Stability of Numerical Solution for Wave Equation

Augustine O. Odio
Department of Mathematics, University of Nigeria, Nsukka

Abstract

The stability of numerical solution for wave equation is studied. We consider also a multilevel difference scheme in the form $$
\frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 \Delta t}=\frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \Delta x}
$$ and also, show that the scheme is stable in accordance to Von-Neumann condition for stability. In this paper, it is seen that, the numerical results become closer to each other as the i and j terms become large. Hence the computational result in Table 3.1 is stable.

Keywords: Stability, multi-level difference scheme, Von Neumann, difference equation, central difference scheme and symmetric matrix.

1.0 Introduction

We consider the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{c^{2} \partial^{2} u(x, t)}{\partial x^{2}} \tag{1.1}
\end{equation*}
$$

in the domain $\mathrm{R}=(0 \leq \mathrm{x} \leq 1) \mathrm{x}[\mathrm{t} \geq 0]$
satisfying the following initial conditions

$$
\begin{align*}
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{f}_{1}(\mathrm{x}) \\
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{f}_{2}(\mathrm{x}) \text { for } 0 \leq \mathrm{x} \leq 1 \\
& \text { and boundary conditions } \\
& \mathrm{u}(0, \mathrm{t})=\mathrm{g}_{1}(\mathrm{t}) \\
& \mathrm{u}(1, \mathrm{t})=\mathrm{g}_{2}(\mathrm{t}) \text { for all } \mathrm{t} \geq 0 \tag{1.2}
\end{align*}
$$

where u is a function that depends on the space and time directions and c is the speed of the wave (see [1] and [2])
We consider also a two level scheme

$$
\begin{equation*}
\frac{u_{j}^{n+1}-u_{j}{ }^{n-1}}{2 \Delta t}=\frac{u_{j+1}^{n}-u_{j-i}^{n}}{2 \Delta x} \tag{1.3}
\end{equation*}
$$

which is usually called the central difference scheme [3]. The function u is continuous and differentiable in its domain R. hence u is said to be an admissible function [4] and also, u can be expanded using the Taylor series method [5].
A practical result for stability criteria for multi-level difference scheme for the solution of wave equation is given in a proposition due to Von Neumann.
Proposition (Von Neumann [6]): If $\lambda(\Delta t, k)$ is an eigenvalue of the amplification matrix $G(\Delta t, k)$ of a difference scheme, then the necessary and sufficient condition for stability are
i. $\quad|\lambda| \leq 0(\Delta t)$
ii. $\quad \mathrm{G}(\Delta \mathrm{t}, \mathrm{k})$ is a symmetric matrix
iii. The scheme involves only one dependent variable.

Corresponding author: E-mail: augustine.odio@yahoo.com, Tel. +2348062976038

2.0 Main Result

We consider the difference scheme
$\frac{u_{j}^{n+1}-u_{j}^{n-1}}{2 \Delta t}=\beta\left[\frac{u_{j+1}^{n}-u_{j}^{n-1}-u_{j}^{n+1}+u_{j-1}^{n}}{(\Delta x)^{2}}\right]$
$u_{j}^{n+1}-u_{j}^{n-1}=\frac{2 \Delta t \beta}{(\Delta x)^{2}}\left[u_{j+1}^{n}-u_{j}^{n+1}-u_{j}^{n-1}+u_{j-1}^{n}\right]$
put $\alpha=\frac{2 \Delta t \beta}{(\Delta x)^{2}}$
$u_{j}^{n+1}-u_{j}^{n-1}=\alpha\left[u_{j+1}^{n}-u_{j}^{n+1}-u_{j}^{n-1}+u_{j-1}^{n}\right]$
$\left.\begin{array}{l}\text { Let } u_{j}^{n}=\lambda^{n} e^{i k x} \\ u_{j}^{n+1}=\lambda^{n+1} e^{i k x} \\ u_{j+1}^{n+1}=\lambda^{n+1} e^{i k(x+\Delta x)}\end{array}\right\}$
Substituting in (2.5) in (2.4) we have
$\lambda^{n+1} e^{i k x}-\lambda^{n-1} e^{i k x}=\alpha\left[\lambda^{n} e^{i k(x+\Delta x)}-\lambda_{n+1} e^{i k x}-\lambda^{n-1} e^{i k x}+\lambda^{n} e^{i k x}\right.$
$\lambda^{2}-1=\alpha\left[\lambda e^{i k \Delta x}-\lambda^{2}-1+\lambda e^{i k \Delta x}\right]$
$\lambda^{2}-1=-\alpha \lambda^{2}-\alpha+\alpha \lambda\left(e^{i k \Delta x}+e^{-i k \Delta x}\right)$
$=\alpha \lambda^{2}-\alpha+2 \alpha \lambda \cos k \Delta x$
Equation (2.9) becomes
$(1+\alpha) \lambda^{2}-2 \alpha \lambda c-(1-\alpha)=0$
where $\mathrm{c}=\operatorname{cosk} \Delta \mathrm{x}$
$\lambda^{2}-\frac{2 \alpha c \lambda}{1+\alpha}-\frac{(1-\alpha)}{(1+\alpha)}=0$
For stability condition
$|\lambda| \leq 1$,
and also by considering the quadratic form
$x^{2}-2 b x+c=0$
the following conditions are in order
(i) $\quad|b| \leq 1$
(ii) $\quad|c| \leq 1$

