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Abstract 

 
 

   In this paper, the solution of some ordinary differential equations using Adomian 

Decomposition Method (ADM) is considered. The procedures and steps involves in using 

the Adomian Decomposition Method were thoroughly reviewed using a general typical 

non-linear ordinary differential operator. The deficiencies of using the alternative 

techniques which includes Descretization, Perturbation, and Linearization methods 

instead of the present one were also investigated while it was shown that this method 

devoid of problems and errors encountered using those methods. From the numerical 

examples presented, the convergence rate of the method is very high which confirms the 

earlier claims in the literatures. 
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1.0 Introduction 
 

It is of concern that solutions to most differential equations that arise in integral and differential models representing 

some phenomena in Engineering, Management, Economics and Science cannot easily be obtained using analytical means, 

therefore, approximate solutions are needed which are generated by numerical techniques.  

The Adomian decomposition method is a relatively new approach which provides an analytic approximation to linear 

and non-linear problems. It is a quantitative method rather than qualitative. It requires neither linearization nor perturbation, 

so you don’t have to worry about interpolating variables. It is free from minding off errors as it does not involve 

discretization. This method is useful for obtaining both a closed form and the explicit solution and the numerical 

approximations of linear and non-linear differential equations.  

George Adomian [1], is the Armenian – American mathematician who developed the Adomian Decomposition Method 

(ADM) for solving both ordinary and partial  non-linear differential equations. The method is explained, among other places, 

in his book “Solving Frontier Problems in Physics: the Decomposition Method”. He was a faculty member at the University 

of Georgia (USA) from 1966 through 1989. 

This method is based on the search for a solution in the form of a series and it consists in decomposing the non-linear 

operator into a series. George Adomian developed the ADM in the 1980s and showed how it can be applied to solving non-

linear differential equations.  

Application of the method to fractional differential equations and other various fields of applied sciences are also found.  

An error analysis and convergence criterion of the ADM has been investigated by several authors. Cherruault [2], 

investigated the convergence of the method when applied to a special class of boundary valued problems of periodic 

temperature fields in heat conductance.   
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In the recent years, Adomian decomposition method has been used to solve ordinary differential equations, differential –

algebraic equation, non-linear fractional differential equation and delay differential equation. In most of these works, the 

convergence of the decomposition series had been investigated by several researchers [3 - 5].  Ibijola et al [6] applied 

Adomian Decomposition Method for numerical solution of second-order ordinary differential equations which yields some 

highly commendable results.  

In this paper, the work in [3 - 6] is extended to ordinary differential equations of higher orders, most especially non-

linear problems. Numerical examples are presented while the Euler method is also used to test the efficiency of the method. 

  

. 

2.0  Developmental Procedures Of Adomian Decomposition Method 
 Each step is better explained in the following way 

Step 1: Split the equation into linear and non-linear parts. 

Step 2: Invert the highest order derivative operator contained in the linear operator on both sides. 

Step 3: Identify the initial conditions and the terms involving the independent variables alone as initial approximation. 

Step 4: Decompose the unknown function into a series whose components can be easily computed. 

Step 5: Decompose the non-linear functions in terms of polynomials (Adomian polynomials). 

Step 6; Find the successive terms of the series solution by current relations using the polynomials obtained 

2.1 A Typical   Example 

          In this section, the techniques involves in using the Adomian Decomposition Method to solve problems that can be 

modeled in form of the differential equations is demonstrated. 

Consider the operator  

                                            GFu                                                                                        
)1(

                                                                                                                                                                    
where F represents a general non-linear ordinary differential operator and G is a given function. The linear part of F is 

decomposed into  

                                            RL                                                                                           (2) 

where L  is easily invertible and R  is the remainder of F  Thus the equation may be written as  

              GNuRuLu                                                                               (3) 

Where, N  is a non-linear operator, L  is the highest order derivative which is assumed to be invertible R is a linear 

differential operator of the order less than L  and G  is the source term 

The method is based on applying the operator L
-1

 formally to the expression  

     NuRuGLu                                                                                  (4) 

So, by using the given conditions, we obtain  

     NuLRuLGLhu 111                                                             (5) 

