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Abstract 
 

 

This paper presents an EOQ inventory model for items that exhibit delay in 

deterioration with constant demand. A three parameter Weibull distribution is 

assumed as the distribution for deterioration. Numerical examples are given to 

illustrate the application of the model. 
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1.0 Introduction 
 

Generally, inventory depletion is considered to be as a result of demand. However, the effect of deterioration of physical 

goods cannot be disregarded in many inventory systems. Deterioration is defined as decay, damage, spoilage or obsolescence. 

Food items, drugs, chemicals, electronic components and radioactive substances are some of the items in which sufficient 

deterioration may occur during the normal storage period. Some technical equipment such as in the manufacturing industries 

may suffer deterioration due to obsolescence while fashion goods may also suffer deterioration by being out of use. 

The decaying inventory system was first analyzed by Ghare and Shrader [1] who developed an EOQ model with constant 

rate of deterioration. Covert and Philip [2] extended Ghare and Shrader’s model and obtained an EOQ model for a variable 

rate of decay by assuming a 2-parameter Weibull distribution deterioration. Mishra [3] developed a deterioration model with 

finite replenishment rate.  Shah and Jaiswal[4] generalized the work of Ghare and Shrader [1] to allow for backordering. 

Goyal [5] developed mathematical models for obtaining the economic order quantity under conditions of permissible delay in 

payments. Aggarwal and Jaggi [6] constructed an inventory model to determine the optimum order quantity for deteriorating 

items under permissible delay in payments.  Jalanet al. [7] developed an inventory model for deteriorating items with stock-

dependent demand rate. Datta and Pal [8] constructed a model on the order level inventory system with power demand 

pattern for items with variable rate of deterioration. Hollier and Mark [9] developed a model for inventory replenishment 

policies for deteriorating items in a declining market. The outline of literature on deterioration inventory can also be found in 

review articles by Nahmias [10], Raafat [11] and Goyal and Giri [12]. 

The non-instantaneous deterioration (delay in deterioration) is a situation where items do not start deteriorating 

immediately they are stocked. During this period, before deterioration sets in, depletion of inventory is dependent on demand 

only. As deterioration sets-in depletion is then dependent on both demand and deterioration. The items that exhibit delay in 

deterioration include farm produce such as fruits, potatoes etc. or even fashion goods such as cars, fabrics etc. Ouyanget al. 

[13] developed a model for non-instantaneous deteriorating items under permissible delay in payment. Chung [14] developed 

a complete proof on the solution procedure for non-instantaneous deteriorating items with permissible delay in payments. 

Musa and Sani [15] developed an EOQ model for items that exhibit delay in deterioration. Musa and Sani [16] also 

developed an EOQ model for items that exhibit delay in deterioration under permissible delay in payment. Their model is a 

generalization of Ouyanget al. [13]. 
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Berrotoni [17] observed, while discussing the difficulties of fitting empirical data to mathematical distributions, that both 

leakage failure of dry batteries and life expectancy of ethical drugs could be expressed in terms of Weibull distribution. In 

both cases, the rate of deterioration increased with age, i.e. the longer the items remained unused, the higher the rate at which 

they failed. At some point of time, all units that had not been used would have failed. Perhaps the work of Berrotoni [17] 

prompted Covert and Philip[2] to develop an inventory model for deteriorating items with variable rate of deterioration where 

they used the 2-parameter Weibull distribution to represent the distribution of deterioration. 

Chakrabartyet al. [18] developed an EOQ model for items with Weibull distribution deterioration, shortages and trended 

demand. Giriet al. [19] developed an EOQ model with Weibull deterioration distribution, shortages and ramp-type demand. 

In this paper we present an EOQ model for items that exhibit delay in deterioration while considering the deterioration 

rate to be a 3-parameter Weibull distribution and a constant demand rate.  

 

2.0 The Weibull Distribution 
In probability theory, the Weibull distribution is a continuous probability distribution which is named after Waloddi 

Weibull, who described it in detail in 1951, although it was first identified by Frechet in 1927, and first applied by Rosin and 

Rammler in 1933 to describe the size distribution of particles and first applied by Covert and Philip in 1973 to the inventory 

management. 

The probability density function of the general Weibull distribution (the 3-parameter Weibull distribution) is given by; 
 )()1()()(  tettf        (i) 

Where β>0 is the shape parameter (which affect the shape of the distribution), α>0 is the scale parameter (which 

determines the statistical dispersion of the probability distribution), and μ>0 is the location parameter (which determines the 

shift of the distribution, i.e. it determines where the origin will be located). The case where μ=0 is called the 2-parameter 

Weibull distribution which is given by; 
 tettf  1)(         (ii) 

The cumulative distribution function for the 3-parameter Weibull distribution is given by; 
 )(1)(  tetF         (iii) 

The cumulative distribution function of the 2-parameter Weibull distribution is given by; 
tetF 1)(         (iv) 

3.0 Justification for Using the Weibull Distribution to Represent The Time To Deteriorate 

The instantaneous rate of deterioration of the non-deteriorated inventory )(t , at time t, can be obtained from; 

)(1

)(
)(

tF

tf
t




     (v)

 

Where f(t) is the probability density function of the Weibull distribution and F(t) is the cumulative distribution function.  