Hence, $\frac{\alpha c}{1+\alpha}=\frac{\alpha}{1+\alpha}<1, \forall \alpha$
that is, we must have
$\left|\lambda_{1, .} \lambda_{2}\right|=\left|\frac{1-\alpha}{1+\alpha}\right| \leq 1, \forall \alpha$
also, $|b|=\left|\frac{\alpha c}{1+\alpha}\right| \leq\left|\frac{\alpha}{1+\alpha}\right| \leq 1, \forall \alpha$
The scheme is always stable or uncondition stable.
Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 377 - 380

3.0 Application

We consider the wave problem in the form
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ with conditions
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{u}(\mathrm{x}, 0)=1 / 2 \mathrm{x}(1-\mathrm{x})$ and $\mathrm{u}(\mathrm{x}, 0)=0$, taking $\mathrm{h}=0.1$ for $0 \leq x 0.4$.
Solution
$c^{2}=1$. The differences equation for the given equation is
$u_{i, j+1}=2\left(1-\propto^{2}\right) u_{i, j}+\propto^{2}\left(u_{i-1}+u_{i+1, j}\right)-u_{i, j-1}$
Where $\alpha=\frac{k}{h}$. But $\alpha=\frac{0.1}{0.1}=1$
Equation (3.1) reduce to
$u_{i, j+1}=u_{i-1, j}+u_{i+1, j}-u_{i, j-1}$
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{u}_{0, \mathrm{j}}=0$ and $\mathrm{u}_{10 \mathrm{j}}=0$
That is, the entries in the first column are all zero.
Hence, $u(x, 0)=1 / 2 x(1-x), u(i, 0)=1 / 2 i(1-i)$
$=0.045,0.08,0.105,0.120,0.125,0.120,0.105$
for $\mathrm{i}=0.1,0.2,0.3,0.4,0.5,0.6,0.7 \mathrm{at} \mathrm{t}=0$
these are the entries of the first row.
Since $u_{x}(x, 0)=0$
$\frac{u_{i, j+1}-u_{i, j}}{k}=0$ for $\mathrm{j}=0, \mathrm{t}=0, \mathrm{u}_{\mathrm{i}, 1}=\mathrm{u}_{\mathrm{i}, \mathrm{g}}$
Putting $\mathrm{j}=0$ in equation (3.2) we get
$u_{i, 1}=u_{i-1,0}+u_{i+1,0}-u_{i,-1}$
$=u_{i-1,0}+u_{i+1,0} u_{i, 1}$
$2 u_{i, 1}=u_{i-1,0}+u_{i+1,0}, u_{i, 1}=1 / 2\left[u_{i-1,0}+u_{i+1,0}\right]$
for $\mathrm{i}=1, \mathrm{u}_{1,1}=1 / 2\left[\mathrm{u}_{0,0}+\mathrm{u}_{2,0}\right]=1 / 2[0+.080]=0.040$
$\mathrm{i}=2, \quad \mathrm{u}_{2,1}=1 / 2\left[\mathrm{u}_{1,0}+\mathrm{u}_{3,0}\right]=1 / 2[0.045+0.105]=0.075$
$\mathrm{i}=3, \quad \mathrm{u}_{3,1}=1 / 2\left[\mathrm{u}_{2,0}+\mathrm{u}_{4,0}\right]=1 / 2[0.08+0.120]=0.100$
$\left.\mathrm{i}=4, \quad \mathrm{u}_{4.1}=1 / 2\left[\mathrm{u}_{3,0}+\mathrm{u}_{5,0}\right]=1 / 2 / 20.105+0.125\right]=0.115$
$\mathrm{i}=5, \quad \mathrm{u}_{5,1}=1 / 2\left[\mathrm{u}_{4,0}+\mathrm{u}_{6,0}\right]=1 / 2[0.120+0.120]=0.120$
$i=6, \quad u_{6,1}=1 / 2\left[u_{5,0}+u_{7,0}\right]=1 / 2[0.125+0.105]=0.115$
putting $\mathrm{j}=1$ in equation (3.2), we get

