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Abstract 

 
 

In this paper, we derive some Quasi-RungeKuttaMethods, through a 

refinement process, which have better approximation and less computational 

steps. The new schemes are consistent, zero-stable and convergent. Also, provided 

is an example of initial value problem solved with the new schemes and the results 

help to establish their degree of accuracy and efficiency. 

 

 

 

1.0 Introduction 
The use of simple operations to find approximate solutions to complex problems constitutes the main goal of numerical 

analysis. One of the major tasks of numerical analysis is that of solving differential equations. Solutions to differential 

equations are obtained by using analytical or numerical methods. Those solutions are often useful as they provide excellent 

insight into the behavior of some systems. However, analytical solutions can be obtained for only a limited class of problems. 

These include those that can be approximated with linear models and those that have simple geometry and low 

dimensionality. Consequently, analytical solutions are of limited practical value because most real-life problems are non-

linear and involve complex shapes and processes.  

In such cases, where differential equations defy solutions analytically, approximate solutions are often obtainable by the 

application of numerical methods. It is well known that initial valued problems of ordinary differential equations often arise 

in many practical applications, such as chemical reactor, theory of fluid mechanics, automatic control and combustion e.t.c 

[1-2]. The traditional methods for solving ODEs generally fall into two main classes: linear multistep and Runge-Kutta 

methods [3-4]. Various reasons determine the choice of one method over another, two obvious criteria being speed and 

accuracy. However, the advent of fast and efficient digital computers has increased the role of numerical methods in solving 

scientific, engineering as well as social problems.[5] 

 

2.0 The Refinement Process 
We consider the mid point finite difference method: 

 1.........................2 12   nnn hfyy  

We expand 2ny  and 1nf  to find the Error term: 
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We combine equations (2) and (1) above to obtain 
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Combining equations (3) and (1) above, we have : 
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We consider the scheme (2 step Adam-Bashforth method): 
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We expand 12 ,  nn yy and  fn+1 in Taylor’s series 
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Combining equations (6) and (4) above, we have:
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3.0 Convergence Of The Methods 
Numerical method is convergent if 

0maxlim
...1,00
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To prove that a linear multistep method is convergent, it is sufficient to show that the method is consistent as well as 

zero-stable. [6] 

Scheme 1 
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 The error term is  
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Consistency 

From equation (7), the first characteristic polynomial   is given by 
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The second characteristic polynomial   is given by  
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From equations above, we have  

(i)   01   

(ii)    111    

Hence scheme 1 is consistent.  
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Zero-stability  

The roots of the first characteristics polynomial are given by   012    

i.e. 1 or 1  

Thus 1,1 which satisfy the zero-stability condition i.e
 

1   

We conclude that scheme 1 is convergent.  

Scheme 2 
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From equation (8), the first characteristic polynomial   is given by 
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The second characteristic polynomial    is given by  
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Thus, we have; 

(i)   01   

(ii)    .111    

Hence, scheme 2 is consistent  

Zero-stability  

  012    

i.e. 1 , 1 , which satisfy the zero stability condition.  

Hence, since scheme 2 satisfied these conditions,  

(i)   01   

(ii)    111    

(iii) Zero –stability condition  

We conclude that scheme 2 is convergent.  

Scheme 3 
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Consistency:  

From equation (9), the first characteristic polynomial    is given by 
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The second characteristic polynomial   is given by  
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we have 

(i)   01   

(ii)    111    

Hence since the scheme satisfies the above conditions, it is consistent  

Zero-stability 

The roots of the first characteristic polynomial   is given by 
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0 , 1  

Since  satisfies the zero-stability conditions and it is also consistent, we conclude that scheme 3 is convergent.  

 

4.0 Numerical Application and Comparison Of Results  

We use the three (3) derived Methods to solve the following differential equation   1.0,10;  hyyxy . The results 

are obtained and compared for accuracy. The problem is implemented on computer using Microsoft Excel software/ package.  

The results obtained from the three new schemes are compared with the exact solution and the old schemes. 