Substituting f(t) and F(t) from (ii) and (iv) into (v)  and simplifying we obtain the rate of deterioration for the 2-parameter 

Weibull distribution as follows; 
1)(   tt      (vi) 

Also, substituting f(t) and F(t) from (i) and (iii) into (v)  and simplifying we obtain the rate of deterioration for the 3-

parameter Weibull distribution as follows; 
1)()(   tt

     (vii)
 

The rate of deterioration-time relationship for the 2-parameter Weibull distribution is as shown in Fig.1 and it can be seen 

from Fig.1 that the 2-parameter Weibull distribution is appropriate for items with increasing rate of deterioration only if the 

initial rate is approximately zero or decreasing rate of deterioration only if the initial rate of deterioration is extremely high, 

(Chakrabartyet al. [18]). 
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Fig. 1 Rate of deterioration-time relationship for a 2-parameter Weibull distribution 

To remove these limitations, Philip [20] developed a generalized EOQ model with the 3-parameter Weibull distribution 

to represent the time of deterioration. The rate of deterioration-time relationship for the 3-parameter Weibull distribution is 

depicted in Fig. 2. 

It is clear from Fig. 2 that the 3-parameter Weibull distribution is suitable for items with any initial value of the rate of 

deterioration and also for items which start deteriorating only after a certain period of time, (Chakrabartyet al. [18]). 

 

Fig. 2 Rate of deterioration-time relationship for a 3-parameter Weibull distribution 

Notation and Assumptions 
Notation 

D1 Demand rate (units per unit time) during the period before deterioration sets in 

D2 Demand rate (units per unit time) after deterioration sets in 

Q Order quantity (units per order) 

T Inventory cycle length (time units) 

c Unit cost of the item (in Naira) 

A Ordering cost per order (Naira per Order) 

i Inventory carrying charge (excluding interest charges, Naira per unit time) 

ⱷ(t) Rate of deterioration 

I0 Initial Inventory level 

Id inventory level at the time deterioration sets in 

Id(t) Inventory level at any time t when deterioration sets in 

T1 Time deterioration sets in 

T2 Difference between the cycle length and time deterioration sets in 

dT Number of items that deteriorate within the time period [T1,T] 

Assumptions 

(i) Instantaneous replenishment 

(ii) Unconstrained suppliers capital 

(iii) Shortages not allowed 

(iv) Negligible lead time 

(v) Three-parameter Weibull distribution deterioration given by 
1)()(   tt ;  t>0 and t≥μ 
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Where α>0, β>0 and μ>0 are the scale parameter, shape parameter and location parameter respectively. Note 

that if t< μ, then for some values of  , .0)( t  

4.0 The Mathematical Model 
Let      be the inventory level at any time t, in the region [0,T1]. Depletion of inventory from the beginning of the cycle 

up to the time deterioration sets in will occur only due to demand. Within the region [T1,T]depletion of the inventory will 

depend on both demand and deterioration. Fig. 3 gives a graphical representation of the situation. 

 

   

 

 

 

 

 

 
Fig. 3  Inventory movement in a delayed deterioration situation 

 

The differential equation that describes the state of the inventory level,     , in the interval [0,T1] is given by; 

,
)(

1D
dt

tdI
      (1) 

The solution of (1) is given by; 

11)( ktDtI       (2) 

Where k1 is an arbitrary constant 

Applying the boundary condition I(0)=Io to (2) we have k1=Io 

oItDtI  1)(      (3) 

Also, applying the boundary condition I(T1)=Id to (2) we have 

dITDtDtI  111)(  

11 )()( DtTItI d      (4) 

The differential equation that describes the inventory level within the region [T1,T] is given by; 

TtTDtIt
dt

tdI
d

d  12 ;)()(
)(

  where )(t is as defined in (vii)    

;)()(
)(

2

1 DtIt
dt

tdI
d

d          (5) 

Solving (5) using integrating factor method, we have; 

   )(

2

)(1)( )()(
)(   tt

d

td eDetIte
dt

tdI
 

  






)(

2

)()( 



 t
t

d eD
dt

etId
   


 

  )(

2

)()( tt

d eDetI         (6) 

To find dte t


  )(

  let  dttdt 1)()(   
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e  using Maclaurine series we have; 
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Where k2 is an arbitrary constant 
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Where n is an integer    (7) 
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Substituting (8) into (6) we have;

 

 
  2

0

`1

2

)(

1!
)( k

nn

t
DetI

n

nn
t

d 











 














 

      

 
 

 







 )(

2

0

1

)(

2
1!