$$
\begin{aligned}
& u_{i, 2}=u_{i-1,1}+u_{i+1,1}-u_{i, 0} \\
& \text { For } \mathrm{i}=1, \quad \mathrm{u}_{1,2}=\mathrm{u}_{0,1}+\mathrm{u}_{2,1}-\mathrm{u}_{1,0} \\
& =0+0.075-0.0 .045=0.03 \\
& \mathrm{i}=2, \quad \mathrm{u}_{2,2}=\mathrm{u}_{1,1}+\mathrm{u}_{3,1}-\mathrm{u}_{2,0}=0.040+0.100-0.08=0.060 \\
& \mathrm{i}=3, \quad \mathrm{u}_{3,2}=\mathrm{u}_{2,1}+\mathrm{u}_{4,1}-\mathrm{u}_{3,0}=0.075+0.115-0.105=0.085 \\
& \mathrm{i}=4, \quad \mathrm{u}_{4,2}=\mathrm{u}_{3,1}+\mathrm{u}_{5,1}-\mathrm{u}_{4,0}=0.100+0.120-0.120=0.100 \\
& \mathrm{i}=5, \quad \mathrm{u}_{5,2}=\mathrm{u}_{4,1}+\mathrm{u}_{6,1}-\mathrm{u}_{5,0}=0.115+0.115-0.125=0.105
\end{aligned}
$$

Putting $\mathrm{j}=2$

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{i}, 3}=\mathrm{u}_{\mathrm{i}-1,2}+\mathrm{u}_{\mathrm{i}+1,2}-\mathrm{u}_{\mathrm{i}, 1} \\
& \mathrm{i}=1, \mathrm{u}_{1,3}=\mathrm{u}_{0,2}+\mathrm{u}_{2,2}-\mathrm{u}_{1.1} \\
& \mathrm{u}_{1,3}=0.020, \mathrm{u}_{2,3}=0.040, \mathrm{u}_{3,3}=0.060, \mathrm{u}_{4,3}=0.075 \\
& \mathrm{u}_{5,3}=0.080 \\
& \mathrm{u}_{1,4}=0.010, \mathrm{u}_{2,4}=0.02, \mathrm{u}_{3,4}=0.030, \mathrm{u}_{4,4}=0.040 \\
& \mathrm{u}_{5,4}=0.048
\end{aligned}
$$

Table 3.1 Stability of Numerical solution for wave equation

		0	0.1	0.2	0.3	0.4	0.5	0.6
	j i	0	1	2	3	4	5	6
0	0	0	0.045	0.080	0.105	0420	0.125	0.160
0.1	1	0	0.040	0.075	0.100	0.115	0.120	0.115
0.2	2	0	0.030	0.060	0.085	0.100	0.105	0.100
0.3	3	0	0.020	0.040	0.066	0.075	0.080	0.075
0.4	4	0	0.010	0.020	0.030	0.040	0.048	0.040

Conclusion

The condition for stability was developed in accordance to the Von-Neumann condition for stability. It is also seen that the campuational results in Table 3.1 are also stable and this is the bane for this paper.

References

[1]. Jain, M.K; Numerical Solution of partial Differential Equations, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, pp 313, 1978
[2]. Tejumola, H.O; Periodic Boundary Value problems for some fifth, fourth and there order ordinary differential equations. J. Nigerian math, Soc, Volume 25, pp. 37-46, 2006
[3]. K.W. Morton and David Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, pp 14; 2005.
[4]. Augustine O. Odio, Computational result of integral quadratic objective functional with wave-diffusion effect; Journal of the Nigerian Association of Mathematical Physics, Volume. 14 pp 367-376 (2009).
[5]. SAEID ABASBANDY, TOFIGH. A. VIRANLOO. Qazvin Iran; Numerical Solution of Fuzzy Differential Equations By Taylor Method; Computational Methods in Applied Mathematics, Vol. 2, No. 2, pp 113-124. (2002)
[6]. Jain, M.K, Numerical Solution of Differential Equations, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, pp 212. 1978.