Table 1:Scheme 1  

PROBLEM:   1.0,10;  hyyxy  

X Exact Solution 

122  nhfnyny
 

Error

  ]22/1418[

3
2 nfnfnf

h

nyny   

Error 

0.1 1.110341836 1.1103 4.1836E-05 1.11 3.41836E-04 

0.2 1.242805516 1.24206 7.45516E-04 1.2426667 1.3889E-04 

0.3 1.399717615 1.398712 1.005615E-03 1.39931111 4.06505E-04 

0.4 1.583649395 1.5818024 1.846995E-03 1.583454078 1.95317E-04 

0.5 1.797442541 1.7950724 2.370141E-03 1.796922717 5.19824E-04 

0.6 2.044234601 2.0408168 3.420801E-03 2.04375417 4.83431E-04 

0.7 2.327505415 2.3232357 4.26715E-03 2.326816163 6.89252E-04 

0.8 2.651081857 2.6454639 5.6217957E-03 2.6503631714 7.18686E-04 

0.9 3.019206222 3.0123284 6.877822E-03 3.01827824 9.26398E-04 

1.0 3.436563657 3.4279295 8.634157E-03 3.4554494 1.8885743E-02 
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Table 2: Scheme 2 

PROBLEM:   1.0,10;  hyyxy  

X Exact Solution 
122  nhfnyny  

Error

  ]1217[

3
2  nfnfnf

h

nyny  

Error 

0.1 1.110341836 1.1103 4.1836E-05 1.1103 4.1836E-05 

0.2 1.242805516 1.24206 7.45516E-04 1.2428 5.516E-06 

0.3 1.399717615 1.398712 1.005615E-03 1.39960 1.17615E-04 

0.4 1.583649395 1.5818024 1.846995E-03 1.58353 1.19395E-04 

0.5 1.797442541 1.7950724 2.370141E-03 1.797210333 2.32221E-04 

0.6 2.044234601 2.0408168 3.420801E-03 2.043963744 2.73857E-04 

0.7 2.327505415 2.3232357 4.26715E-03 2.327105318 4.00097E-04 

0.8 2.651081857 2.6454639 5.6217957E-03 2.650597746 4.84111E-04 

0.9 3.019206222 3.0123284 6.877822E-03 3.018571088 6.35134E-04 

1.0 3.436563657 3.4279295 8.634157E-03 3.435794647 7.6901E-04 

 

Table 3: Scheme 3 

PROBLEM:   1.0,10;  hyyxy
 

 

X Exact Solution 

122  nhfnyny

 

Error

   12/7243135

14
12  nfnfnf

h

nyny

 

Error 

0.1 1.110341836 1.1103 4.1836E-05 1.11 1.0341836E-05 

0.2 1.242805516 1.24206 7.45516E-04 1.2425 3.05516E-06 

0.3 1.399717615 1.398712 1.005615E-03 1.399525001 1.97605E-04 

0.4 1.583649395 1.5818024 1.846995E-03 1.583606251 4.3144E-04 

0.5 1.797442541 1.7950724 2.370141E-03 1.797583815 1.412272E-04 

0.6 2.044234601 2.0408168 3.420801E-03 2.044602694 3.65093E-04 

0.7 2.327505415 2.3232357 4.26715E-03 2.32813993 6.34515E-04 

0.8 2.651081857 2.6454639 5.6217957E-03 2.651245337 1.6348E-04 

0.9 3.019206222 3.0123284 6.877822E-03 3.019554283 2.92063E-04 

1.0 3.436563657 3.4279295 8.634157E-03 3.4357104808 5.41151E-04 

 

5.0 Analysis of Results and Conclusion 
From the Tables above, the new schemes are more accurate than the old schemes, as they produce less error [up to 4 

decimal places] than the old schemes with error [up to 3 decimal places]. We can conclude that the three (3) new schemes are 

accurate as they produce results which are comparable to and even more accurate than those produced by other similar 

methods. 
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