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Abstract 

 
 

We studied the behaviour of the CD4+T cells using series solution method. We 

observed that when r , the rate at which T cells multiply through mitosis is sufficiently 

large, there is an increase in the growth of healthy CD4+T cells. This showed that the 

healthy CD4+T cells may never die out completely. The series solutions give the 

relationship between healthy and the infected CD4+T cells over time. The results obtained 

showed that r  plays a crucial role in the growth or decline of healthy CD4+T cells.                                                                     
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1.0 Introduction 
 

Acquire Immune deficiency Syndrome (AIDS) is a group of various illness that characterize a disease resulting from damage 

to the immune system caused by infection with human immunodeficiency virus (HIV). AIDS is caused by HIV. It enters a 

host by attacking a protein on its outer envelope to CD4
+
T cells, a protein present on the surface of several types of immune 

system cells. Helper T cells (CD4
+
 T cells) appear to be the main target of the virus. HIV decrease helper T cells and over 

mechanisms of cell death appear to be operative after infection of a CD4
+
T cells with HIV (Field time causes a dramatic 

decrease in their numbers. When the helper T cells population is depressed, the ability to resist infection is severely impaired. 

This makes AIDS patient to be more susceptible to cancer and other opportunistic infections [1]. To the infected fellow, there 

is a gradual loss of  immune cells called CD4
+
T lymphocytes and immune function.  

HIV is a deadly disease and so there is a need to control the spread of the disease. Many researchers studied the models of the 

spread of the disease. Among the researchers are mathematicians, medical scientists and biologists. 

Tullis [2] presented mathematical model of the effect of affinity hemodialysis on the T-cell deplexion leading to AIDS. 

Kimbir [3] studied a two-sex model for HIV/AIDS transmission dynamic in a polygamous female dominant population. It 

was observed that a disease- free equilibrium state exists which is locally and asymptotically stable (LAS) if the parameter

10 R . The author concluded that it is possible to eradicate HIV/AIDS in polygamous growing population. Garba and 

Gumel [4] used a deterministic model for assessing the impact of counseling, use of condom and treatment strategies on the 

transmission dynamics of  HIV/AIDS in Nigeria. The results shows that whenever the associated reproduction number 

10 R , the disease free equilibrium is globally asymptotically stable (GAS). 

Oluyo et al. [5] discussed mathematical analysis of the global dynamics of a model of HIV infection of CD4
+
 T-cells using 

Rene Descartes theory of solutions, it was shown that if the so called basic reproduction 10 R , the infection will 

eventually die out but if R0>1 then the infection will lead to full blow AIDS. Oluyo and Ayeni [6] discussed a mathematical 

model of virus neutralizing antibody response. It was shown that the spread of the disease can be controlled if the critical 

parameter ,1
0

*








R where 

* is the scale initial value of B cells and   is the death rate of the virus. 
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Wang and Li [7] discussed mathematical analysis of the global dynamics of the model for HIV infection of CD4

+
 T cells. 

Global dynamics of the model is rigorously established. In their model they showed that if the basic reproduction number 

10 R , the HIV infection is cleared from the T-cell population; If ,10 R  the HIV infection persists. 

The result is similar to Oluyo [8] using contact tracing as a method of controlling the spread of HIV/AIDS and observed that 

contact tracing could be used to control the spread of the virus. 

In this present work, we modified the work done by Wang and Li [7] by incorporating a memory term )1( V . The new 

term gives information about the past and current states of the disease.  

2. Model Formulation  

Our modified model is: 
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The term V1  is an additional to Wang and Li model of 2006 [7] and it accounts for the history of the disease. 

Here, as in Odebiyi [9], 

T Concentration of the susceptible CD4
+
Tcells 

*T Concentration of the infected CD4
+
Tcells by the HIV viruses 

maxT Maximum level of CD4
+
Tcells concentration in the body 

V Free HIV viruses particles in the blood 

  natural turn-over rates of uninfected T cells 

 natural turn-over rates of  infected  T cells 

 natural turn-over rates of virus particles 

N number of virus particles CD4+ infected cells produce during its life time 

r rate at which T cells multiply through mitosis 

 s  Constant production rate at which the body produces CD4
+
T cells from precursor in the bone marrow and 

thymus
 
 

KVT   describe the incidence of the HIV infection of healthy CD4
+
T cells where k>0 is the infection rate. 

