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Abstract 

 
 

We investigate the effect of viscous dissipation on the temperature profile of 

the flow of an incompressible, second order fluid over a stretching sheet in the 

boundary layer theory and found that the effect of viscous dissipation depends 

largely on the Brinkmann’s number of the material. When the Brinkmann’s 

number is large, there is an initial rapid increase in the temperature near the wall 

before a gradual decrease away from it. Also increase in the elasticity of the 

material does not affect appreciably the temperature profile of the material when 

the viscous dissipation is prominent and the Prandtl number is held constant. 
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1.0 Introduction 
Non Newtonian fluids have become increasingly important in industries most especially in polymer industries where we 

encounter the flow of a viscous fluid over a stretching sheet. For example in the extrusion of a polymer sheet from a die the 

sheet is sometimes stretched and the properties of the final product depend to a great extent on the rate of cooling. If one is 

able to control the rate of cooling, a final product of desired characteristics can be achieved. Beard and Walters [1] used the 

boundary theory to study the flow of an idealised elastico-viscous fluid known as second-order fluid. They were able to 

formulate the equations governing the flow.  Rajagopal et al [2] examined the non-linear equation of an incompressible fluid 

in the boundary layer over a stretching sheet for the case of a small elastic parameter. They showed that the skin friction 

decreases with increase in elastic parameter. Dandapat and Gupta [3] considering the same flow investigated the heat transfer. 

Their analysis of heat transfer revealed that when the wall and the ambient temperature are held constant, temperature at a 

point increases with increase in elastic parameter for fixed Prandtl number. Hassanien et. al. [4] considered flow and heat 

transfer in a power law fluid over a porous surface with a variable temperature and found out that the friction factor and heat 

transfer results exhibit similar strong dependence on fluid parameters. Basant and Haruna [5] investigated temperature field 

in a flow over a stretching sheet with internal generation and uniform heat flux.  The velocity of the sheet was taken to be 

proportional to the distance from the slit.  They found that increase in Prandtl number leads to decrease in heat conductivity. 

When we are interested in controlling the rate of cooling, the effect of the viscous dissipation term may be significant 

within certain region in analysing the flow distribution [6] and heat transfer [7].  In this work we consider the effect of the 

dissipation factor on the temperature distribution. Recently some authors [8-10] investigated the effect of dissipation on 

various type of flows.  Olanrewaju et al, [9] established that the rate of cooling can also be controlled by the use of 

convective boundary condition.  In this work we also present numerical values to determine the effect of the variation in 

elastic parameter on the temperature distribution. 
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2.0 Governing Equations  
The usual two-dimension boundary layer equations for a flow past a semi-infinite flat plate where there is no pressure 

gradient are 
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where u, v are the velocity components along and perpendicular to the surface and   the kinematic viscosity.  We consider a 

mode of the flow of an incompressible viscous fluid  past a flat sheet coinciding with the plane y = 0, the flow being confined 

to y > 0.  Two equal and opposite forces are applied along the x-axis so that the wall is stretched keeping the origin fixed.  

This model displays normal stress difference in shear flow and is an approximation to a simple fluid in the sense of 

retardation.  The model is applicable to some dilute polymer solutions and is valid at low rates of shear. It is assumed that the 

speed of a point on the plate is proportional to its distance from the slit and the temperature difference between the sheet and 

its immediate surrounding is zero.  We should however note that due to the entrainment of the ambient fluid, this boundary 

layer over a stretching sheet is quite different from that in a Blasius flow past a flat plate.  Beards and Walter [1] obtained 

equation (2) for this type of flow as 







































































3

3

2

2

2

2

2

2

y

u
v

y

v

y

u

y

u
u

x
k

y

u

y

u
v

x

u
u      (3) 


1k                     (4) 

where 1  is the material constant and  is the density. 
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Fig. 1: Geometry of the problem. 

 

 

The energy equation in the boundary layer approximation including the viscous dissipation term is given as 
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where T is the temperature and   the thermal diffusivity and 1c  is the heat capacity. The last term in equation (5) is the 

viscous dissipation term. The boundary conditions are  

   yasTTyatTT w ,0      (6) 

where TandTw  are constant temperature at the wall and very far away from the wall. We introduce the non-

dimensionless temperature )(  by 
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and self-similar solution of the form [3] 
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Equation (5) becomes  
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which can be written as 
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is the Brinkmann’s number. This shows that the Brinkmann’s number is proportional to the square of the sheet velocity. This 

equation is similar to the equation derived by [3] except for the last term, which is a measure of the viscous dissipation. 

Equation (8) is solved subject to the boundary conditions.  
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We adopt Dandapat and Gupta [3] method of solution by assuming that  
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for the case 1k  and transforming the ensuing equation we get  
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where 1a  is the material constant and   is the density. 

The transformed boundary conditions are  

   1)1(,00           (16) 

Without loss of generality we assume the Prandtl number 10 , equation (13) becomes  
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Equation (17) is solved by the canonical series solution using the boundary conditions by letting  
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To determine the constants A, B, C, and D we substitute equations (15), (16), and (19) into (17) and equate the residue to 

zero within the interval [0, 1] for values of Brx and k. Tables (1-6) show the values of the constants A, B, C, and D for 

various values of Brx and different values of k.  