Where h is the solution of the homogeneous equation  

                                 0Lu ,                                                                                                    (6) 

 with the initial/boundary conditions. Now according to the decomposition procedure of Adomian, we construct the unknown 

function u(x) by a sum of components defined by the following decomposition series 

                                                                                                              (7)  

 

The problem now, is the decomposition of the nonlinear term Nu. To do this, Adomian developed a very elegant technique as 

follows: 

Define the decomposition parameter λ as  

                                                                                                                        (8)  

then  uN  will be a function of ë, .... next expanding N(u) in Maclaurin series with respect to ë, we obtain  

                     
 uN

 = , where  
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Based on the Adomian decomposition method, the solution u is constructed as 

                                                                                                                        (10) 

where the (n+1)-term approximation of the solution is defined in the following form: 

                                                                                                                    (11) 

The method reduces significantly the massive computation which may arise if discretization methods are used for the 

solution of non non-linear problems. 

 

3.0 Alternative Techniques 
        The three main alternative methods that can be used to solve non-linear differential equations are discussed in this 

section. These includes discretization, perturbation, and linearization methods 

        Some of the existing methods to solving ordinary differential equations are based on discretization and they only allow 

the solutions to a given ordinary differential equation at a given interval. The above deficiency leads to a situation where 

some fundamental phenomena are easily avoided. However, discretization concerns the process of transferring continuous 

models and equations into discrete counterparts. We see this in the Euler’s method, Runge-kutta, Adam-Bosworth’s method 

of solving differential equations amongst others. These methods can be very tedious because of the large amounts of values 

that need to be calculated.  

             In perturbation theory, a set of mathematical methods for obtaining approximate solutions to complex equations for 

which no exact solution is possible or known, generally involving an iterative algorithm in which each new term contributing 

to the solution has less significance than the last. In a physical situation, an unknown quantity is required to satisfy a given 

differential equation and certain auxiliary conditions that define the values of the unknown quantity at specified times or 

positions. If the equation or auxiliary conditions are varied slightly, the solution to the problem will also vary slightly. 

Perturbation  is a method for solving a problem by comparing it with a similar one for which the solution is known. Usually 

the solution found in this way is only approximate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

           In Mathematics, solving non-linear differential equations is a very important aspect. Most of the methods that are 

available and easy to use are methods for solving linear differential equations. Nonlinear differential equations are usually 

arising from mathematical modeling of many frontier physical systems. In most cases, analytic solutions of these differential 

equations are very difficult to achieve. Common analytic procedures are used to linearize the system or assume the 

nonlinearities are relatively insignificant. Such procedures change the actual problem to make it tractable by the conventional 

methods.  Generally, the numerical methods such as Runge–Kutta method are based on discretization techniques, and they 

only permit us to calculate the approximate solutions for some values of time and space variables, which causes us to 

overlook some important phenomena such as chaos and bifurcation, in addition to the intensive computer time required to 

solve the problem. The above drawbacks of linearization and numerical methods arise the need to search for an alternative 

techniques to solve the nonlinear differential equations.  Throughout, we shall consider equation of the form; 

                      
        .0'',0',0,,''' 210 yyyyyyyxfy                                           (12) 

 

4.0 Illustrative Examples 
4.1 Example 1 

Consider the differential equation 

        1'4''2''' 2  yxyxyy                                                                                       (13)    

With the initial conditions                                            

         
      10,20',30''  yyy                                                                                  (14)  

Rewriting (13), we have 

          
''2'41''' 2 xyyyxy                                                                                        (15) 

 

Writing in operator form 

         ''2'41 2 xyyyxLy                                                                                         (16) 
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Where 
3

3

dx

d
L   

        

x x x

dxdxdxL
0 0 0

1 .  

