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Abstract 

 
 

The stability of numerical solution for wave equation is studied. We consider also a multi-

level difference scheme in the form  
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and also, show that the scheme is stable in accordance to Von-Neumann condition for 

stability. In this paper, it is seen that, the numerical results become closer to each other as 

the i and j terms become large. Hence the computational result in Table 3.1 is stable. 
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1.0 Introduction 
 

We consider the wave equation 
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in the domain R= (0 ≤ x ≤1) x [t 0] 

satisfying the following initial conditions  

u(x,0) = f1(x) 

u(x,0) = f2 (x) for 0 ≤x ≤1  

and boundary conditions  

u(0,t) = g1(t)  

u(1,t)= g2 (t) for all t  0      (1.2) 

where u is a function that depends on the space and time directions and c is the speed of the wave (see [1] and [2]) 

We consider also a two level scheme  
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which is usually called the central difference scheme [3]. The function u is continuous and differentiable in its domain R. 

hence u is said to be an admissible function [4] and also, u can be expanded using the Taylor series method [5].   

A practical result for stability criteria for multi-level difference scheme for the solution of wave equation is given in a 

proposition due to Von Neumann. 

Proposition (Von Neumann [6]): If (∆t,k) is an eigenvalue of the amplification matrix G (∆t,k) of a difference scheme, then 

the necessary and sufficient condition for stability are  

i.   ≤  0 (∆t) 

ii. G(∆t,k) is a symmetric matrix  

iii. The scheme involves only one dependent variable.   
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2.0 Main Result  
We consider the difference scheme  
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Substituting in (2.5) in (2.4) we have   
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]1[1 22 xikxik ee          (2.7) 

)(1 22 xikxik ee          (2.8) 

xk cos22         (2.9) 

Equation (2.9) becomes  
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where c = cosk∆x 
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For stability condition   

 ,1  

and also by considering the quadratic form 
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(i) 1b   

(ii) 1c   

Hence, 













,1

11

c
 

that is, we must have  





 




 ,1

1

1
2,.1        (2.12) 

also, 













 ,1

11

c
b  

The scheme is always stable or uncondition stable. 
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3.0 Application  
 

We consider the wave problem in the form 
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 with conditions  

u(0,t) = u(1,t) = 0, u(x,0) = ½ x(1-x) and u(x,0) = 0, taking h = 0.1 for 

0 ≤ x 0.4. 

Solution  

c
2
 = 1. The differences equation for the given equation is 

        (   
 )      

 (           )             (3.1) 

Where  = 
h

k
. But  = 

1.0

1.0
 = 1 

Equation (3.1) reduce to  

                                 (3.2) 

u(0,t) = u(1,t) = 0, u0,j = 0 and u10,j = 0 

That is, the entries in the first column are all zero. 

Hence, u(x,0) = ½ x(1-x), u(i,0) = ½ i(1-i)      (3.3) 

        = 0.045, 0.08, 0.105,0.120,0.125,0.120,0.105 

      for i = 0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7 at t = 0 

these are the entries of the first row. 

Since ux(x,0) = 0 

k

uu jiji ,1, 
= 0 for j = 0, t = 0,ui,1 = ui,9      (3.4) 

Putting j = 0 in equation (3.2) we get  

ui,1 = ui-1, 0 +ui+1, 0 – ui,-1        (3.5) 

  = ui-1, 0+ui+1,0-ui,1 

2ui,1 = ui-1,0 + ui+1, 0, ui,1 = ½ [ui-1,0+ui+1,0]      (3.6) 

 for i = 1, u1 ,1 = ½ [u0,0+ u2,0] = ½ [0+.080] = 0.040 

i = 2,   u2,1 = ½ [u1,0 +u3,0] = ½ [0.045+0.105] = 0.075 

i = 3,  u3,1 = ½ [u2,0+u4,0] = ½ [0.08+0.120] = 0.100 

i  = 4,   u4.1 = ½ [u3,0+u5,0] = ½ [0.105+0.125] = 0.115 

i = 5,  u5,1 = ½ [u4,0 +u6,0] = ½ [0.120 +0.120] = 0.120 

i = 6,   u6,1 = ½ [u5,0+u7,0] = ½ [0.125+0.105] = 0.115 

putting j = 1 in equation (3.2), we get  

                         

For i = 1,  u1,2 = u0,1+ u2,1 -u1,0 

                = 0+0.075 – 0. 0.045 = 0.03 

i =2, u2,2 = u1,1 +u3,1 – u2,0 = 0.040 +0.100 – 0.08 = 0.060 

i =3, u3,2 = u2,1+ u4,1 – u3,0 = 0.075+0.115-0.105 = 0.085 

i =4, u4,2 = u3,1 + u5,1 – u4,0  = 0.100+0.120-0.120 = 0.100 

i =5, u5,2 = u4,1+u6,1-u5,0 = 0.115+0.115 – 0.125 = 0.105 

Putting j = 2 

ui,3 = ui-1,2 + ui+1,2 – ui,1 

i = 1, u1,3 = u0,2 + u2,2 – u1.1 

  u1,3= 0.020, u2,3 = 0.040, u3,3 = 0.060, u4,3 = 0.075 

u5,3 = 0.080,  

u1,4  = 0.010, u2,4 = 0.02, u3,4 = 0.030, u4,4 = 0.040 

u5,4 = 0.048 
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Table 3.1 Stability of Numerical solution for wave equation  
  0 0.1 0.2 0.3 0.4 0.5 0.6 

 i 0 1 2 3 4 5 6 

0 0 0 0.045 0.080 0.105 0420 0.125 0.160 

0.1 1 0 0.040 0.075 0.100 0.115 0.120 0.115 

0.2 2 0 0.030 0.060 0.085 0.100 0.105 0.100 

0.3 3 0 0.020 0.040 0.066 0.075 0.080 0.075 

0.4 4 0 0.010 0.020 0.030 0.040 0.048 0.040 

 

Conclusion  
The condition for stability was developed in accordance to the Von-Neumann condition for stability. It is also seen that the 

campuational results in Table 3.1 are also stable and this is the bane for this paper.  

 

References 
[1]. Jain, M.K; Numerical Solution of partial Differential Equations, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, 

pp 313, 1978 

[2]. Tejumola, H.O; Periodic Boundary Value problems for some fifth, fourth and there order ordinary differential 

equations. J. Nigerian math, Soc, Volume 25, pp. 37-46, 2006 

[3]. K.W. Morton and David Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, pp 

14; 2005. 

[4]. Augustine O. Odio, Computational result of integral quadratic objective functional with wave-diffusion effect; Journal 

of the Nigerian Association of Mathematical Physics, Volume. 14 pp 367-376 (2009). 

[5]. SAEID ABASBANDY, TOFIGH. A. VIRANLOO. Qazvin Iran; Numerical Solution of Fuzzy Differential Equations By 

Taylor Method; Computational Methods in Applied Mathematics, Vol. 2, 

  No. 2, pp 113 -124. (2002) 

[6]. Jain, M.K, Numerical Solution of Differential Equations, Wiley Eastern Limited, New Delhi, Bangalore, Bombay, pp 

212. 1978. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal of the Nigerian Association of Mathematical Physics Volume 22 (November, 2012), 377 – 380      

j 