 

 

Table 1: Values of the constants of equation (19) for various values of Brx; k = 0.005  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A 1.6466 1.6161 1.6543 1.5018 1.2730 0.8917 0.1292 -2.1583 -5.9709 

B -6.8793 -6.7761 -6.9052 -6.3893 -5.6154 -4.3257 -1.7462 5.9920 18.8892 

C 11.0010 11.0510 10.9885 11.2386 11.6138 12.2393 13.4899 17.2422 23.4959 

D -4.7683 -4.8910 -4.7376 -5.3511 -6.2714 -7.8053 -10.8729 -20.0759 -35.4142 

 
Table 2: Values of the constants of equation (19) for various values of Brx; k=0.01  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A 1.6396 1.6081 1.6474 1.4903 1.2545 0.8615 0.0755 -2.2824 -6.2122 

B -6.8610 -6.7537 -6.8877 -6.3516 -5.5472 -4.2066 -1.5254 6.5181 19.9239 

C 10.9958 11.0402 10.9847 12.2065 11.5393 12.0939 13.2031 16.5307 22.0767 

D -4.7744 -4.8946 -4.7444 -5.3452 -6.2466 -7.7488 -10.7532 -19.7664 -34.7884 

 
Table 3: Values of the constants of equation (19) for various values of Brx; k = 0.05  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A 1.5760 1.5369 1.5857 1.3905 1.0977 0.6097 -0.3663 -3.2944 -8.1746 

B -6.6862 -5.4717 -6.7213 -6.0182 -4.9637 -3.9866 0.3092 10.8549 28.4312 

C 10.9198 10.9157 10.9187 10.9070 10.8896 10.8603 10.8021 10.8549 10.3362 

D -4.8079 -4.9071 -4.7831 -5.2793 -6.0236 -7.2640 -9.7450 -17.1879 -29.5928 

 

Table 4: Values of the constants of equation (19) for various values of Brx; k = 0.1  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A 1.4773 1.4286 1.4895 1.2459 0.8803 0.2712 -0.9472 -4.6022 -10.6939 

B -6.3928 -6.2085 -6.4388 -5.5175 -4.1353 -1.8319 2.7751 16.9939 39.6310 

C 10.7228 10.6585 10.7388 10.4175 9.9353 9.1319 7.5259 2.7039 5.3310 

D -4.8073 -4.8786 -4.7895 -5.1459 -5.6803 -6.5712 -8.3528 -13.6978 -22.6061 

 

Table 5: Values of the constants of equation (19) for various values of Brx; k = 0.2  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A 1.2102 1.1420 1.2273 0.8864 0.3750 -0.4773 -2.1818 -7.2955 -15.8182 

B -5.5216 -5.2443 -5.5909 -4.2046 -2.1250 1.3409 8.2727 29.0682 63.7273 

C 9.9500 9.7500 10.0000 9.0000 7.0000 5.0000 0.0000 -15.0000 -40.0000 

D -4.6386 -4.6477 -4.6364 -4.6818 -4.7500 -4.7500 -5.0909 -5.7727 -6.9091 

 

Table 6: Values of the constants of equation (19) for various values of Brx; k = 0.5  
Brx 0.1 0.5 0 2 5 10 20 50 100 

A -0.1067 -0.2039 -0.0824 -0.5685 -1.2976 -2.5129 -4.9434 -12.2349 -24.3875 

B -0.2641 0.2615 -0.3956 2.2329 6.1756 12.7468 25.8892 65.3163 131.0282 

C 3.6539 3.0183 3.8129 0.6346 -4.1329 -12.0786 -27.9702 -75.6448 -155.1024 

D -2.2831 -2.0759 -2.3349 -1.2990 0.2549 0.8447 8.0244 23.5634 49.4617 
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Fig 2:  Variation of  ( ) with   when k1 varies for small values  of Brx = 0.1 
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Fig 3.  Variation of   ()  with  when k1 is fixed and Brx, varies. Brx = 0.1, 2, 10, 50, 100.  
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Fig 4.  Variation of  ()   with   when k1 varies for high value of Brx, Brx = 100 
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4.0 Discussion and Conclusion  
 Fig. 2 is a plot of the temperature distribution for small values of the Brinkmann’s number (Brx = 0.1) which is a 

measure of the viscous dissipation when k1 varies. For as long as k << 1, there is no significant change in the temperature 

distribution. Intuitively one can infer that a slightly elastic fluid (k = 0.005), will produce a boundary layer only slightly 

altered in its dimensions from a viscous one. However as the elasticity increases (k = 0.5) there seems to be a slight change in 

the temperature profile. When the viscous dissipation term becomes prominent by increasing Brx (e.g. 50, 100) (see Fig.3) the 

temperature profile changes considerably. There was an initial significant rise in the temperature near the wall before it 

begins to fall away from it. As the viscous dissipation becomes more pronounced, the increase in temperature also becomes 

very significant. This is generally seen for all values of the elastic parameter k<1. 

 In Fig. 4 when k varies and Brx = 100, (viscous dissipation very prominent), the increase in the elasticity of the 

material does not affect the profile of the temperature appreciably when the Prandtl number is constant. Comparing Fig 2 and 

Figure 4, we are able to appreciate the effect of the Brinkmann number when the skin friction varies. The implication of this 

is that the effect of the viscous dissipation of a material may be significant depending on the Brinkmann’s number. Therefore 

viscous dissipation can only be ignored if the Brinkmann’s constant of the material is very small especially less than 2 as 

shown in Figure 3. 
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