Applying the inverse operator to equation (16), 

  )2(4)(1)(
2

2
112111 y

dx

d
xLy

dx

d
LyxLLhLyL                              (17) 

Where h is the solution of the homogeneous equation 0Ly  with the initial conditions, subsequently, (17) gives  

  )(2)(4)()1(321
2

2
112112 y

dx

d
xLy

dx

d
LyxLLxxxy  

            (18) 

Using the Adomian decomposition procedure, 

 






0n

nyy                                                                                                                          (19) 

Substituting (19) into (18), yields 

  

























 


















 0
2

2
1

0

1

0

2112

0

24)1(321
n

n

n

n

n

n

n

n y
dx

d
xLy

dx

d
LyxLLxxxy     (20)                             

We must state here that in practice, all terms of the series in (19) cannot be determined and the solution will be 

approximated by series of the form [3] and [6] 

                    





1

0

n

n

nn xyx                      0, n
                                             (21)

 

The method introduces the recursive relation 

                 

   

       

0

24

6
3211321

2

2
1121

1

3
212

0













n

y
dx

d
xLy

dx

d
LyxLxy

x
xxLxxxy

nnnn
                                      (22) 

We can the proceed to compute the first few terms of the series. 

  02

2
1

0

1

0

21

1 24 y
dx

d
xLy

dx

d
LyxLxy  

 

 

   












































































22
5

4321

2121
5

4321

121
5

4321

3
2

2

2
1

3
21

3
221

2122248
6

32

2122248
6

32

62
2

1
624

6
32

6
3212

6
3214

6
321

xxxx
x

xxxL

xxLxxL
x

xxxL

xxLxxL
x

xxxL

x
xx

dx

d
xL

x
xx

dx

d
L

x
xxxL
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dxdxx
xxxxx

dxdxdxxxxx
x

x x

x x x

 

  





















0 0

23456
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8
2
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5

3

36
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6
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Table 1 compares the result obtained using ADM with the Euler’s solution. It is obvious that the result is in agreement with 

the Euler’s solution. Higher accuracy can be obtained by evaluating more components of the series in equation (20). 

 

Table 1: Adomian and Euler method      
             X ADOMIAN EULER ERROR 

            0.0 1.000000000 1.000000000 0.000000000 

            0.1 1.200000000 1.200000000 0.000000000 

            0.2 1.4300000333 1.430000000 0.000000333 

            0.3 1.6834481711 1.683000000 0.0004481711 

            0.4 2.192660635 2.1926532500 0.000007385 

            0.5 2.573294503 2.573928280 0.000633777 

 

4.2 Example 2  
Consider the differential equation 

     

'''

''''''

,

10,00',00''

0''''''

yyyLy

yyyy

rewritting

yyy

yyyy









                                                                                   (23) 

The exact solution of equation (23) is 

   





x x x

dxdxdxL

dx

d
L

0 0 0

1

3

3

.

 

Applying the inverse operator to the equation, 

  
   '')()( 1'112

210

1 yLyLyLxyxyyLyL                                 (24) 

Note:
2

210 xyxyy   is obtained by solving the homogeneous equation 0Ly  

Now, from the initial values, we obtain 0,0,1 210  yyy                   (25) 

So we have from (24) 

     '''1 111 yLyLyLy                                                                     (26) 

Substitute 
dx

d
y

dx

d
y  ',''

2

2

       into  (26) 

     y
dx

d
Ly

dx

d
LyLy

2

2
1111                                                           (27) 

Using the decomposition series, we have 

   





0n

n xyxy  

So we have, 
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
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
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
 
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














 0
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2
1

0

1

0

1

0

1
n

n

n

n

n

n

n

n y
dx

d
Ly

dx

d
LyLxy  

So we have the recursive relation, 
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Table 2 compares the result obtained using ADM with that of the Euler’s method, which is one of the approximated 

numerical method. It is clear that the Adomian decomposition method works very well. Errors are small and may be made 

smaller by using more terms of the ADM truncated series.  

 

Table 2: Adomian and Euler methods 
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X Adomian Euler Error 

          0.0 1.000000000 1.000000000 0.000000000 

          0.1 0.999993666 1.000000000 0.000006334 

          0.2 0.999930574 1.000000000 0.000069426 

          0.3 0.999641194 0.999000000 0.000641194 

          0.4 0.998841986 0.996100000 0.002741986 

          0.5 0.997112165 0.990500000 0.006612165 
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5.0 Convergence of the Method 
The decomposition series (7) solution is generally converges very rapidly in real physical problems [1]. The rapidity of this 

convergence means that few terms are required. Convergence of this method has been rigorously established  [2- 5]. 
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