 

3. Method of Solution 

3.1 Stabilility Analysis  
We have to distinguish between two types of equilibrium of (2.1). The steady states of the system (2.1) satisfy the following 

algebraic system: 
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when 0,0 *  TV , we have the disease free equilibrium 

  







 0,0,0,0,1



s
Tp  

and the endemic equilibrium i.e the infected equilibrium 

   21

*

2 ,,
~

,
~

,
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 VTTp
, 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 495 – 502      



497 

 

A mathematical model and simulation of HIV...   Odebiyi and  Ayeni     J of NAMP 
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     1,,
2

4
,,

2

max




 spkpp
kp

N
p

T

r










  











s
1 ,  

 










sp
2  

The Jacobian of (2.1) is  
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The linearization of (2.1) at 1p  is 
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By definition, all the parameters are non-negative. 

1. If  12  N  and     04 12

2

2   N  the eigenvalues are real, unequal and negative. Hence, the 

critical point 
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
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s
 is an asymptotically stable improper node of the system. 
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asymptotically stable. 

3. If 12  N  and     04 12

2

2   N  we have one negative root and two complex root whose 

real part are equal and negative. Hence, the critical point 



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

s
 is globally asymptotically stable. 

The linearization of (2.1) at 2p  is 
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It has been shown by Ayeni et al. [10] that (3.6) has three negative roots or one negative root and two complex roots. Hence, 

the critical point  21,,   is globally asymptotically stable. 

3.5 Analytical Solution  
We first reduce the system (2.1) to origin by let 
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where 321 ,,   is the infected equilibrium.  

and we obtain (neglecting non linear terms) 
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where 

4321 ,,,   and 2  are as defined in (3.5) 

Then we consider power series in the form 
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Let the solution of the system (3.8) be  
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where ),,( 000 zyx is the infected equilibrium. 

Let 
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Then 
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Substituting (3.11) and (3.12) into (3.8) and neglecting higher order terms of t, we have 
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and (3.11) can be written as  
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and differentiating gives 
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Substituting (3.15) and (3.16) into (3.8), neglecting higher order terms and equating coefficient of t, we obtain 
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Then we obtain the solution of (3.8) as  
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4. Results and Discussion 
We have obtained the equilibrium states of a mathematical model of HIV/AIDS and conducted a linear stability 

analysis. We have shown that when r  increases and very large, CD4
+
T cells change from concave to convex; concave here 

implies that CD4
+
T cells will be zero after some time while convex curve implies that they will never be zero. 

The graphs of healthy CD4
+
T cells x(t), infected cells y(t) and the virus z(t) are presented in Figures 1-7. Figure 1 

displays the graph of healthy CD4
+
T cells x(t) against t for  value of r =0.05. Figure 2 displays the graph of healthy CD4

+
T 

cells x(t) against t for  value of r =10. From Figures 1-2 it is seen that CD4
+
T cells increases and later decreases with time(t).  

Figure 3 displays graph of healthy CD4
+
T cells x(t) against t for  value of r =1000 and it is observed that CD4

+
T cells  

decreases and later  increases with time (t). Figure 4 displays the graph of healthy CD4
+
T cells x(t) against t for different 

values of r . From Figure 4 it is seen that for r =0.05 and 10, CD4
+
T cells curve took a concave form while for r =1000 it 

took a convex form. Figure 5 displays the graph of healthy CD4
+
T cells x(t) and the infected cells y(t) against time for r

=0.05. Figure 6 displays the graph of healthy CD4
+
T cells x(t), the infected cells y(t) and the virus z(t) against time(t) for r

=0.05. Figure 7 displays the graph of healthy CD4
+
T cells x(t), the infected cells y(t) and the virus z(t) against time for r

=1000. 
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5.0 Conclusion 
In this reseach work, we established the equilibrium states of a mathematical model of HIV/AIDS. The results shows that 

it is asymptotically stable under some conditions. We can conclude that the population pattern of the CD4
+
T cells can 

therefore be controlled. Also it is worth pointing out that r  plays a very crucial role in the growth and decline of healthy 

CD4
+
T cells. Moreso, we observed from our graphs that  as r  is sufficiently large, CD4

+
T cells move from a concave graph 

to a convex graph such that an infected patient remains only HIV positive. CD4
+
T cells will never be zero.  
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