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Table 4 

 
Table 5 

 
Table 6 
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Moving Mass at  different masses for Pre-stress N 

s/n t(sec) 

W(x,t),  

at M=3kg 

W(x,t),  

at M=6kg 

W(x,t),  

at M=9kg 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.001 7.25E-08 1.44E-07 2.13E-07 

3 0.002 5.19E-08 1.04E-07 1.56E-07 

4 0.003 5.88E-09 1.52E-08 2.76E-08 

5 0.004 8.55E-08 1.66E-07 2.41E-07 

6 0.005 2.93E-08 6.15E-08 9.63E-08 

7 0.006 2.19E-08 4.75E-08 9.63E-08 

8 0.007 8.76E-08 1.66E-07 2.36E-07 

9 0.008 1.06E-08 3.00E-08 5.64E-08 

10 0.009 4.38E-08 8.70E-08 1.30E-07 

11 0.01 7.82E-08 1.46E-07 2.07E-07 

Moving Force at  different masses  for Pre-stress N 

s/n t(sec) 

W(x,t),  

at M=3kg 

W(x,t),  

at M=6kg 

W(x,t),  

at M=9kg 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.001 3.62E-08 7.18E-08 1.07E-07 

3 0.002 2.59E-08 5.20E-08 7.80E-08 

4 0.003 2.94E-09 7.58E-09 1.38E-08 

5 0.004 4.28E-08 7.58E-09 1.20E-07 

6 0.005 1.46E-08 3.07E-08 4.82E-08 

7 0.006 1.09E-08 2.37E-08 3.81E-08 

8 0.007 4.38E-08 8.29E-08 1.18E-07 

9 0.008 5.31E-09 1.50E-08 2.82E-08 

10 0.009 2.19E-08 4.35E-08 6.50E-08 

11 0.01 3.91E-08 7.31E-08 1.03E-07 

Moving Mass at different value of foundation moduli K 

s/n t(sec) 

W(x,t), 

 at K=10000 

W(x,t),  

at K=20000 

W(x,t),  

at K=30000 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.01 7.62E-08 2.59E-09 3.26E-08 

3 0.02 1.51E-07 9.98E-09 4.62E-08 

4 0.03 7.41E-08 2.12E-08 5.67E-09 

5 0.04 1.10E-10 3.46E-08 1.57E-08 

6 0.05 7.83E-08 4.85E-08 5.03E-08 
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Table 7  

 
Table 8 

 
Table 9 
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Moving Force at different value of foundation moduli K 

s/n t(sec) 

W(x,t),  

at K=10000 

W(x,t),  

at K=20000 

W(x,t),  

at K=30000 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.01 3.81E-08 1.29E-09 1.63E-08 

3 0.02 7.57E-08 4.99E-09 2.31E-08 

4 0.03 3.71E-08 1.06E-08 2.83E-09 

5 0.04 5.48E-11 1.73E-08 7.87E-09 

6 0.05 3.92E-08 2.43E-08 2.52E-08 

     

Comparison of  moving mass and moving Force 

s/n t(sec) 

moving mass  

at K=10000 

moving force 

 at K=10000 

1 0 0.00E+00 0.00E+00 

2 0.01 7.62E-08 3.81E-08 

3 0.02 1.51E-07 7.57E-08 

4 0.03 7.41E-08 3.71E-08 

5 0.04 1.10E-10 5.48E-11 

6 0.05 7.83E-08 3.92E-08 

Moving Mass at  different masses for Foundation moduli K 

s/n t(sec) 

W(x,t),  

at M=3kg 

W(x,t),  

at M=6kg 

W(x,t), 

 at M=9kg 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.01 7.62E-08 1.55E-07 2.37E-07 

3 0.02 1.51E-07 3.02E-07 4.53E-07 

4 0.03 7.41E-08 1.40E-07 1.97E-07 

5 0.04 1.10E-10 1.12E-09 4.28E-09 

6 0.05 7.83E-08 1.71E-07 2.77E-07 
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Table 10  
 

 

 

 

APPENDIX I: maple code for linearly varying distributed moving load. 
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Moving Force at  different masses  for Foundation moduli K 

s/n t(sec) 

W(x,t),  

at M=3kg 

W(x,t),  

at M=6kg 

W(x,t),  

at M=9kg 

1 0 0.00E+00 0.00E+00 0.00E+00 

2 0.01 3.81E-08 7.77E-08 7.77E-08 

3 0.02 7.57E-08 1.51E-07 1.51E-07 

4 0.03 3.71E-08 6.99E-08 6.99E-08 

5 0.04 5.48E-11 5.62E-10 5.62E-10 

6 0.05 3.92E-08 8.54E-08 8.54E-08 
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APPENDIX II: maple code for linearly moving load. 

>  

>  

>  

>  

>  

>  

>  

>  

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 519 – 534      



529 

 

Response under a Moving Load of an Elastically...   Akinpelu ,
 
Idowu, and Mustapha     J of NAMP 

 

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

>  

  

  

  

  

  

  

  

 Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 519 – 534      



530 

 

 

Response under a Moving Load of an Elastically...   Akinpelu ,
 
Idowu, and Mustapha     J of NAMP 

  

 APPENDIX III: maple code for concentrated moving load. 
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APPENDIX IV: maple code for moving mass. 
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  APPENDIX V: maple code for moving mass 
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