)( 






 











  t

n

nn
t

d ek
nn

t
eDtI      (9) 

Substituting boundary condition I(T1)=Id  we have; 
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Substituting (10) into (9) we have; 
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Substituting the boundary condition Id(T)=0 we have; 
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Substituting (12) into (11) we have;  
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Substituting (12) into (4) we have; 
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Total demand within the region TtT 1  is given by D2T2 

Therefore, the number of items that deteriorate within TtT 1  is given by; 

 1222 TTDITDId ddT   
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We let the holding cost be CH, where; 
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To find 
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 Using Maclaurine series expansion of 
e in (19) and simplifying as was done in deriving equation (7) we have; 
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Substituting (21) and (20) into (18) we have 
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Substituting (22) and (17) into (16) we have; 
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The total variable cost is given by; 
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Since μ>0 is the location parameter (which determines the shift of the distribution, i.e. it determines where the origin will be 

located) then letting μ=T1 we have; 
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The total variable cost per unit time is then given by;  
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Differentiating (27) with respect to T and equating to zero gives the value of T which minimizes the total variable cost per 

unit time, provided
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Approximating this value by considering only the first two terms of the series, gives; 
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Equation (28) can be used to determine the best time period T which minimizes the total variable cost, and this can be 

reduced from (27) to; 
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(29) 

The EOQ of the corresponding time period T will be determined from: 
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After considering only the first two terms of the series, which is particularly true for T∈[0, 1] 

 

Numerical Examples 
Examples are given to determine the best cycle length. Table 1 below gives details of the examples. In all the examples, 

 
dT

TTd VC

2

 is found to be greater than zero showing that the cost function is convex in all the examples. 

Table 1: Numerical Examples 
S/N 

A(N) C(N) D1(units) D2(units) T1(days) i α β T(days) TVC(N) EOQ(units) 

1 
230 60 800 300 7 0.13 5 1 27 5021 34 

2 
200 50 500 250 14 0.15 7.2 3 90 1215 71 

3 
250 70 1000 500 21 0.14 1 1 47 3007 93 

4 
300 80 2000 500 28 0.12 8.5 2 58 2931 194 

5 
350 35 900 400 35 0.11 2 8 223 1070 293 

 

5.0 Sensitivity Analysis 
Sensitivity analysis depicts the extent to which the output of a model is affected by changes or errors in its input 

parameters. In this section, we examine the sensitivity of the scheduling period T, order quantity Q and the total variable cost 

TVC(T) of the inventory model with respect to the input parameters A, c,D1, D2, T1, i, α  and β. 
Table 2 gives results of some sensitivity analysis carried out on the first example of table 1, which shows that the 

model is highly sensitive to changes in the parameter β. It also shows that the model is moderately sensitive to 
changes in the parameters A, c,D1, D2and α(where D1andD2change concurrently), slightly sensitive to changes in T1and 
almost insensitive to changes in the parameter i. 

The analysis also shows that increase in the value of βresults in considerable increase in the value of the outputs 
T, Q and TVC(T). On the other hand increase in the value of α results in considerable decrease in the values of T, Q and 
TVC(T). 

Thus, sufficient care should be taken to estimate the parameters αand βin using the model.  
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Table 2: Sensitivity Analysis 
Parameter % change in the 

parameter values 

% change in the results 

  T TVC EOQ 

A -50 26 36 21 

-20 7 13 6 

20 11 12 9 

50 22 28 21 

C -50 41 24 35 

-20 11 8 9 

20 7 7 6 

50 15 16 12 

D1 and D2 -50 41 24 32 

-20 11 8 12 

20 7 7 12 

50 14 16 32 

T1 -50 0 14 12 

-20 0 5 9 

20 4 5 9 

50 4 11 15 

i -50 0 1 0 

-20 0 0 0 

20 0 0 0 

50 0 1 0 

𝛼 -50 41 23 26 

-20 11 8 9 

20 7 7 6 

50 15 15 9 

𝛽 -50 56 99 41 

-20 22 30 15 

20 30 20 15 

50 63 40 41 

 

6.0 Conclusion 
In this paper, we present a mathematical model on the inventory of deteriorating items which do not start deteriorating 

immediately they are stocked. Items that have this property include farm produce, radioactive chemicals, fashion goods and 

so on. A 3-parameter Weibull distribution is used as the distribution for deterioration as in Chakrabartyet al. [18]. Numerical 

examples are given to determine the best cycle length and the corresponding total variable cost and order quantity. Further 

research can be done to determine the applicability of the scale parameter α, and the shape parameter β. 
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